隧道的结构计算
- 格式:ppt
- 大小:3.36 MB
- 文档页数:68
一.基本资料惠家庙公路隧道,结构断面尺寸如下图,内轮廓半径为 6.12m ,二衬 厚度为 0.45m 。
围岩为 V 级,重度为19.2kN/m3,围岩弹性抗力系数为 1.6×105kN/m3,二衬材料为 C25 混凝土,弹性模量为 28.5GPa ,重度 为 23kN/m 3。
考虑到初支和二衬分别承担部分荷载,二衬作为安全储备,对其围岩压力进行折减,对本隧道按照 60%进行折减。
求二衬内力,作出内力图,偏心距分布图。
1)V1级围岩,二衬为素混凝土,做出安全系数分布图,对二衬安全性进行验算。
2)V2级围岩,二衬为钢筋混凝土,混凝土保护层厚度 0.035m ,按结构设计原理对其进行配筋设计。
二.荷载确定1.围岩竖向均布压力:q=0.6×0.45⨯12-S γω式中: S —围岩级别,此处S=5;γ--围岩重度,此处γ=19.2KN/3m ;ω--跨度影响系数,ω=1+i(m l -5),毛洞跨度m l =13.14+2⨯0.06=13.26m ,其中0.06m 为一侧平均超挖量,m l =5—15m 时,i=0.1,此处ω=1+0.1⨯(13.26-5)=1.826。
所以,有:q=0.6×0.451-52⨯⨯19.2⨯1.826=151.456(kPa )此处超挖回填层重忽略不计。
2.围岩水平均布压力:e=0.4q=0.4⨯151.456=60.582(kPa ) 三.衬砌几何要素 5.3.1 衬砌几何尺寸内轮廓线半径126.12m , 8.62m r r ==内径12,r r 所画圆曲线的终点截面与竖直轴的夹角1290,98.996942φφ=︒=︒; 拱顶截面厚度00.45m,d = 墙底截面厚度n 0.45m d =此处墙底截面为自内轮廓半径2r 的圆心向内轮廓墙底做连线并延长至与外轮廓相交,其交点到内轮廓墙底间的连线。
外轮廓线半径:110 6.57m R r d =+= 2209.07m R r d =+=拱轴线半径:'1200.5 6.345m r r d =+= '2200.58.845m r r d =+=拱轴线各段圆弧中心角:1290,8.996942θθ=︒=︒5.3.2 半拱轴线长度S 及分段轴长S ∆分段轴线长度:'11190π 3.14 6.3459.9667027m 180180S r θ︒==⨯⨯=︒︒'2228.996942π 3.148.845 1.3888973m 180180S r θ︒==⨯⨯=︒︒半拱线长度:1211.3556000m S S S =+=将半拱轴线等分为8段,每段轴长为:11.3556 1.4194500m 88S S ∆===5.3.3 各分块接缝(截面)中心几何要素(1)与竖直轴夹角i α11'1180 1.4194518012.8177296π 6.345πS r αθ∆︒︒=∆=⨯=⨯=︒ 21112.817729612.817729625.6354592ααθ=+∆=︒+︒=︒ 32125.635459212.817729638.4531888ααθ=+∆=︒+︒=︒43138.453188812.817729651.2709184ααθ=+∆=︒+︒=︒54151.270918412.817729664.0886480ααθ=+∆=︒+︒=︒ 65164.088648012.817729676.9063776ααθ=+∆=︒+︒=︒ 76176.906377612.817729689.7241072ααθ=+∆=︒+︒=︒2'2180 1.419451809.2748552π8.845πS r θ∆︒︒∆=⨯=⨯=︒ 87289.72410729.194855298.996942ααθ=+∆=︒+︒=︒另一方面,8129012.817729698.996942αθθ=+=︒+︒=︒ 角度闭合差Δ≈0。
┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊二次衬砌内力计算一.基本资料吴家院一级公路隧道,结构断面图如图1所示。
围岩类别为V级,容重320/kN mγ=,围岩的弹性抗力系数620.210/K kN m=⨯,衬砌材料为C25混凝土,弹性模量为72.910hE kPa=⨯,容重γh3= 29kN m。
图1 衬砌结构断面图二.荷载确定1.根据式,围岩竖向均布压力:10.452sqγω-=⨯式中:s——围岩类别,此处s=5γ——围岩容重,此处320/kN mγ=;ω——跨度影响系数,1(5)mi lω=+-,毛洞跨度11.6020.0611.72ml=+⨯=,其中0.06m为一侧平均超挖量,5~15ml m=时,0.1i=,此处10.1(11.725) 1.672ω=+⨯-=.┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊所以,有:0.451620 1.672240.768q Pa=⨯⨯⨯=此处超挖回填层重忽略不计。
