新课标A版高中数学选修2-3练习:第三章 统计案例 3-2 Word版含答案
- 格式:doc
- 大小:41.50 KB
- 文档页数:2
第三章测评A(基础过关卷)(时间:100分钟 满分:100分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列有关线性回归的说法不正确的是( )A .变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B .在平面直角坐标系中用描点的方法得到具有相关关系的两个变量的一组数据的图形叫做散点图C .线性回归直线得到具有代表意义的回归直线方程D .任何一组观测值都能得到具有代表意义的回归直线方程 2.下列关于等高条形图说法正确的是( ) A .等高条形图表示高度相对的条形图 B .等高条形图表示的是分类变量的频数 C .等高条形图表示的是分类变量的百分比 D .等高条形图表示的是分类变量的实际高度3.一位母亲记录了儿子3~9岁的身高,数据略,由此建立的身高与年龄的回归模型为y ^=7.19x +73.93,用这个模型预测这个孩子10岁时的身高,则正确的叙述是( )A .身高一定是145.83 cmB .身高在145.83 cm 以上C .身高在145.83 cm 左右D .身高在145.83 cm 以下4.某考察团对全国10个城市进行职工人均工资水平x (千元)与居民人均消费水平y (千元)统计调查,y 与x 具有相关关系,回归方程为y ^=0.66x +1.562,若某城市居民人均消费水平为7.675(千元),估计该城市人均消费额占人均工资收入的百分比约为( )A .72%B .83%C .67%D .66%5.已知一个线性回归方程为y ^=1.5x +45,其中x 的取值依次为1,7,5,13,19,则y =( ) A .60 B .46.5 C .58.5 D .756.在两个学习基础相当的班级实行某种教学措施的实验,测试结果见下表,则实验效果与教学措施( )优、良、中差总计实验班48250对比班381250总计8614100A.有关B.无关C.关系不明确D.以上都不正确7.已知x,y之间的一组数据如下表所示,则y对x的回归直线必经过()x 023 4y 2468A.(0,1)B.(2,5)C.(1.5,0)D.(2.25,5)8.假设有两个分类变量X和Y,它们的可能取值分别为{x1,x2}和{y1,y2},其2×2列联表如下:y1y2总计x1 a b a+bx2 c d c+d总计a+c b+d a+b+c+d对于以下数据,对同一样本能说明X与Y有关的可能性最大的一组为()A.a=9,b=8,c=7,d=6B.a=9,b=7,c=6,d=8C.a=8,b=6,c=9,d=7D.a=6,b=7,c=8,d=99.为考察数学成绩与物理成绩的关系,在高二随机抽取了300名学生,得到下面列联表:现判断数学成绩与物理成绩有关系,则判断的出错率为( ) A .0.5% B .1% C .2% D .5%10.两个分类变量X 和Y ,它们的可能取值分别为{x 1,x 2}和{y 1,y 2},其样本频数分别是a =10,b =21,c +d =35.若X 与Y 有关系的可信程度不小于97.5%,则c 等于( )A .3B .4C .5D .6二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中横线上) 11.从某地区15 000位老人中随机抽取500人,其生活能否自理的情况如下表所示:男 女 能 178 278 不能2321则该地区生活不能自理的老人中男性比女性约多________人.12.某超市为了了解热茶销售量y (杯)与气温x (℃)之间的关系,随机统计了某4天卖出的热茶的杯数与当天的气温,并制作了对照表:气温/℃ 18 13 10 -1 杯数24343864由表中数据算得线性回归方程y ^=b ^x +a ^中的b ^≈-2,预测当气温为-5 ℃时,热茶销售量为________杯.(已知回归系数b ^=∑n i =1x i y i -n x y∑ni =1x 2i -n x2,a ^=y -b ^x )13.下列是关于出生男婴与女婴调查的列联表:晚上 白天 总计 男婴 45 A B 女婴 E 35 C 总计98D180那么A =________,B =________,C =________,D =________,E =________. 14.甲、乙、丙、丁四位同学各自对A ,B 两个变量的线性相关性做试验,并用回归分析方法分别求得相关系数r 与残差平方和m 如下表:甲 乙 丙 丁 r 0.82 0.78 0.69 0.85 m106115124103则这四位同学中,________同学的试验结果体现A ,B 两个变量有更强的线性相关性. 15.下列说法正确的有________(填写你认为正确的序号).①线性回归方法就是利用样本点去寻找一条贴近这些样本点的直线的数学方法; ②利用样本的散点图可以直观判断两个变量的关系是否可用线性关系表示;③通过线性回归方程y ^=b ^+a ^x 及回归系数b ^,可以估计和预测变量的取值及变化规律. 三、解答题(本大题共4小题,共25分.解答应写出必要的文字说明,证明过程或演算步骤)16.(6分)在一次恶劣气候的飞行航程中调查男女乘客在飞机上晕机的情况,共调查了89位乘客,其中男乘客有24人晕机,31人不晕机;女乘客有8人晕机,26人不晕机.根据此材料你是否认为在恶劣气候飞行中男人比女人更容易晕机?17.(6分)有两个分类变量x 与y ,其一组观测值如下面的2×2列联表所示:y 1 y 2 x 1 a 20-a x 215-a30+a其中a,15-a 均为大于5的整数,则a 取何值时,在犯错误的概率不超过0.1的前提下认为x 与y 之间有关系?18.(6分)针对时下的“韩剧热”,某校团委对“学生性别和喜欢韩剧是否有关”作了一次调查,其中女生人数是男生人数的12,男生喜欢韩剧的人数占男生人数的16,女生喜欢韩剧人数占女生人数的23.若在犯错误的概率不超过0.05的前提下认为是否喜欢韩剧和性别有关,则男生至少有多少人?19.(7分)在某次试验中,有两个试验数据x ,y 统计的结果如下面的表格1.x 1 2 3 4 5 y234 45表格1序号 x y x 2 xy 1 1 2 1 2 2 2 3 4 6 3 3 4 9 12 4 4 4 16 16 5 5 5 25 25 ∑表格2(1)在给出的坐标系中画出x ,y 的散点图. (2)补全表格2,然后根据表格2的内容和公式b ^=∑n i =1x i y i -n x y∑ni =1x 2i -n x2,a ^=y -b ^x .①求出y 对x 的回归直线方程y ^=b ^x +a ^中回归系数a ^,b ^;②估计当x =10时,y ^的值是多少?参考答案一、1.解析:任何一组观测值并不能都得到具有代表意义的回归直线方程. 答案:D2.解析:由等高条形图的特点及性质进行判断. 答案:C3.解析:回归模型只能进行预测,应选C. 答案:C4.解析:因为当y ^=7.675时,x =7.675-1.5620.66≈9.262,所以7.6759.262≈0.829≈83%.答案:B5.解析:x =1+7+5+13+195=9,因为回归直线方程过点(x ,y ),所以y =1.5×x+45=1.5×9+45=58.5.答案:C6.解析:随机变量K 2的观测值k =100×(48×12-38×2)250×50×86×14≈8.306>6.635,则认为“实验效果与教学措施有关”的概率为0.99.答案:A7.解析:由公式y =b ^x +a ^知回归直线必过点(x ,y ),由题意可求得x =14(0+2+3+4)=2.25,y =14(2+4+6+8)=5,所以y 对x 的回归直线必经过点(2.25,5).答案:D8.解析:对于同一样本|ad -bc |越小,K 2越小,说明X 与Y 之间的关系越弱,|ad -bc |越大,K 2越大,说明X 与Y 之间的关系越强.答案:B9.解析:代入公式得K 2的观测值k =300×(37×143-35×85)272×228×122×178≈4.514>3.841,查表可得,判断的出错率为5%.答案:D10.解析:列2×2列联表如下故K 2的观测值k =66×(10d -21c )231×35×(10+c )×(21+d )≥5.024.把选项A ,B ,C ,D 代入验证可知选A. 答案:A二、11.解析:由表中数据可知,男性不能自理的频率为23500,女性不能自理的频率为21500,故15 000×⎝⎛⎭⎫23500-21500=60(人).答案:6012.解析:根据表格中的数据可求得 x =14×(18+13+10-1)=10,y =14×(24+34+38+64)=40.