小升初奥数培优试题及答案
- 格式:doc
- 大小:196.00 KB
- 文档页数:4
小升初奥数题及答案(经典版)小升初奥数题及答案(经典版)一、选择题1.某数除以6,商是4,余数是多少?A. 3B. 4C. 5D. 6答案:B2.甲数的3倍等于乙数的5倍,则甲数是乙数的几分之几?A. 3/5B. 4/5C. 5/4D. 5/3答案:C3.某数的两倍增加60等于90,这个数是多少?A. 15B. 20C. 45D. 60答案:A4.下一个“完全平方数”是什么?A. 64B. 81C. 88D. 100答案:B5.质数是指只能被1和自己整除的自然数,以下哪个数是质数?A. 1B. 10C. 17D. 27答案:C二、填空题1.现在是星期三,10天后是星期几?答案:星期六2.一个四位数,千位数是2,个位数是4,十位数比个位数多1,百位数比十位数多4,这个数是多少?答案:21443.一个大于1的自然数除以2,商是5,余数是4,这个数是多少?答案:14三、解答题1.小明家附近有一片矩形草坪,长20米,宽15米。
他想在草坪四周围上一圈木栅栏,每段木栅栏的长度都相等。
请问每段木栅栏的长度是多少米?答案:每条木栅栏的长度是20+15+20+15=70米。
2.某书店新到一批数学书籍,分为4个等分。
如果每个等分有55本书,那么这批书共有多少本?答案:这批书共有4 × 55 = 220本。
3.有20个小球,其中16个重量一样,其他4个也重量一样,但比那16个重的小球更重。
请问,至少需要用天平称几次可以找出重的小球?答案:只需要用天平称2次。
首先,我们将20个小球平分成两组,每组10个小球,然后只需要用天平比较这两组小球的重量,就可以确定出重的小球所在的一组。
接下来,我们再将这一组里的10个小球平分成两组,每组5个小球,再次用天平比较,就可确定出重的小球所在的一组。
最后,将这一组的5个小球中任意两个拿出来比较,就能找到重的小球。
总结:小升初奥数题及答案(经典版)涵盖了选择题、填空题和解答题。
小升初数学冲刺奥数题100道附答案(完整版)1. 某班有40 名学生,期中数学考试,有两名同学因故缺考,这时班级平均分为89 分,缺考的同学补考各得99 分,这个班期中考试平均分是多少?答案:89.5 分思路:班级总分(40 - 2)×89 = 3382 分,加上补考同学的分数3382 + 99×2 = 3580 分,平均分3580÷40 = 89.5 分。
2. 修一条路,第一天修了全长的1/4 ,第二天修了余下的1/3 ,还剩120 米没修,这条路全长多少米?答案:240 米思路:设全长为x 米,第一天修了1/4x 米,余下3/4x 米,第二天修了3/4x×1/3 = 1/4x 米,可列方程x - 1/4x - 1/4x = 120 ,解得x = 240 米。
3. 一个长方体,如果高增加2 厘米,就变成一个正方体,这时表面积比原来增加56 平方厘米,原来长方体的体积是多少?答案:441 立方厘米思路:增加的表面积是4 个同样的长方形的面积和,一个面的面积为56÷4 = 14 平方厘米,长方形的长即正方体的棱长为14÷2 = 7 厘米,原长方体高为7 - 2 = 5 厘米,体积为7×7×5 = 245 立方厘米。
4. 甲、乙两车同时从A、B 两地相向而行,在距A 地80 千米处相遇,相遇后两车继续前进,甲车到达B 地、乙车到达A 地后均立即按原路返回,第二次在距A 地60 千米处相遇。
A、B 两地相距多少千米?答案:150 千米思路:第一次相遇时,甲乙合走一个全程,甲走了80 千米。
第二次相遇时,甲乙合走三个全程,甲走了80×3 = 240 千米。
此时距离A 地60 千米,所以两个全程为240 + 60 = 300 千米,全程为150 千米。
5. 有一批零件,甲单独做要12 天完成,乙单独做要15 天完成,两人合作3 天后,剩下的由乙单独做,还要几天完成?答案:5 天思路:甲每天完成1/12 ,乙每天完成1/15 ,两人合作 3 天完成(1/12 + 1/15)×3 = 9/20 ,剩下11/20 ,乙单独做需要11/20÷1/15 = 8.25 天,约为5 天。