2.围岩水平均布压力:0.250.25240.76860.192e q kPa==⨯=三.衬砌几何要素1.衬砌几何尺寸内轮廓线半径125.35,7.48;r m r m==内径12,r r所画圆曲线的终点截面与竖直轴的夹角1290,105.51ϕϕ==;拱顶截面厚度0.45;d m=墙底截面厚度0.45.nd m=此处墙底截面为自内轮廓半径2r的圆心向内轮廓墙底做连线并延长至与外轮廓相交,其交点到内轮廓墙底间的连线。
外轮廓线半径:1105.80R r d m=+=2207.93R r d m=+=拱轴线半径:'1100.5 5.575r r d m=+='2200.57.705r r d m=+=拱轴线各段圆弧中心角:1290,15.51θθ==2.半拱轴线长度S及分段轴长S∆分段轴线长度:'111903.14 5.5758.7527180180S r mθπ==⨯⨯='22215.513.147.705 2.0847180180S r mθπ==⨯⨯=半拱线长度:1210.8374S S S m=+=将半拱轴线等分为8段,每段轴长为:10.83741.354788SS m∆===3.各分块接缝(截面)中心几何要素(1)与竖直轴夹角iα113.928181α=227.856362α=341.784543α=455.712724α=569.640905α=┊┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊683.569086α= 795.426778α= 8105.508472α= 另一方面,8129015.51105.51αθθ=+=+= 角度闭合差0∆=。
第一章总则对某区间隧道进行结构检算,求出内力,并进行配筋计算。
具体设计基本资料如下:1.1设计条件隧道拱顶埋深为5 m;隧道围岩等级为III级,围岩重度为28kN/m3,围岩的内摩擦角©=60o,似摩擦角©*=68o,围岩侧压力系数取为0.3。
;采用暗挖法施工,隧道断面型式为6心圆马蹄形结构。
结构尺寸如图所示:囲卜倾图1隧道尺寸示意图1.2设计原则山岭地区的地下工程是包括铁路、公路、水工隧道和地下储库等位于山岭内部的地下建筑物。
对于公路隧道而言,主体规划设计主要考虑4个方面的问题:(1)隧道(里面、平面)线型的选择,需要考虑地表条件、地层条件、地下水条件和既有临近建筑及设施;(2)隧道施工对地层的影响,需要分析地层的变形、荷载和稳定性特征,还需要考虑地下水和地层的渗透性;(3)隧道断面、主体及附属结构形式的选择,需要考虑地层的变形和刚度、衬砌的变形和刚度,以及两者之间的相互作用;(4)隧道防水方案,选择全圭寸闭方案、部分圭寸闭部分排水方案或其他防排水方案。
隧道施工方法的规划设计主要涉及3个方面的问题:(1)地层的开挖与出渣,需要考虑地层结构和岩石硬度的变化,还要计入地下水的作用;(2)地层稳定性的维持,需要考虑地层的自稳特征和站立时间,对注浆或冻结等地层处理方法的适应性;(3)地下水,包括流量与流向,流砂或管涌的可能性,以及处理方法。
公路隧道结构设计应按照相关的行业规范执行。
如《建筑结构荷载规范》(GBJ 50009-2001 )、《人民防空工程设计规范》(GB 50225-95)、《公路隧道设计规范》(JTGD70-2004)、《锚杆喷射混凝土支护技术规范》 (GB50086-2001)、《混凝土结构设计规范》(GB 50010-2002 )、《型钢混凝土组合结构技术规程》(JGJ 138-2001 )、《钢结构设计规范》(GBJ 50017-2003)、《地下工程防水设计规范》(GB 50108-2001)、《公路工程技术标准》(JTG B01-2003)等。
电缆隧道结构计算1、隧道基本尺寸:(m)宽高侧板厚顶板厚底板厚隧道顶板埋深地面荷载底板荷载4.002.300.400.400.503.3010.005.002、计算参数:L 1L 2I 1I 24.402.750.010.013、计算系数:m =L2/L1n =I2/I1K=m*nμ=K*K+4*K+30.63 1.000.63 5.894、荷载(堆料荷载或汽车荷载:堆料荷载由计算确定,汽车荷载根据不同等级选用)从上述数据中选取最大值:294.00覆土荷载覆土深度覆土密度覆土荷载汽车荷载(双轴)覆土深度动力系数汽车荷载3.3020.0066.00200.003.301.0012.7366.00荷载分项系数(恒、活)1.20 1.405、地基土性质(密度、内摩擦角)及埋深20.0030.006.50注:岩石摩擦角90度(1)顶板荷载105.2086.00(2)底板荷载116.70100.58(3)侧板荷载(顶部)31.0625.33侧板荷载(底部)56.6646.666、隧道内力计算(1)顶板底板受力弯矩:设计值标准值顶板支座弯矩:KN.m -102.48-82.89底板支座弯矩:KN.m -117.83-102.36顶板中部弯矩:KN.m 152.11125.23底板中部弯矩:KN.m164.58141.05侧板弯矩:KN.m-110.15-92.62电缆隧道结构计算弯矩(弯矩计算把隧道分成两部分,顶板底板受力+四边都受均布力+侧壁受均布力,然后取代数和)隧道所受荷载:(覆土荷载)第 1 页(6)隧道壁裂缝宽度计算:第 2 页第 3 页第 4 页。