∴a =y -b ^x =40-(-2)×10=60,∴y ^=-2x +60,∴当x =-5时,y ^=-2×(-5)+60=70. 答案:7013.解析:∵45+E =98,∴E =53;∵E +35=C ,∴C =88; ∵98+D =180,∴D =82;∵A +35=D ,∴A =47; ∵45+A =B ,∴B =92. 答案:47 92 88 82 5314.解析:由题中表可知,丁同学的相关系数最大且残差平方和最小,故丁同学的试验结果体现A ,B 两变量有更强的线性相关性.答案:丁15.解析:样本的散点图可以直观判断两个变量是否线性相关,只有线性相关才能用线性回归的方法找到回归直线,并预测变量的取值及变化规律,故正确的答案是①②③.答案:①②③三、16.解:由已知数据列出2×2列联表晕机 不晕机 总计 男人 24 31 55 女人 8 26 34 总计325789根据公式k =89×(24×26-31×8)255×34×32×57≈3.689.由于k >2.706,我们有90%的把握认为在本次飞机飞行中晕机与男女有关.尽管从这班飞行中男性晕机的比例为2455比女性晕机的比例834要高,但我们不能认为恶劣气候下飞行中男性比女性更容易晕机,因为这种独立性检验的结果犯错误的概率为10%,从而说明犯错误的可能性较大.17.解:查表可知,要使在犯错误的概率不超过0.1的前提下认为x 与y 之间有关系,则k ≥2.706,而k =65×[a ×(30+a )-(20-a )×(15-a )]220×45×15×50由k ≥2.706,得a ≥7.19或a ≤2.04. 又a >5且15-a >5,a ∈Z ,即a =8或9.故a 为8或9时,在犯错误的概率不超过0.1的前提下认为x 与y 之间有关系. 18.解:设男生人数为x ,依题意可得列联表如下:喜欢韩剧不喜欢韩剧总计 男生 x 6 5x 6 x 女生 x 3 x 6 x 2 总计x 2x32x 若在犯错误的概率不超过0.05的前提下认为是否喜欢韩剧和性别有关,则k >3.841, K 2=3x 2×⎝⎛⎭⎫x 6×x 6-5x 6×x 32x ×x 2×x 2×x =38x >3.841,解得x >10.24,∵x 2,x 6为整数,∴若在犯错误的概率不超过0.05的前提下认为是否喜欢韩剧和性别有关,男生至少有12人.19.解:(1)x ,y 的散点图如图(2)表格如下序号 x y x 2 xy 1 1 2 1 2 2 2 3 4 6 3 3 4 9 12 4 4 4 16 16 5 5 5 25 25 ∑15185561计算得x =3,y =3.6,b ^=∑5i =1x i y i -5x y∑5i =1x 2i -5x 2=61-5×3×3.655-5×32=0.7,a ^=y -b ^ x =3.6-0.7×3=1.5,所以y ^=b ^x +a ^=0.7x +1.5,②当x =10时,y ^=0.7×10+1.5=8.5.。
一、选择题1.以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,其变换后得到线性回归方程0.53z x =+,则c =( ) A .3B .3eC .0.5D .0.5e2.已知两个统计案例如下:①为了探究患肺炎与吸烟的关系,调查了339名50岁以上的人,调查结果如下表:②为了解某地母亲与女儿身高的关系,随机测得10对母女的身高如下表:则对这些数据的处理所应用的统计方法是( ) A .①回归分析,②取平均值 B .①独立性检验,②回归分析 C .①回归分析,②独立性检验D .①独立性检验,②取平均值3.假设有两个分类变量X 和Y 的22⨯列联表为:对同一样本,以下数据能说明X 与Y 有关系的可能性最大的一组为参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.A .5,35b d ==B .15,25b d ==C .20,20b d ==D .30,10b d ==4.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:2()P K k≥0.0500.0250.0100.0050.001k 3.841 5.024 6.6357.87910.828由以上数据,计算得到K2的观测值k≈9.643,根据临界值表,以下说法正确的是() A.没有充足的理由认为课外阅读量大与作文成绩优秀有关B.有0.5%的把握认为课外阅读量大与作文成绩优秀有关C.有99.9%的把握认为课外阅读量大与作文成绩优秀有关D.有99.5%的把握认为课外阅读量大与作文成绩优秀有关5.某中学共有5000人,其中男生3500人,女生1500人,为了了解该校学生每周平均体育锻炼时间的情况以及该校学生每周平均体育锻炼时间是否与性别有关,现在用分层抽样的方法从中收集300位学生每周平均体育锻炼时间的样本数据(单位:小时),其频率分布直方图如下:附:22()=()()()()n ad bcKa cb d a d b c-++++,其中n a b c d=+++.2()P K k≥0.100.050.010.005k 2.706 3.841 6.6357.879已知在样本数据中,有60位女生的每周平均体育锻炼时间超过4小时,根据独立性检验原理,我们()A.没有理由认为“该校学生每周平均体育锻炼时间与性别有关”B.有95%的把握认为“该校学生每周平均体育锻炼时间与性别有关”C.有95%的把握认为“该校学生每周平均体育锻炼时间与性别无关”D .有99.5%的把握认为“该校学生每周平均体育锻炼时间与性别有关”6.通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:做不到“光盘” 能做到“光盘” 男 45 10 女3015则有( )以上的把握认为“该市民能否做到‘光盘’与性别有关”,附表及公式()20P K k ≥0.100 0.050 0.010 0.001 0k 2.7063.8416.63510.828()()()()()22n ad bc K a b c d a c b d -=++++A .90%B .95%C .99%D .99.9%7.为了普及环保知识,增强环保意识,随机抽取某大学30名学生参加环保知识测试,得分如图所示,若得分的中位数为m e ,众数为m 0,平均数为x -,则( )A .m e =m 0=x -B .m 0<x -<m e C .m e <m 0<x -D .m 0<m e <x -8.某科研机构为了研究中年人秃发与心脏病是否有关,随机调查了一些中年人的情况,具体数据见下表:心脏病 无心脏病 秃发 20 300 不秃发5450根据表中数据得到()277520450530015.96820750320455k ⨯⨯-⨯=≈⨯⨯⨯,因为K 2≥10.828,则断定秃发与心脏病有关系,那么这种判断出错的可能性为( ) A .0.1B .0.05C .0.01D .0.0019.给出以下四个说法:①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;②在刻画回归模型的拟合效果时,R2的值越大,说明拟合的效果越好;③设随机变量ξ服从正态分布N(4,22),则P(ξ>4)=12;④对分类变量X与Y,若它们的随机变量K2的观测值k越小,则判断“X与Y有关系”的犯错误的概率越小.其中正确的说法是()A.①④B.②③C.①③D.②④10.在一项中学生近视情况的调查中,某校男生150名中有80名近视,女生140名中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力()A.平均数与方差 B.回归分析C.独立性检验 D.概率11.某中学学生会为了调查爱好游泳运动与性别是否有关,通过随机询问110名性别不同的高中生是否爱好游泳运动得到如下的列联表:由()()()()()22n ad bcka b c d a c b d-=++++并参照附表,得到的正确结论是A.在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别有关”B.在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别无关”C.有99.9%的把握认为“爱好游泳运动与性别有关”D.有99.9%的把握认为“爱好游泳运动与性别无关”12.通过随机询问2016名性别不同的大学生是否爱好某项运动,得到2 6.023K=,则根据这一数据查阅表,则有把握认为“爱好该项运动与性别有关”的可信程度是()2()P K k≥…0.250.150.100.0250.0100.005…k… 1.323 2.072 2.706 5.024 6.6357.879…A.90%B.95%C.97.5%D.99.5%二、填空题13.