回归分析的模型
按是否线性分:线性回归模型和非线性回 归模型 按自变量个数分:简单的一元回归,多元 回归
回归分析的模型
基本的步骤:利用SPSS得到模型关系式, 是否是我们所要的,要看回归方程的显著 性检验(F检验)和回归系数b的显著性检 验(T检验),还要看拟合程度R2 (相关系数 的平方,一元回归用R Square,多元回归 用Adjusted R Square)
奇异值(Casewise或Outliers)诊断
概念 奇异值指样本数据中远离均值的样本数
据点,会对回归方程的拟合产生较大偏差影响。 诊断标准
一般认为,如果某样本点对应的标准化残 差值超出了[-3,+3]的范围,就可以判定该 样本数据为奇异值。
线性回归方程的预测
点估计
y0 区间估计
95%的近似置信区间: [y02Sy,y0+2Sy]. x0为xi的均值时,预测区 间最小,精度最高.x0越远离均值,预测区 间越大,精度越低.
11.1 线性回归(Liner)
一元线性回归方程: y=a+bx a称为截距 b为回归直线的斜率 用R2判定系数判定一个线性回归直线的拟合
程度:用来说明用自变量解释因变量变异的 程度(所占比例)
回归方程
回归方程的显著性检验 目的:检验自变量与因变量之间的线性关系是否 显著,是否可用线性模型来表示. 检验方法: t检验 F检验(一元回归中,F检验与t检验一致, 两种检 验可以相互替代)
回归分析的过程
Байду номын сангаас在回归过程中包括:
Liner:线性回归 Curve Estimation:曲线估计 Binary Logistic: 二分变量逻辑回归
回归分析的过程