学校隧道工程课程设计课程名称:隧道工程课程设计设计题目:公路隧道结构设计与计算专业层次:城市地下空间工程班级:姓名:学号:指导老师:×年×月目录1. 设计说明 (3)1.1 设计题目 (3)1.2 设计内容总览 (3)1.2.1 计算书部分 (3)1.2.2 图纸部分 (3)2. 隧道断面尺寸 (3)2.1 隧道建筑限界 (3)2.2 隧道的衬砌断面 (4)3. 隧道衬砌结构计算 (5)3.1 基本资料 (5)3.2 荷载确定 (5)3.2.1 围岩竖向均布压力 (5)3.2.2 围岩水平均布压力 (5)3.3 衬砌几何要素 (6)3.3.1.衬砌几何尺寸 (6)3.3.2 半拱线长度S及分段轴长△S (6)3.3.3 各分块接缝中心几何要素 (6)3.4 位移计算 (8)3.4.1 单位位移 (8)3.4.2 载位移—主动荷载在基本结构中引起的位移 (9)3.4.3 载位移—单位弹性抗力及相应的摩擦力引起的位移 (13)3.4.4 墙底(弹性地基上的刚性梁)位移 (16)4. 解力法方程 (16)5. 计算主动荷载和被动荷载(σh=1)分别产生的衬砌内力 (17)6. 最大抗力值的求解 (18)7. 计算衬砌总内力 (19)8. 衬砌截面强度验算 (20)9. 内力图 (20)10. 隧道施工方案 (21)10.1 施工方法介绍 (21)10.2 施工方案及施工工艺流程 (22)10.2.1 施工工艺流程 (22)10.2.2 施工方案 (23)10.3 台阶法法注意事项 (23)1. 设计说明1.1 设计题目某一级公路隧道(双向四车道、隧道长700m)通过IV类围岩,埋深H=20m,隧道围岩天然容重γ=26 kN/m3,计算摩擦角ф=35°,变形模量E=10GPa,采用矿山法施工。
要求按高速公路设计速度80km/h。
(衬砌材料采用C25喷射混凝土,材料容重γh=22 kN/m3,变形模量Eh=25GPa)1.2 设计内容总览1.2.1 计算书部分(1)确定公路建筑界限;(2)根据公路等级及围岩类别用工程类比法确定支护方法及衬砌材料;(3)拟定隧道结构的截面尺寸(包括轮廓线半径及厚度等);(4)隧道围岩压力计算(包括竖向压力及水平压力);(5)隧道结构内力计算,并画出弯矩图和轴力图。
盾构隧道结构计算模型简述发布时间:2021-06-24T08:22:11.008Z 来源:《防护工程》2021年6期作者:武鹏[导读] 传统的隧道于地下工程结构计算方式主要有荷载-结构模型,地层结构模型。
近些年来,随着大量盾构隧道工程的出现,对于隧道结构的计算提出了新的要求。
虽然各种计算模型已经百花齐放,但各计算模型的优缺点,适用条件,在实际工程设计中仍然存在一定的混淆,本文从荷载计算、结构模拟的角度分析不同计算模型的特点、分类、适用条件,指出了其在实际工程设计中的适用性。
武鹏中国公路工程咨询集团有限公司北京市 100089摘要:传统的隧道于地下工程结构计算方式主要有荷载-结构模型,地层结构模型。
近些年来,随着大量盾构隧道工程的出现,对于隧道结构的计算提出了新的要求。
虽然各种计算模型已经百花齐放,但各计算模型的优缺点,适用条件,在实际工程设计中仍然存在一定的混淆,本文从荷载计算、结构模拟的角度分析不同计算模型的特点、分类、适用条件,指出了其在实际工程设计中的适用性。
1、盾构隧道荷载的计算理论地下工程结构的荷载计算,目前主要分为两类:荷载-结构模型和地层-结构模型。
1.1 荷载-结构模型荷载-结构模型默认围岩是一种松散体,是荷载的来源,而结构的作用只是被动承受荷载的荷载—结构模型;而地层-结构模型则认为围岩虽然是荷载的来源,但本身具有一定的承载能力,而结构的作用是对围岩的保护与补强,两者协同作用,共同承担荷载。
荷载-结构模型的前提是围岩因为工程的开挖而发生了较大的松弛或者崩塌,其已失去了承载能力,简言之,围岩是一种松散体,为支护结构“松动”压力的来源。
隧道结构设计的关键,即为确定围岩作用在支撑结构的主动荷载,长久以来,各国工程师,科研人员根据埋深不同,提出了太沙基理论、普氏理论等计算主动荷载,这些理论具有取值简单,适用性强的特点,在工程领域取得了广泛的应用。
确定了荷载后,即可运用结构力学、弹性力学等知识求解超静定结构的内力与变形,并由此确定安全系数。