小升初奥数50道经典奥数题及答案解析1. 一个数的百分之一比这个数的百分之10小9,这个数是多少?解析:假设这个数为x,则百分之一可以表示为0.01x,百分之10可以表示为0.1x。
根据题意可得0.01x = 0.1x - 9。
整理得到0.09x = 9,解得x = 100。
2. 假设一个数的百分之一是3,这个数是多少?解析:可以设这个数为x,则百分之一可以表示为0.01x。
根据题意可得0.01x = 3,解得x = 300。
3. 4的百分之一是多少?解析:可以直接计算得到4的百分之一为0.04。
4. 假设一个数的百分之一是0.02,这个数是多少?解析:设这个数为x,则百分之一可以表示为0.01x。
根据题意可得0.01x = 0.02,解得x = 2。
5. 判断下列四个小数哪一个是最小的?0.01,0.1,0.02,0.2。
解析:可以将四个小数都化为百分数进行比较。
0.01 = 1%,0.1 = 10%,0.02 = 2%,0.2 = 20%。
显然,1%是最小的。
6. 在数的添加、减少、乘法和除法中,哪种运算是无法实现负数的?解析:除法无法实现负数,因为任何数除以0都是无意义的。
7. 将0.35表示成分数形式。
解析:0.35可以表示为35/100,然后将分数进行约分得到7/20。
8. 填入下面的括号中:(2-3)÷(-2)=()。
解析:(2-3)÷(-2) = -1/(-2) = 1/2。
9. 计算:(-2)+3-5×(-4)÷(-2)。
解析:根据运算法则,先进行乘法和除法,再进行加法和减法。
(-2)+3-5×(-4)÷(-2) = (-2)+3-20÷(-2) = (-2)+3-(-10) = (-2)+3+10 = 11。
10. 计算:(-12)-0.5×(2-3)+4÷2。
解析:先进行括号内的运算,(-12)-0.5×(2-3)+4÷2 = (-12)-0.5×(-1)+4÷2 = (-12)-(-0.5)+4÷2 = (-12)+0.5+2 = -9.5。
六年级小升初奥数题100例附答案(完整版)题目1:一个数的30%是15,这个数是多少?答案:15÷30% = 50题目2:比80 米多25%是多少米?答案:80×(1 + 25%) = 100 米题目3:某班男生人数是女生人数的4/5,女生比男生多5 人,男生有多少人?答案:设女生人数为x 人,则男生人数为4/5 x 人。
x - 4/5 x = 5 ,解得x = 25 ,男生人数为20 人。
题目4:一个圆的半径是4 厘米,它的面积是多少平方厘米?答案:3.14×4×4 = 50.24 平方厘米题目5:一件商品原价200 元,现打八折出售,现价是多少元?答案:200×80% = 160 元题目6:在一个比例中,两个外项互为倒数,其中一个内项是 2.5,另一个内项是多少?答案:两个外项互为倒数,积为1。
所以另一个内项为1÷2.5 = 0.4题目7:一项工程,甲单独做15 天完成,乙单独做20 天完成,甲乙合作几天完成?答案:1÷(1/15 + 1/20) = 60/7 天题目8:一个数除以8,商是12,余数是5,这个数是多少?答案:8×12 + 5 = 101题目9:有一堆煤,第一天用去1/3,第二天用去1/4,还剩下18 吨,这堆煤原有多少吨?答案:设这堆煤原有x 吨,x - 1/3 x - 1/4 x = 18 ,解得x = 43.2 吨题目10:一个长方体的棱长总和是48 厘米,长、宽、高的比是3:2:1,这个长方体的体积是多少?答案:48÷4 = 12 厘米,长为12×3/(3 + 2 + 1) = 6 厘米,宽为4 厘米,高为2 厘米,体积为6×4×2 = 48 立方厘米题目11:一个圆锥形沙堆,底面周长是18.84 米,高是 2 米,每立方米沙重 1.8 吨,这堆沙重多少吨?答案:底面半径为18.84÷3.14÷2 = 3 米,体积为1/3×3.14×3×3×2 = 18.84 立方米,重18.84×1.8 = 33.912 吨题目12:甲乙两车同时从A、B 两地相对开出,3 小时相遇,甲车每小时行50 千米,乙车每小时行40 千米,A、B 两地相距多少千米?答案:(50 + 40)×3 = 270 千米题目13:小明看一本120 页的书,第一天看了全书的1/4,第二天看了全书的1/3,第三天应从第几页看起?答案:第一天看了120×1/4 = 30 页,第二天看了120×1/3 = 40 页,前两天共看了70 页,第三天从第71 页看起。