给出下列结论:①在回归分析中,可用相关指数2R的值判断模型的拟合效果,2R越大,模型的拟合效果越好;②某工厂加工的某种钢管,内径与规定的内径尺寸之差是离散型随机变量;③随机变量的方差和标准差都反映了随机变量的取值偏离均值的平均程度,它们越小,则随机变量偏离均值的平均程度越小;④甲、乙两人向同一目标同时射击一次,事件A:“甲、乙中至少一人击中目标”与事件B:“甲、乙都没有击中目标”是相互独立事件.其中结论正确的是______.14.新闻媒体为了了解观众对央视某节目的喜爱与性别是否有关,随机调查了观看该节目的观众110名,得到如下的2×2列联表:试根据样本估计总体的思想,估计约有________的把握认为“喜爱该节目与否和性别有关”.参考附表:(参考公式:K2=()()()()()2n ad bca b c d a c b d-++++,其中n=a+b+c+d)15.某市电信宽带私人用户月收费标准如下表:假定每月初可以和电信部门约定上网方案.若某用户每月上网时间为66小时,应选择__________方案最合算.16.下列是某厂1~4月份用水量(单位:百吨)的一组数据,由其散点图可知,用水量y与月份x 之间有较好的线性相关关系,其线性回归方程是=﹣0.7x+,则= . 月 份x 1 2 3 4 用水量y4.5432.517.为了判断高中二年级学生是否喜欢足球运动与性别的关系,现随机抽取50名学生,得到22⨯列联表:喜欢 不喜欢 总计 男 15 10 25 女520 25 总计 203050(参考公式22()()()()()n ad bc k a b c d a c b d -=++++,()n a b c d =+++)20()P K k ≥ 0.010 0.005 0.0010k 6.635 7.879 10.828则有___________以上的把握认为“喜欢足球与性别有关”.18.为了判断高中三年级学生选修文理科是否与性别有关,现随机抽取50名学生,得到2×2列联表:理科 文科 总计 男 13 10 23 女 7 20 27 总计203050已知P (K 2≥3.841)≈0.05,P (K 2≥5.024)≈0.025.根据表中数据,得到≈4.844,则认为选修文理科与性别有关系出错的可能性约为________. 19.下列说法:①分类变量A 与B 的随机变量2K 越大,说明“A 与B 有关系”的可信度越大.②以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则,c k 的值分别是4e 和0.3.③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y a bx =+中,1,1,3b x y ===则1a =.正确的序号是________________.20.已知下列命题:①从匀速传递的产品生产流水线上,质检员每30分钟从生产流水线中抽取一件产品进行某项指标检测,这样的抽样方法是系统抽样;②两个变量的线性相关程度越强,则相关系数的值越接近于1;③两个分类变量X 与Y 的观测值2k ,若2k 越小,则说明“X 与Y 有关系”的把握程度越大;④随机变量X ~(0,1)N ,则(1)2(1)1P X P X <=<-. 其中为真命题的是__________.三、解答题21.为研究男、女生的身高差异,现随机从高三某班选出男生、女生各10人,并测量他们的身高,测量结果如下(单位:厘米): 男:173 178 174 185 170 169 167 164 161 170 女:165 166 156 170 163 162 158 153 169 172(1)根据测量结果完成身高的茎叶图(单位:厘米),并分别求出男、女生身高的平均值;(2)请根据测量结果得到20名学生身高的中位数h (单位:厘米),将男、女生身高不低于h 和低于h 的人数填入下表中,并判断是否有90%的把握认为男、女生身高有差异? 人数 男生 女生身高h ≥ 身高h <参照公式:()()()()()22n ad bc k a b c d a c b d -=++++()20P K k ≥ 0.100.05 0.025 0.010 0.005 0.001 0k2.7063.8415.0246.6357.87910.828175厘米为偏高.采用分层抽样的方法从以上男生中抽取5人作为样本.若从样本中任取2人,试求恰有1人身高属于正常的概率.22.某实验学校为提高学习效率,开展学习方式创新活动,提出了完成某项学习任务的两种新的学习方式.为比较两种学习方式的效率,选取40名学生,将他们随机分成两组,每组20人,第一组学生用第一种学习方式,第二组学生用第二种学习方式.40名学生完成学习任务所需时间的中位数40min m =,并将完成学习任务所需时间超过min m 和不超过min m 的学生人数得到下面的列联表:(Ⅰ)估计第一种学习方式且不超过m 的概率、第二种学习方式且不超过m 的概率; (Ⅱ)能否有99%的把握认为两种学习方式的效率有差异?附:()()()()()22n ad bc K a b c d a c b d -=++++,23.某科研小组为了验证一种治疗新冠肺炎的新药的效果,选60名患者服药一段时间后,记录了这些患者的生理指标x 和y 的数据,并统计得到如下的22⨯列联表(不完整):在生理指标 1.8x >的人中,设A 组为生理指标65y ≤的人,B 组为生理指标65y >的人,将他们服用这种药物后的康复时间(单位:天)记录如下: A 组:10,11,12,13,14,15,16,17,19. B 组:12,13,14,15,16,17,20,21,25.(1)填写上表,并判断是否有95%95%的把握认为患者的两项生理指标x 和y 有关系; (2)从A ,B 两组人中随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙,求乙的康复时间比甲的康复时间长的概率.附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.)20k0.2524.在第十五次全国国民阅读调查中,某地区调查组获得一个容量为200的样本,其中城镇居民150人,农村居民50人,在这些居民中,经常阅读的城镇居民100人,农村居民24人.(1)完成上面2×2列联表,并判断是否有95%的把握认为经常阅读与居民居住地有关?(2)从该地区居民城镇的居民中,随机抽取5位居民参加一次阅读交流活动,记这5位居民中经常阅读的人数为X,若用样本的频率作为概率,求随机变量X的分布列和期望.附:K2=2()()()()()n ad bca b c d a c b d-++++,其中n=a+b+c+d.25.某足球运动员进行射门训练,若打进球门算成功,否则算失败.已知某天该球员射门成功次数与射门距离的统计数据如下:(1)请问是否有90%的把握认为该球员射门成功与射门距离是否超过30米有关?参考公式及数据:22(),()()()()n ad bc K n a b c d a b c d a c b d -==+++++++.(2)当该球员距离球门30米射门时,设射门角(射门点与球场底线中点的连线和底线所成的锐角或直角)为([0,])2πθθ∈,其射门成功率为2+3()cos sin 4f θθθθθ=+⋅-,求该球员射门成功率最高时射门角θ的值.26.已知某种新型病毒的传染能力很强,给人们生产和生活带来很大的影响,所以创新研发疫苗成了当务之急.为此,某药企加大了研发投入,市场上这种新型冠状病毒的疫苗A 的研发费用x (百万元)和销量y (万盒)的统计数据如下:(1)根据上表中的数据,建立y 关于x 的线性回归方程y bx a =+(用分数表示); (2)根据所求的回归方程,估计当研发费用为1600万元时,销售量为多少?参考公式:()()()1122211nniii i i i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据指对数互化求解即可. 【详解】解:因为0.53z x =+,ln z y =,所以0.53ln x y +=,所以0.5330.5x x y e e e +==⨯,故3c e=.故选:B.【点睛】本题考查非线性回归问题的转化,是基础题.2.B解析:B【分析】根据独立性检验和回归分析的概念,即可作出判定,得到答案.【详解】由题意,独立性检验通常是研究两个分类变量之间是否有关系,所以①采用独立性检验,回归分析通常是研究两个具有相关关系的变量的相关程度,②采用回归分析,综上可知①是独立性检验,②是回归分析,故选B.【点睛】本题主要考查了独立性检验和回归分析的概念及其判定,其中解答中熟记独立性检验和回归分析的概念是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.3.D解析:D【解析】【分析】根据公式()()()()()22n ad bcKa b c d a c b d-=++++,分别利用4个选项中所给数据求出2K的值,比较所求值的大小即可得结果.【详解】选项A:22160(535155)3204010502K⨯⨯-⨯==⨯⨯⨯,选项B:22260(5251515)152040204016K⨯⨯-⨯==⨯⨯⨯,选项C:22360(5201520)24204025357K⨯⨯-⨯==⨯⨯⨯,选项D:22 460(5101530)96 204035257K⨯⨯-⨯==⨯⨯⨯,可得222431K K K>>22K>,所以由选项D中的数据得到的2K值最大,说明X与Y有关系的可能性最大,故选D.【点睛】本题主考查独立性检验的基本性质,意在考查对基本概念的理解与应用,属于基础题.解答独立性检验问题时,要注意应用2K越大两个变量有关的可能性越大这一性质.4.D解析:D【解析】【分析】由题意结合独立性检验的结论和临界值表给出结论即可.【详解】根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为课外阅读量大与作文成绩优秀有关,即有99.5%的把握认为课外阅读量大与作文成绩优秀有关.本题选择D选项.【点睛】本题主要考查独立性检验的思想及其应用等知识,意在考查学生的转化能力和计算求解能力.5.B解析:B【解析】分析:根据题设收集的数据,得到男生学生的人数,进而得出22⨯的列联表,利用计算公式,求解2K的值,即可作出判断.详解:由题意得,从5000人中,其中男生3500人,女生1500人,抽取一个容量为300人的样本,其中男女各抽取的人数为35003002105000⨯=人,1500300905000⨯=人,又由频率分布直方图可知,每周体育锻炼时间超过4小时的人数的频率为0.75,所以在300人中每周体育锻炼时间超过4小时的人数为3000.75225⨯=人,又在每周体育锻炼时间超过4小时的人数中,女生有60人,所以男生有22560165-=人,可得如下的22⨯的列联表:结合列联表可算得22300(456016530)4.762 3.8412109075225K⨯⨯-⨯=≈>⨯⨯⨯,所以有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”,故选B.点睛:本题主要考查了独立性检验的基础知识的应用,其中根据题设条件得到男女生的人数,得出22⨯的列联表,利用公式准确计算是解答的关键,着重考查了分析问题和解答问题的能力.6.A解析:A【解析】分析:根据列联表中数据代入公式计算k 的值,和临界值表比对后即可得到答案. 详解:将列联表中数据代入公式可得()210045153010 3.030 2.70675255545k ⨯⨯-⨯=≈>⨯⨯⨯,所以有0090的把握认为“该市居民能否做到‘光盘’”与性别有关.点睛:独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)7.D解析:D 【解析】由条形图知,30名学生的得分情况依次为2个人得3分,3个人得4分,10个人得5分,6个人得6分,3个人得7分,2个人得8分,2个人得9分,2个人得10分,中位数为第15,16个数(分别为5,6)的平均数,即m e =5.5,5出现的次数最多,故众数为m 0=5,平均数为x =130(2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×10)≈5.97,故m 0<m e <x . 故答案为D.点睛:这个题目考查的是条型分布直方表的应用,以及基本量:均值,平均数的考查;一般在这类图中平均数就是将数据加到一起除以数据的个数即可,在频率分布直方表中是取每个长方条的中点乘以相应的频率并相加即可.8.D解析:D 【解析】010.828,10.0010.99999.90k ≥∴-==,则有0099.9以上的把握认为秃发与患心脏病有关,故这种判断出错的可能性为10.9990.001-=,故选D.【方法点睛】本题主要考查独立性检验的实际应用,属于难题.独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)9.B解析:B 【解析】①中各小长方形的面积等于相应各组的频率;②正确,相关指数R 2越大,拟合效果越好,R 2越小,拟合效果越差;③随机变量ξ服从正态分布N (4,22),正态曲线对称轴为x =4,所以P (ξ>4)=;④对分类变量X 与Y ,若它们的随机变量K 2的观测值k 越小,则说明“X 与Y 有关系”的犯错误的概率越大.故选B.10.C解析:C【解析】判断两个分类变量是否有关的最有效方法是进行独立性检验,故选C. 考点:独立性检验的意义.11.A解析:A 【解析】()22110403020207.8 6.63560506050k ⨯-⨯=≈>⨯⨯⨯,所以有99%的把握认为“爱好游泳运动与性别有关”,所以在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别有关”12.C解析:C 【解析】因为2 6.023K =,且5.024 6.023 6.635≤≤,所以有把握认为“爱好该项运动与性别有关”的可信度P 满足10.02510.010P -≤≤-,即0.9750.99P ≤≤,应选答案C 。
⼈教A版⾼中数学选修2-3全册同步练习及单元检测含答案⼈教版⾼中数学选修2~3 全册章节同步检测试题⽬录第1章《计数原理》同步练习 1.1测试1第1章《计数原理》同步练习 1.1测试2第1章《计数原理》同步练习 1.1测试3第1章《计数原理》同步练习 1.2排列与组合第1章《计数原理》同步练习 1.3⼆项式定理第1章《计数原理》测试(1)第1章《计数原理》测试(2)第2章同步练习 2.1离散型随机变量及其分布列第2章同步练习 2.2⼆项分布及其应⽤第2章测试(1)第2章测试(2)第2章测试(3)第3章练习 3.1回归分析的基本思想及其初步应⽤第3章练习 3.2独⽴性检验的基本思想及其初步应⽤第3章《统计案例》测试(1)第3章《统计案例》测试(2)第3章《统计案例》测试(3)1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题1.⼀件⼯作可以⽤2种⽅法完成,有3⼈会⽤第1种⽅法完成,另外5⼈会⽤第2种⽅法完成,从中选出1⼈来完成这件⼯作,不同选法的种数是()A.8 B.15C.16 D.30答案:A2.从甲地去⼄地有3班⽕车,从⼄地去丙地有2班轮船,则从甲地去丙地可选择的旅⾏⽅式有()A.5种B.6种C.7种D.8种答案:B3.如图所⽰为⼀电路图,从A 到B 共有()条不同的线路可通电()A.1 B.2 C.3 D.4答案:D4.由数字0,1,2,3,4可组成⽆重复数字的两位数的个数是()A.25 B.20 C.16 D.12答案:C5.李芳有4件不同颜⾊的衬⾐,3件不同花样的裙⼦,另有两套不同样式的连⾐裙.“五⼀”节需选择⼀套服装参加歌舞演出,则李芳有()种不同的选择⽅式()A.24 B.14 C.10 D.9答案:B 6.设A ,B 是两个⾮空集合,定义{}()A B a b a A b B *=∈∈,,|,若{}{}0121234P Q ==,,,,,,,则P *Q 中元素的个数是()A.4 B.7 C.12 D.16答案:C⼆、填空题7.商店⾥有15种上⾐,18种裤⼦,某⼈要买⼀件上⾐或⼀条裤⼦,共有种不同的选法;要买上⾐,裤⼦各⼀件,共有种不同的选法.答案:33,2708.⼗字路⼝来往的车辆,如果不允许回头,共有种⾏车路线.答案:129.已知{}{}0341278a b ∈∈,,,,,,,则⽅程22()()25x a y b -+-=表⽰不同的圆的个数是.答案:1210.多项式123124534()()()()a a a b b a a b b ++++++··展开后共有项.答案:1011.如图,从A →C ,有种不同⾛法.答案:612.将三封信投⼊4个邮箱,不同的投法有种.答案:34三、解答题 13.⼀个⼝袋内装有5个⼩球,另⼀个⼝袋内装有4个⼩球,所有这些⼩球的颜⾊互不相同.(1)从两个⼝袋内任取⼀个⼩球,有多少种不同的取法?(2)从两个⼝袋内各取⼀个⼩球,有多少种不同的取法?解:(1)549N =+=种;(2)5420N =?=种.14.某校学⽣会由⾼⼀年级5⼈,⾼⼆年级6⼈,⾼三年级4⼈组成.(1)选其中1⼈为学⽣会主席,有多少种不同的选法?(2)若每年级选1⼈为校学⽣会常委,有多少种不同的选法?(3)若要选出不同年级的两⼈参加市⾥组织的活动,有多少种不同的选法?解:(1)56415N =++=种;(2)564120N =??=种;(3)56644574N =?+?+?=种15.已知集合{}321012()M P a b =---,,,,,,,是平⾯上的点,a b M ∈,.(1)()P a b ,可表⽰平⾯上多少个不同的点?