小升初奥数培优模拟试题(一)一、填空题:3.一个两位数,其十位与个位上的数字交换以后,所得的两位数比原来小27,则满足条件的两位数共有______个.5.图中空白部分占正方形面积的______分之______.6.甲、乙两条船,在同一条河上相距210千米.若两船相向而行,则2小时相遇;若同向而行,则14小时甲赶上乙,则甲船的速度为______.7.将11至17这七个数字,填入图中的○内,使每条线上的三个数的和相等.8.甲、乙、丙三人,平均体重60千克,甲与乙的平均体重比丙的体重多3千克,甲比丙重3千克,则乙的体重为______千克.9.有一个数,除以3的余数是2,除以4的余数是1,则这个数除以12的余数是______.10.现有七枚硬币均正面(有面值的面)朝上排成一列,若每次翻动其中的六枚,能否经过若干次的翻动,使七枚硬币的反面朝上______(填能或不能).二、解答题:1.浓度为70%的酒精溶液500克与浓度为50%的酒精溶液300克,混合后所得到的酒精溶液的浓度是多少?2.数一数图中共有三角形多少个?3.一个四位数,它的第一个数字等于这个数中数字0的个数,第二个数字表示这个数中数字1的个数,第三个数字表示这个数中数字2的个数,第四个数字等于这个数中数字3的个数,求出这个四位数.小升初奥数培优模拟试题答案一、填空题:1.(1)3.(6个)设原两位数为10a+b,则交换个位与十位以后,新两位数为10b+a,两者之差为(10a+b)-(10b+a)=9(a-b)=27,即a-b=3,a、b为一位自然数,即96,85,74,63,52,41满足条件.4.(99)5.(二分之一)把原图中靠左边的半圆换成面积与它相等的右半部的半圆,得右图,图6.(60千米/时)两船相向而行,2小时相遇.两船速度和210÷2=105(千米/时);两船同向行,14小时甲赶上乙,所以甲船速-乙船速=210÷14=15(千米/时),由和差问题可得甲:(105+15)÷2=60(千米/时).乙:60-15=45(千米/时).7.11+12+13+14+15+16+17=98.若中心圈内的数用a表示,因三条线的总和中每个数字出现一次,只有a多用3两次,所以98+2a应是3的倍数,a=11,12,…,17代到98+2a中去试,得到a=11,14,17时,98+2a是3的倍数.(1)当a=11时98+2a=120,120÷3=40(2)当a=14时98+2a=126,126÷3=42(3)当a=17时98+2a=132,132÷3=44相应的解见上图.8.(61)甲、乙的平均体重比丙的体重多3千克,即甲与乙的体重比两个丙的体重多3×2=6(千克),已知甲比丙重3千克,得乙比丙多6-3=3千克.又丙的体重+差的平均=三人的平均体重,所以丙的体重=60-(3×2)÷3=58(千克),乙的体重=58+3=61(千克).9.(5)满足条件的最小整数是5,然后,累加3与4的最小公倍数,就得所有满足这个条件的整数,5,17,29,41,…,这一列数中的任何两个的差都是12的倍数,所以它们除以12的余数都相等即都等于5.10.(不能)若使七枚硬币全部反面朝上,七枚硬币被翻动的次数总和应为七个奇数之和,但是又由每次翻动七枚中的六枚硬币,所以无论经过多少次翻动,次数总和仍为若干个偶数之和,所以题目中的要求无法实现。