(2)()P a b ,可表⽰多少个坐标轴上的点?解:(1)完成这件事分为两个步骤:a 的取法有6种,b 的取法也有6种,∴P 点个数为N =6×6=36(个);(2)根据分类加法计数原理,分为三类:①x 轴上(不含原点)有5个点;②y 轴上(不含原点)有5个点;③既在x 轴,⼜在y 轴上的点,即原点也适合,∴共有N =5+5+1=11(个).1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题 1.从集合{ 0,1,2,3,4,5,6}中任取两个互不相等的数a ,b 组成复数a bi +,其中虚数有() A .30个 B .42个 C .36个 D .35个答案:C2.把10个苹果分成三堆,要求每堆⾄少1个,⾄多5个,则不同的分法共有() A .4种 B .5种 C .6种 D .7种答案:A3.如图,⽤4种不同的颜⾊涂⼊图中的矩形A ,B ,C ,D 中,要求相邻的矩形涂⾊不同,则不同的涂法有() A .72种 B .48种 C .24种 D .12种答案:A4.教学⼤楼共有五层,每层均有两个楼梯,由⼀层到五层的⾛法有() A .10种 B .52种C.25种D.42种答案:D5.已知集合{}{}023A B x x ab a b A ===∈,,,,,|,则B 的⼦集的个数是()A.4 B.8 C.16 D.15答案:C6.三边长均为正整数,且最⼤边长为11的三⾓形的个数为()A.25 B.26 C.36 D.37答案:C⼆、填空题7.平⾯内有7个点,其中有5个点在⼀条直线上,此外⽆三点共线,经过这7个点可连成不同直线的条数是.答案:128.圆周上有2n 个等分点(1n >),以其中三个点为顶点的直⾓三⾓形的个数为.答案:2(1)n n -9.电⼦计算机的输⼊纸带每排有8个穿孔位置,每个穿孔位置可穿孔或不穿孔,则每排可产⽣种不同的信息.答案:25610.椭圆221x y m n+=的焦点在y 轴上,且{}{}123451234567m n ∈∈,,,,,,,,,,,,则这样的椭圆的个数为.答案:20 11.已知集合{}123A ,,ü,且A 中⾄少有⼀个奇数,则满⾜条件的集合A 分别是.答案:{}{}{}{}{}13122313,,,,,,,12.整数630的正约数(包括1和630)共有个.答案:24三、解答题 13.⽤0,1,2,3,4,5六个数字组成⽆重复数字的四位数,⽐3410⼤的四位数有多少个?解:本题可以从⾼位到低位进⾏分类.(1)千位数字⽐3⼤.(2)千位数字为3:①百位数字⽐4⼤;②百位数字为4: 1°⼗位数字⽐1⼤;2°⼗位数字为1→个位数字⽐0⼤.所以⽐3410⼤的四位数共有2×5×4×3+4×3+2×3+2=140(个).14.有红、黄、蓝三种颜⾊旗⼦各(3)n n >⾯,任取其中三⾯,升上旗杆组成纵列信号,可以有多少种不同的信号?若所升旗⼦中不允许有三⾯相同颜⾊的旗⼦,可以有多少种不同的信号?若所升旗⼦颜⾊各不相同,有多少种不同的信号?解: 1N =3×3×3=27种; 227324N =-=种; 33216N =??= 种.15.某出版社的7名⼯⼈中,有3⼈只会排版,2⼈只会印刷,还有2⼈既会排版⼜会印刷,现从7⼈中安排2⼈排版,2⼈印刷,有⼏种不同的安排⽅法.解:⾸先分类的标准要正确,可以选择“只会排版”、“只会印刷”、“既会排版⼜会印刷”中的⼀个作为分类的标准.下⾯选择“既会排版⼜会印刷”作为分类的标准,按照被选出的⼈数,可将问题分为三类:第⼀类:2⼈全不被选出,即从只会排版的3⼈中选2⼈,有3种选法;只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有3×1=3种选法.第⼆类:2⼈中被选出⼀⼈,有2种选法.若此⼈去排版,则再从会排版的3⼈中选1⼈,有3种选法,只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有2×3×1=6种选法;若此⼈去印刷,则再从会印刷的2⼈中选1⼈,有2种选法,从会排版的3⼈中选2⼈,有3种选法,由分步计数原理知共有2×3×2=12种选法;再由分类计数原理知共有6+12=18种选法.第三类:2⼈全被选出,同理共有16种选法.所以共有3+18+16=37种选法.1. 1 分类加法计数原理与分步乘法计数原理综合卷⼀.选择题:1.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种2.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出语⽂、数学、英语各⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种3.某商业⼤厦有东南西3个⼤门,楼内东西两侧各有2个楼梯,从楼外到⼆楼的不同⾛法种数是()(A ) 5 (B )7 (C )10 (D )124.⽤1、2、3、4四个数字可以排成不含重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个5.⽤1、2、3、4四个数字可排成必须含有重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个6.3科⽼师都布置了作业,在同⼀时刻4名学⽣都做作业的可能情况有()(A )43种(B )34种(C )4×3×2种(D ) 1×2×3种7.把4张同样的参观券分给5个代表,每⼈最多分⼀张,参观券全部分完,则不同的分法共有()(A )120种(B )1024种(C )625种(D )5种8.已知集合M={l ,-2,3},N={-4,5,6,7},从两个集合中各取⼀个元素作为点的坐标,则这样的坐标在直⾓坐标系中可表⽰第⼀、⼆象限内不同的点的个数是()(A )18 (B )17 (C )16 (D )109.三边长均为整数,且最⼤边为11的三⾓形的个数为()(A )25 (B )36 (C )26 (D )3710.如图,某城市中,M 、N 两地有整齐的道路⽹,若规定只能向东或向北两个⽅向沿途中路线前进,则从M 到N 不同的⾛法共有()(A )25 (B )15 (C)13 (D )10 ⼆.填空题:11.某书店有不同年级的语⽂、数学、英语练习册各10本,买其中⼀种有种⽅法;买其中两种有种⽅法.12.⼤⼩不等的两个正⽅形玩具,分别在各⾯上标有数字1,2,3,4,5,6,则向上的⾯标着的两个数字之积不少于20的情形有种.13.从1,2,3,4,7,9中任取不相同的两个数,分别作为对数的底数和真数,可得到个不同的对数值.14.在连结正⼋边形的三个顶点组成的三⾓形中,与正⼋边形有公共边的有个.15.某班宣传⼩组要出⼀期向英雄学习的专刊,现有红、黄、⽩、绿、蓝五种颜⾊的粉笔供选⽤,要求在⿊板中A 、B 、C 、D 每⼀部分只写⼀种颜⾊,如图所⽰,相邻两块颜⾊不同,则不同颜⾊的书写⽅法共有种.三.解答题:16.现由某校⾼⼀年级四个班学⽣34⼈,其中⼀、⼆、三、四班分别为7⼈、8⼈、9⼈、10⼈,他们⾃愿组成数学课外⼩组.(1)选其中⼀⼈为负责⼈,有多少种不同的选法?(2)每班选⼀名组长,有多少种不同的选法?(3)推选⼆⼈做中⼼发⾔,这⼆⼈需来⾃不同的班级,有多少种不同的选法?17.4名同学分别报名参加⾜球队,蓝球队、乒乓球队,每⼈限报其中⼀个运动队,不同的报名⽅法有⼏种?[探究与提⾼]1.甲、⼄两个正整数的最⼤公约数为60,求甲、⼄两数的公约数共有多个?2.从{-3,-2,-1,0,l,2,3}中,任取3个不同的数作为抛物线⽅程y=ax2+bx+c(a≠0)的系数,如果抛物线过原点,且顶点在第⼀象限,这样的抛物线共有多少条?3.电视台在“欢乐今宵”节⽬中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的群众来信,甲信箱中有30封,⼄信箱中有20封.现由主持⼈抽奖确定幸运观众,若先确定⼀名幸运之星,再从两信箱中各确定⼀名幸运伙伴,有多少种不同的结果?综合卷1.A 2.B 3.D 4.D 5.B 6.B 7.D 8.B 9.B 10.B11.30;300 12.513.17 14.40 15.1801. 2排列与组合1、排列综合卷1.90×9l ×92×……×100=()(A )10100A (B )11100A (C )12100A (D )11101A 2.下列各式中与排列数mn A 相等的是()(A )!(1)!-+n n m (B )n(n -1)(n -2)……(n -m) (C )11m n nA n m --+ (D )111m n n A A --3.若 n ∈N 且 n<20,则(27-n )(28-n)……(34-n)等于()(A )827n A - (B )2734nn A -- (C )734n A - (D )834n A -4.若S=123100123100A A A A ++++,则S 的个位数字是()(A )0 (B )3 (C )5 (D )85.⽤1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有()(A )24个(B )30个(C )40个(D )60个6.从0,l ,3,5,7,9中任取两个数做除法,可得到不同的商共有()(A )20个(B )19个(C )25个(D )30个7.甲、⼄、丙、丁四种不同的种⼦,在三块不同⼟地上试种,其中种⼦甲必须试种,那么不同的试种⽅法共有()(A )12种(B )18种(C )24种(D )96种8.某天上午要排语⽂、数学、体育、计算机四节课,其中体育不排在第⼀节,那么这天上午课程表的不同排法共有()(A )6种(B )9种(C )18种(D )24种9.有四位司机、四个售票员组成四个⼩组,每组有⼀位司机和⼀位售票员,则不同的分组⽅案共有()(A )88A 种(B )48A 种(C )44A ·44A 种(D )44A 种10.有4位学⽣和3位⽼师站在⼀排拍照,任何两位⽼师不站在⼀起的不同排法共有()(A )(4!)2种(B )4!·3!种(C )34A ·4!种(D )3 5A ·4!种11.把5件不同的商品在货架上排成⼀排,其中a ,b 两种必须排在⼀起,⽽c ,d 两种不能排在⼀起,则不同排法共有()(A )12种(B )20种(C )24种(D )48种⼆.填空题::12.6个⼈站⼀排,甲不在排头,共有种不同排法.13.6个⼈站⼀排,甲不在排头,⼄不在排尾,共有种不同排法.14.五男⼆⼥排成⼀排,若男⽣甲必须排在排头或排尾,⼆⼥必须排在⼀起,不同的排法共有种.15.将红、黄、蓝、⽩、⿊5种颜⾊的⼩球,分别放⼊红、黄、蓝、⽩、⿊5种颜⾊的⼝袋中,但红⼝袋不能装⼊红球,则有种不同的放法.16.(1)有5本不同的书,从中选3本送给3名同学,每⼈各⼀本,共有种不同的送法;(2)有5种不同的书,要买3本送给3名同学,每⼈各⼀本,共有种不同的送法.三、解答题:17.⼀场晚会有5个唱歌节⽬和3个舞蹈节⽬,要求排出⼀个节⽬单(1)前4个节⽬中要有舞蹈,有多少种排法?(2)3个舞蹈节⽬要排在⼀起,有多少种排法?(3)3个舞蹈节⽬彼此要隔开,有多少种排法?18.三个⼥⽣和五个男⽣排成⼀排.(1)如果⼥⽣必须全排在⼀起,有多少种不同的排法?(2)如果⼥⽣必须全分开,有多少种不同的排法?(3)如果两端都不能排⼥⽣,有多少种不同的排法?(4)如果两端不能都排⼥⽣,有多少种不同的排法?(5)如果三个⼥⽣站在前排,五个男⽣站在后排,有多少种不同的排法?综合卷1.B 2.D 3.D 4.C 5.A 6.B 7.B 8.C 9.D 10.D 11.C12.600 13.504 14.480 15.9616.(1) 60;(2) 12517.(1) 37440;(2) 4320;(3) 1440018.(1) 4320;(2) 14400;(3) 14400;(4) 36000;(5) 7202、组合综合卷⼀、选择题:1.下列等式不正确的是()(A )!!()!mn n C m n m =- (B )11mm n n m C C n m++=- (C )1111m m n n m C C n +++=+ (D )11m m n n C C ++= 2.下列等式不正确的是()(A )m n m n n C C -= (B )11m m mm m m C C C -++=(C )123455555552C C C C C ++++= (D )11 111m m m m n n n n C C C C --+--=++3.⽅程2551616x x x C C --=的解共有()(A )1个(B )2个(C )3个(D )4个4.若372345n n n C A ---=,则n 的值是()(A )11 (B )12 (C )13 (D )145.已知7781n n n C C C +-=,那么n 的值是()(A )12 (B )13 (C )14 (D )15 6.从5名男⽣中挑选3⼈,4名⼥⽣中挑选2⼈,组成⼀个⼩组,不同的挑选⽅法共有()(A )3254C C 种(B ) 3254C C 55A 种(C ) 3254A A 种(D ) 3254A A 55A 种7.从4个男⽣,3个⼥⽣中挑选4⼈参加智⼒竞赛,要求⾄少有⼀个⼥⽣参加的选法共有()(A )12种(B )34种(C )35种(D )340种8.平⾯上有7个点,除某三点在⼀直线上外,再⽆其它三点共线,若过其中两点作⼀直线,则可作成不同的直线()(A )18条(B )19条(C )20条(D )21条9.在9件产品中,有⼀级品4件,⼆级品3件,三级品2件,现抽取4个检查,⾄少有两件⼀级品的抽法共有()(A )60种(B )81种(C )100种(D )126种10.某电⼦元件电路有⼀个由三节电阻串联组成的回路,共有6个焊点,若其中某⼀焊点脱落,电路就不通.现今回路不通,焊点脱落情况的可能有()(A )5种(B )6种(C )63种(D )64种⼆.填空题:11.若11m m n n C xC --=,则x= .12.三名教师教六个班的课,每⼈教两个班,分配⽅案共有种。
回归分析的基本思想及其初步应用[A 组 学业达标]1.下列两个变量之间的关系不是函数关系的是( ) A .角度和它的余弦值 B .正方形的边长和面积 C .正n 边形的边数和内角度数和 D .人的年龄和身高解析:函数关系就是一种变量之间的确定性的关系.A ,B ,C 三项中的两个变量之间都是函数关系,可以写出相应的函数表达式,分别为f(θ)=cos θ,g(a)=a 2,h(n)=nπ-2π.D 选项中的两个变量之间不是函数关系,对于年龄确定的人群,仍可以有不同的身高.故选D.答案:D2.设一个线性回归方程为y ^=2-1.5x ,则变量x 增加一个单位时( ) A.y ^平均增加1.5个单位 B.y ^平均增加2个单位 C.y ^平均减少1.5个单位 D.y ^平均减少2个单位解析:由线性回归方程y ^=2-1.5x 中x 的系数为-1.5,知C 项正确. 答案:C 3.有下列数据:x 1 2 3 y35.9912.01A .y =3×2x -1B .y =log 2xC .y =3xD .y =x 2解析:当x =1,2,3时,分别代入求y 值,离y 最近的值模拟效果最好,可知A 模拟效果最好. 答案:A4.四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且y ^=-2.756x +7.325.②y 与x 负相关且y ^=3.476x +5.648 ③y 与x 正相关且y ^=-1.226x -6.578 ④y 与x 正相关且y ^=8.967x +8.163 其中一定不正确的结论的序号是( ) A .①② B .②③ C .③④D .①④解析:根据题意,依次分析4个结论:对于①,y 与x 负相关且y ^=-2.756x +7.325,此结论正确,线性回归方程符合负相关的特征; 对于②,y 与x 负相关且y ^=3.476x +5.648,此结论错误,由线性回归方程知,此两变量的关系是正相关;对于③,y 与x 正相关且y ^=-1.226x -6.578,此结论错误,由线性回归方程知,此两变量的关系是负相关;对于④,y 与x 正相关且y ^=8.967x +8.163,此结论正确,线性回归方程符合正相关的特征;故②③一定错误.答案:B5.对具有线性相关关系的变量x ,y ,测得一组数据如下表:x 2 4 5 6 8 y2040607080根据上表,利用最小二乘法得它们的回归直线方程为y ^=10.5x +a ^,据此模型来预测当x =20时,y 的估计值为________.解析:由已知得x -=5,y -=54,则(5,54)满足回归直线方程y ^=10.5x +a ^,解得a ^=1.5,因此y ^=10.5x +1.5,当x =20时y ^=10.5×20+1.5=211.5.答案:211.56.如图是x 和y 的一组样本数据的散点图,去掉一组数据________后,剩下的4组数据的相关指数最大.解析:去掉D(3,10)这一组数据后,其他4组数据对应的点都集中在某一条直线附近,即两变量的线性相关性最强,此时相关指数最大.答案:D(3,10)7.在研究两个变量的相关关系时,观察散点图发现样本点集中于某一条指数曲线y =ebx +a的周围,令z =ln y ,求得回归直线方程为z ^=0.25x -2.58,则该模型的回归方程为____________________.解析:由z =ln y ,z ^=0.25x -2.58, 得ln y ^=0.25x -2.58,∴y ^=e 0.25x -2.58. 故该模型的回归方程为y ^=e 0.25x -2.58. 答案:y ^=e 0.25x -2.588.