小升初奥数试卷及答案一(数学培优练习) 学校 座号 姓名 1、计算:.______31%1254119119225.1=⨯-⨯+⨯ 2、计算:._______2010200925120092008251=⨯+⨯ 3、在小数3.1415926的两个数字上方加2个循环点,得到循环小数,这样的循环小数中,最小的_______.4、一个两位数除以一位数,所得的商若是最小的两位数,那么被除数最大是_______.5、20122的个位数字是________.(其中,n 2表示n 个2相乘)6、图1是一个正方体的展开图,图2的四个正方体中只有一个是和这个展开图对应的,这个正方体是_______.(填序号)7、一列快车从甲地开往乙地需要5小时,一列慢车从乙地开往甲地所需时间比快车多1/5,两车同时从甲乙两地相对开出2小时候,慢车停止前进,快车继续行驶40千米后恰与慢车相遇,则甲乙两地相距______千米.8、对任意两个数x ,y ,定义新的运算*为:yx m y x y x ⨯+⨯⨯=2* (其中m 是一个确定的数).如果522*1=,那么m=______,2*6=_______. 9、甲、乙两家商店出售同一款兔宝宝玩具,每只原售价都是25元,为了促销,甲店先提价10%,再降价20%;乙店则直接降价10%.那么,调价后对于这款兔宝宝玩具,______店的售价更便宜,便宜_____元。
10、图3中的三角形的个数是_______.11、若算式(□+121×3.125)÷121的值约等于3.38,则□中应填入的自然数是_______.12、认真观察图4中的三幅图,则第三幅图中的阴影部分应填的数字是________.13、图5中每一个圆的面积都是1平方厘米,则六瓣花形阴影部分的面积是_____平方厘米.14、如图6,正方形ABCD 和EFGH 分别被互相垂直的直线分为两个小正方形和两个矩形,小正方形的面积的值已标在图中,分别为20和10,18和12,则正方形ABCD 和EFGH 中,面积较大的正方形_______.15、早晨7点10分,妈妈叫醒小明,让他起床,可小明从镜子中看到的时刻还没有到起床的时刻,他对妈妈说:“还早呢!”小明误以为当时是_______点______分.16、从五枚面值为1元的邮票和四枚面值为1.60元的邮票中任取一枚或若干枚,可组成不同的邮资______种.17、从1,2,3,4,…,15,16这十六个自然数中,任取出n 个数,其中必有这样的两个数:一个是另一个的3倍,则n 最小是______.18、某工程队修建一条铁路隧道,当完成任务的1/3时,工程队采用新设备,使修建速度提高了20%,同时为了保养新设备,每天工作时间缩短为原来的4/5,结果,前后共用185天完工,由以上条件可推知,如果不采用新设备,完工共需______天.19、王老师在黑板上写了若干个从1开始的连续自然数:1,2,3,4,…,然后擦去三个数(其中有两个质数),如果剩下的数的平均数是9819,那么王老师在黑板上共写了______个数,擦去的两个质数的和最大是______.20、小强和小林共有邮票400多张,如果小强给小林一些邮票,小强的邮票就比小林的少6/19;如果小林给小强同样多的邮票,则小林的邮票就比小强的少6/17,那么,小强原有_______张邮票,小林原有______.小升初奥数试卷及答案二(数学培优练习)时间:80分钟姓名分数一、填空题(6分×10=60分)1.。
小升初奥数精选练习题及答案1、甲乙丙丁戊五位同学进行乒乓球比赛,规定每两人都要赛一场,到现在为止,甲赛了4场,乙赛了3场,丙赛了2场,丁赛了1场,那么戊赛了()场。
2、一个圆,当沿直径截去它的一半之后,剩下部分的周长比原来少了3.42CM,那么原来这个圆的面积是()cm²。
3、一份稿件,甲乙合打4小时完成,乙丙合打5小时完成,甲丙合打6小时完成。
如果甲乙丙三人同时打全部稿件,需要几小时?4、有两个棱长总和相等的长方体和正方体,它们的体积()A.相等B.长方体大C.正方体大5、如果把数字5写在一个数的末尾,这个数就增加了383。
原来的这个数是多少?6、两个数相除商是3,余数是10,若被除数、除数、商和余数的和是143,被除数是(),除数是()7、判断:10名同学进行乒乓球比赛,如果每2名同学之间都进行一场比赛,那么每个人都要赛9场。
()8、被除数、除数和余数的和是1540,已知除数是20,余数是10,那么商是()。
9、某钟表的分针长9cm,如果分针针尖走过12πcm,那么分针扫过的面积为()。