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y =b x +a ,其中b =0.76,a =y -b x .据此估计,求社区一户年收入为15万元的家庭的年支出.解析:由题意可得x -=15×(8.2+8.6+10.0+11.3+11.9)=10,y -=15×(6.2+7.5+8.0+8.5+9.8)=8,可得a ^=8-0.76×10=0.4. ∴回归直线方程为y ^=0.76x +0.4.把x =15代入可得y ^=0.76×15+0.4=11.8.故社区一户年收入为15万元的家庭的年支出为11.8万元.9.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求线性回归方程y =b x +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)解析:(1)x -=8+8.2+8.4+8.6+8.8+96=8.5,y -=16(90+84+83+80+75+68)=80,∵b ^=-20,a ^=y --b ^ x -, ∴a ^=80+20×8.5=250, ∴线性回归方程y ^=-20x +250;(2)设工厂获得的利润为L 元,则L =x(-20x +250)-4(-20x +250)=-20⎝⎛⎭⎪⎫x -3342+361.25,∴该产品的单价应定为8.25元,工厂获得的利润最大.[B 组 能力提升]10.对于给定的样本点所建立的模型A 和模型B ,它们的残差平方和分别是a 1,a 2,R 2的值分别为b 1,b 2,下列说法正确的是( )A .若a 1<a 2,则b 1<b 2,A 的拟合效果更好B .若a 1<a 2,则b 1<b 2,B 的拟合效果更好C .若a 1<a 2,则b 1>b 2,A 的拟合效果更好D .若a 1<a 2,则b 1>b 2,B 的拟合效果更好解析:由残差平方和以及R 2的定义式可得若a 1<a 2,则b 1>b 2,A 的拟合效果更好. 答案:C11.近10年来,某市社会商品零售总额与职工工资总额(单位:亿元)数据如下:A.y ^=2.799 1x -27.248 552 B.y ^=2.799 1x -23.548 452 C.y ^=2.699 2x -23.749 352 D.y ^=2.899 2x -23.749 452解析:x -=41.72,y -=93.23,代入验证可知B 选项正确. 答案:B12.已知方程y ^=0.85x -82.71是根据女大学生的身高预报她的体重的回归方程,其中x 的单位是cm ,y ^的单位是kg ,那么针对某个体(160,53)的残差是________.解析:将x =160代入y ^=0.85x -82.71,得y ^=0.85×160-82.71=53.29, 所以残差e ^=y -y ^=53-53.29=-0.29.答案:-0.2913.已知一个线性回归方程为y ^=1.5x +45,x ∈{1,5,7,13,19},则y -=________. 解析:∵x -=1+5+7+13+195=9,且y ^=1.5x +45, ∴y -=1.5×9+45=58.5. 答案:58.514.假设关于某种设备的使用年限x(年)与所支出的维修费用y(万元)有如表统计资料:x 2 3 4 5 6 y2.23.85.56.57.0已知∑i =15x 2i=90,∑i =15x i y i =112.3.b ^=∑i =1nx i -x-y i -y-∑i =1nx i -x-2=∑i =1nx i y i -n x - y-∑i =1nx 2i -n x -2,a =y --b ^ x -. (1)求x -,y -.(2)x 与y 具有线性相关关系,求出线性回归方程. (3)估计使用年限为10年时,维修费用约是多少? 解析:(1)x -=4,y -=5.(2)b ^=∑i =15x i y i -5x - y-∑i =15x 2i -5x -2=1.23,a ^=y --b ^ x -=5-1.23×4=0.08.所以线性回归方程为y ^=1.23x +0.08.(3)当x =10时,y ^=1.23×10+0.08=12.38(万元), 即估计使用年限为10年时,维修费用约为12.38万元.15.菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水x(单位:千克)清洗该蔬菜1千克后,蔬菜上残留的农药y(单位:微克)的统计表:x1 2 3 4 5y 58 54 39 29 10(1)令w =x 2,利用给出的参考数据求出y 关于w 的回归方程y ^=b ^w +a ^.(a ^,b ^精确到0.1)参考数据:∑i =15w i =55,∑i =15(w i -w -)(y i -y -)=-751,∑i =15(w i -w -)2=374,其中w i =x 2i ,w -=15∑i =15w i .(2)对于某种残留在蔬菜上的农药,当它的残留量不高于20微克时对人体无害,为了放心食用该蔬菜,请估计至少需要用多少千克的清水清洗1千克蔬菜?(精确到0.1,参考数据5≈2.24)附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v ^=α^+β^u 的斜率和截距的最小二乘估计分别为β^=∑i =1nu i -u-v i -v-∑i =1nu i -u-2,α^=v --β^ u -.解析:(1)由题意得,w -=11,y -=38.b ^=∑i =15w i -w-y i -y-∑i =15w i -w-2=-751374≈-2.0,a ^=y --b ^w =60.0,所以y ^=-2.0w +60.0. (2)由(1)得,y ^=-2.0w +60.0, 所以y ^=-2.0x 2+60.0,当y ^≤20时,即-2.0x 2+60.0≤20,解得x≥25≈4.5,所以为了放心食用该蔬菜,估计需要用4.5千克的清水清洗1千克蔬菜.独立性检验的基本思想及其初步应用[A组学业达标]1.在某次飞行航程中遭遇恶劣气候,55名男乘客中有24名晕机,34名女乘客中有8名晕机,在检验这些乘客晕机是否与性别有关时,采用的数据分析方法应是( )A.频率分布直方图B.回归分析C.独立性检验D.用样本估计总体解析:根据题意,结合题目中的数据,列出2×2列联表,求出K2观测值,对照数表可得出概率结论,这种分析数据的方法是独立性检验.答案:C2.观察下列各图,其中两个分类变量x,y之间关系最强的是( )解析:观察等高条形图发现x1x1+y1和x2x2+y2相差越大,就判断两个分类变量之间关系越强.答案:D3.如表是一个2×2列联表:则表中a,b的值分别为( )y1y2总计x1 a 21 73x222 25 47总计 b 46 120A.94,72C.52,74 D.74,52解析:a=73-21=52,b=a+22=74,故选C.答案:C4.利用独立性检验来考虑两个分类变量X与Y是否有关系时,通过查阅下表来确定“X和Y有关系”的可信度.如果K2的观测值k>5.024,那么在犯错误的概率不超过________的前提下认为“X与Y有关系”()P(K2≥k 0) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001k 0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.87910.828A.0.25 B .0.05 C .0.1D .0.025解析:因为K 2的观测值k >5.024,而在临界值表中对应于5.024的是0.025,所以可以在犯错误的概率不超过0.025的前提下认为“X 和Y 有关系”.答案:D5.分类变量X 和Y 的列表如下,则下列说法判断正确的是( )y 1 y 2 总计 x 1 a b a +b x 2 c d c +d 总计a +cb +da +b +c +dA.ad -bc 越小,说明X 与Y 的关系越弱 B .ad -bc 越大,说明X 与Y 的关系越强 C .(ad -bc)2越大,说明X 与Y 的关系越强 D .(ad -bc)2越接近于0,说明X 与Y 的关系越强解析:列联表可以较为准确地判断两个变量之间的相关关系程度, 由K 2=a +b +c +dad -bc2a +b a +cb +dc +d,当(ad -bc)2越大,K 2越大,表明X 与Y 的关系越强.(ad -bc)2越接近0,说明两个分类变量X 和Y 无关的可能性越大. 即所给说法判断正确的是C. 答案:C6.某部门通过随机调查89名工作人员的休闲方式,了解读书和健身的人数,得到的数据如表:读书 健身 总计 女 24 31 55 男 8 26 34 总计325789在犯错误的概率不超过________的前提下认为性别与休闲方式有关系. 