10、甲乙两人骑自行车同时从西镇出发到东镇,甲每小时行15km,乙每小时行10km,甲行30分钟后,因事用原速返回西镇,在西镇耽搁了半小时,又以原速去东镇,结果比乙晚到30分钟,试问两镇的距离?11、李叔叔到苹果产地去收购苹果,收购价为每千克0.6元,从产地到水果店距离300千米,运费为每吨每千米1.05元,其他费用为每吨30元,在批发及运输、售出的过程中,苹果的损耗是10%,李叔叔要达到20%的利润,每千克苹果应定价为多少元?12、灌满—个水池,只打开A管要8小时,只打开B管要10小时,只打开C管要15小时.开始时只打开A管和B管,中途关掉A管和B管,然后打开C管,前后共用了10小时15分灌满了水池.那么C管打开了几小时?13、一只羊被7m长的绳子拴在正五边形建筑的一个顶点上,建筑物边长3m,旁边是草地,他能吃到多少草?π取314、甲乙两数的比是4:3,最大公因数与最小公倍数的和是390,甲数是()。
使用办法:题目后面有答案,但是要遮住答案完成,把题目完成在笔记本,自行核对,一天一题小学六年级奥数题及答案1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?解:设不低于80分的为A人,则80分以下的人数是(A-2)/4,及格的就是A+22,不及格的就是A+(A-2)/4-(A+22)=(A-90)/4,而6*(A-90)/4=A+22,则A=314,80分以下的人数是(A-2)/4,也即是78,参赛的总人数314+78=3922.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思,为什么这么做(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)} 左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款答案取40%后,存款有9600×(1-40%)=5760(元)这时,乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。
再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1。
培优练习题
时间:80分钟姓名分数
一、填空题(6分×10=60分)
1.。
2.一项工程,甲队单独完成需要10天,乙队单独完成需要15天,丙队单独完成需要20天。
开始时三个队一起工作,中途甲队撤走,由乙、丙两个队一起完成剩下的工程。
最后用6天时间完成该工程。
那么甲队实际工作了天。
3.甲数比乙数大5,乙数比丙数也大5,而这三个数的乘积是6384,那么甲数是。
4.如图:在三角形ABC中,BD=BC,AE=ED,图中阴影部分的面积为250.75
平方厘米,则三角形ABC面积为__________平方厘米。
5.某厂向银行申请甲乙两种贷款共40万元,每年需支付利息5万元。
甲种贷
款年利率为12%,乙种贷款年利率为14%。
甲种贷款的金额是________万元,乙种贷款的金额是_______万元。
6.在358的后面补上三个数码组成一个六位数,使得它分别能被3、4、5整除,这样的六位
数中最小的是________。
7.写出5个不相同的自然数,使其中任意三个自然数的和能被3整除,这5个自然数的和至
少是_________。
8.已知一个圆柱体的侧面展开图恰好是一个边长为6.28厘米的正方形。
这个圆柱体的体积
是_______立方厘米。
9.a、b、c、d、e是五个人的年龄数,已知a是b的2倍,c的3倍,d的4倍,e的6倍,
则a+b+c+d+e最小为________。
10.大货车和小轿车从同一地点出发沿同一公路行驶。
大货车先走1.5小时,小轿车出发4小
时后追上了大货车,如果小轿车每小时多行5千米,出发后3小时就可追上大货车,小轿车实际每小时行_______千米。
二、解答题(10分×4=40分)
1.甲种酒精含纯酒精40%,乙种酒精含纯酒精36%,丙种酒精含纯酒精35%。
将这三种酒
精混合在一起得到含纯酒精38.5的酒精11千克,已知乙种酒精比丙种酒精多3千克。
那么甲种酒精有多少千克?
2.某校参加一次数学竞赛的平均成绩是75分,选手中男生人数比女生人数多80%,而女生
比男生的平均分高20%,女生的平均分是多少?
3.小明跑步速度是步行速度的3倍,他每天从家到学校都是步行,有一天由于晚出发10分
钟,他不得不跑步行了一半路程,另一半路程步行,这样与平时到达学校的时间一样,那么小明每天步行上学需要时间多少分钟?
4.一艘轮船所带的柴油最多可以用6小时,驶出时顺风,每小时行30千米;驶回时逆风,每小时行24千米。
这艘轮船最多驶出多少千米就应返航?
奥数培训练习题
一、填空题
1.。
2. 3 6天中乙丙两队完成的工作量为,因此甲队实际工作了
(天)
3.24 ,容易知道,所以甲数乙数丙数分别
不超过25、20、15。
若甲数为奇数,则乙数为偶数,丙数为奇数。
因此乙数为16,此时甲数21,丙数11,无解。
乙数为奇数则乙数必为19(因19的偶倍数都要超过
25),此时甲数24,丙数14,,成立,甲数为24
4.2006
易知阴影部分面积为三角形ABC面积的,因此三角形ABC的面积为
(平方厘米)
5.30,10
假设全部是甲种贷款,则年支付利息万元,乙种贷款有
万元,甲种贷款万元。
6.358020
3、4、5的最小公倍数为60,而358000 除60的余数为40,因此最小的为358020。
7.35
被3除余数有0,1,2三种,若要5个自然数任意3个的和能被3整除,则这五个自然数被3除的余数相同。
由于是5个不同自然数,因此最小的和为
8.19.72
圆柱体底面周长为6.28厘米,因此底面半径为(厘米)。
圆柱体体积为
(立方厘米)
9.27
取a是2、3、4、6的最小公倍数12,则a = 12,b=6,c=4,d=3,e=2,因此和最小为27
10.55
根据题意,每小时多行5千米,速度差加大5千米,3小时后多行了15千米。
而由于距离差是相同的,因此这15千米应与原速度差1小时所追上的路程相同,故速度差为15千米/小时。
追及距离(千米),大货车速度(千米/小时)。
小轿车实际每小时行40+15 = 55千米。
二、解答题
1.7
设甲种酒精有x千克,则丙种酒精有千克,乙种酒精有,根据题目条件有方程
,解之得
2.84
设女生人数为10,则男生人数为18,再设女生的平均成绩是x分,则有方程
,解之得x = 84
3.30
由于跑步的速度是步行速度的3倍,而一半的路程跑步比步行快10分钟,因此一半的路
程步行需要(分钟),每天步行上学需要30分钟。
4.80
驶出时与驶回时的速度比为30:24 = 5:4,因此同样的距离下驶出时与驶回时的时间比应为
4:5,总共可以行驶6小时,因此最多驶出(千米)。