解析:由列联表中的数据,得K 2的观测值为k =89×24×26-31×8255×34×32×57≈3.689>2.706,因此,在犯错误的概率不超过0.10的前提下认为性别与休闲方式有关系.答案:0.107.为了探究电离辐射的剂量与人体的受损程度是否有关,用两种不同剂量的电离辐射照射小白鼠.在照射后14天的结果如下表所示:死亡 存活 总计 第一种剂量 14 11 25 第二种剂量 6 19 25 总计203050进行统计分析的统计假设是________,K 2=________,说明两种电离辐射剂量对小白鼠的致死作用________.(填“相同”或“不相同”)参考公式:K 2=n ad -bc2a +bc +d a +cb +d解析:统计假设是“小白鼠的死亡与使用的电离辐射剂量无关”,由列联表中数据得K 2=5.33>3.841,所以在犯错误的概率不超过0.05的前提下认为小白鼠的死亡与使用的电离辐射剂量有关.所以两种电离辐射剂量对小白鼠的致死作用不相同.答案:小白鼠的死亡与使用的电离辐射剂量无关 5.33 不相同 8.下表是关于男婴与女婴出生时间调查的列联表:晚上 白天 总计 男婴 45 A B 女婴 E 35 C 总计98D180那么,A =________,B =E =________. 解析:由列联表知识得⎩⎪⎨⎪⎧ 45+E =98,98+D =180,A +35=D ,E +35=C ,B +C =180,解得⎩⎪⎨⎪⎧A =47,B =92,C =88,D =82,E =53.答案:47 92 88 82 539.网络对现代人的生活影响较大,尤其是对青少年,为了解网络对中学生学习成绩的影响,某地区教育主管部门从辖区初中生中随机抽取了1 000人调查,发现其中经常上网的有200人,这200人中有80人期末考试不及格,而另外800人中有120人不及格.利用图形判断学生经常上网与学习成绩有关吗?解析:根据题目所给的数据得到如下2×2列联表:经常上网 不经常上网总计 不及格80120200及格 120 680 800 总计2008001 000得出等高条形图如图所示:比较图中阴影部分的高可以发现经常上网不及格的频率明显高于经常上网及格的频率,因此可以认为经常上网与学习成绩有关.10.随着生活水平的提高,人们的休闲方式也发生了变化.某机构随机调查了n 个人,其中男性占调查人数的25.已知男性中有一半的人的休闲方式是运动,而女性中只有13的人的休闲方式是运动.(1)完成下列2×2列联表:运动 非运动总计 男性 女性 总计n(2)数至少有多少?(3)根据(2)的结论,本次被调查的人中,至少有多少人的休闲方式是运动? 解析:(1)补全2×2列联表如下:运动 非运动 总计 男性 15n 15n 25n 女性 15n 25n 35n 总计25n 35n n(2)则P(K 2≥k 0)=3.841. 由于K 2的观测值k =n ⎝ ⎛⎭⎪⎫n 5·2n 5-n 5·n 522n 5·3n 5·2n 5·3n 5=n 36,故n36≥3.841,即n≥138.276. 又由15n ∈Z ,故n≥140.故若在犯错误的概率不超过0.05的前提下,可认为“性别与休闲方式有关”,那么本次被调查的至少有140人.(3)根据(2)的结论,本次被调查的人中,至少有25×140=56(人)的休闲方式是运动.[B 组 能力提升]11.某卫生机构对366人进行健康体检,其中某项检测指标阳性家族史者糖尿病发病的有16人,不发病的有93人;阴性家族史者糖尿病发病的有17人,不发病的有240人,故在犯错误的概率不超过________的前提下认为糖尿病患者与遗传有关系.( )A .0.001B .0.005C .0.01D .0.025解析:可以先作出如下列联表(单位:人): 糖尿病患者与遗传列联表糖尿病发病糖尿病不发病总计 阳性家族史 16 93 109 阴性家族史17 240 257 总计33333366根据列联表中的数据,得到K 2的观测值为 k =366×16×240-17×932109×257×33×333≈6.067>5.024.故在犯错误的概率不超过0.025的前提下认为糖尿病患者与遗传有关系. 答案:D12.在研究性别与吃零食这两个分类变量是否有关系时,下列说法中正确的是________(填序号). ①若K 2的观测值k =6.635,则我们在犯错误的概率不超过0.01的前提下认为吃零食与性别有关系,那么在100个吃零食的人中必有99人是女性;②由独立性检验可知在犯错误的概率不超过0.01的前提下认为吃零食与性别有关系时,如果某人吃零食,那么此人是女性的可能性为99%;③由独立性检验可知在犯错误的概率不超过0.01的前提下认为吃零食与性别有关系时,是指每进行100次这样的推断,平均有1次推断错误.解析:K 2的观测值是支持确定有多大把握认为“两个分类变量吃零食与性别有关系”的随机变量值,所以由独立性检验可知在犯错误的概率不超过0.01的前提下认为吃零食与性别有关系时,是指每进行100次这样的推断,平均有1次推断错误,故填③.答案:③13.根据下表计算:不看电视 看电视 男 37 85 女35143K 2的观测值k≈________(保留3位小数). 解析:k =300×37×143-85×352122×178×72×228≈4.514.答案:4.51414.某学校为了解该校高三年级学生在市一练考试的数学成绩情况,随机从该校高三文科与理科各抽取50名学生的数学成绩,作出频率分布直方图如图,规定考试成绩在[120,150]内为优秀.(1)由以上频率分布直方图填写下列2×2列联表.若按是否优秀来判断,是否有99%的把握认为该校的文理科数学成绩有差异.文科 理科 总计 优秀 非优秀 总计5050100(2)某高校派出2140分以上的学生进行自主招生面试,每位教授至少面试一人,每位学生只能被一位教授面试.若甲教授面试的学生人数为ξ,求ξ的分布列和均值.解析:(1)由频率分布直方图知,该校文科学生中数学成绩优秀的人数为(0.010+0.004+0.002)×10×50=8,故非优秀人数为50-8=42.该校理科学生中数学成绩优秀的人数为(0.020+0.014+0.006)×10×50=20,故非优秀人数为50-20=30.则2×2列联表如下:文科 理科 总计 优秀 8 20 28 非优秀 42 30 72 总计5050100∴K 2的观测值k =100×8×30-42×20250×50×28×72≈7.143>6.635,故有99%的把握认为该校文理科数学成绩有差异.(2)由(1)知,该校随机抽取的学生成绩中一练数学成绩在140分以上的学生为4人,ξ的可能取值为1,2,3.将4人分给两名教授每名教授至少1名学生的不同分法种数为⎝⎛⎭⎪⎫C 34+C 24C 22A 22A 22=14,则P(ξ=1)=C 1414=27,P(ξ=2)=C 2414=37,P(ξ=3)=C 3414=27.∴ξ的分布列为:ξ 1 2 3 P273727∴E(ξ)=1×27+2×37+3×27=2.15.某校为了了解学生对消防知识的了解情况,从高一年级和高二年级各选取100名同学进行消防知识竞赛.图(1)和图(2)分别是对高一年级和高二年级参加竞赛的学生成绩按[40,50),[50,60),[60,70),[70,80]分组,得到的频率分布直方图.(1)请计算高一年级和高二年级成绩小于60分的人数.(2)完成2×2列联表,并回答:在犯错误的概率不超过多少的前提下认为“学生所在的年级与消防常识的了解存在相关性”?成绩小于60分人数成绩不小于60分人数总计高一 高二 总计附:临界值表及参考公式: K 2=n ad -bc 2a +bc +d a +cb +d ,n =a +b +c +d. P(K 2≥k 0)0.15 0.100.05 0.025 0.010 0.005 0.001 k 02.0722.7063.8415.0246.6357.87910.828解析:(1)高一年级成绩低于60分的人数为:(0.03+0.04)×10×100=70; 高二年级成绩低于60分的人数为: (0.035+0.015)×10×100=50. (2)2×2列联表如下:成绩小于60分人数成绩不小于60分人数总计 高一 70 30 100 高二 50 50 100 总计12080200由于K 2的观测值k =200×50×70-50×302100×100×120×80≈8.333>7.879,所以在犯错误的概率不超过0.005的前提下认为“学生所在的年级与消防知识的了解存在相关性”.。
课后巩固
.在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得“吸烟与患肺癌有关”的结论,并有以上的把握认为这个结论是成立的,下列说法中正确的( ) .个吸烟者中至少有个患有肺癌
.个人吸烟,那么这个人一定患有肺癌
.在个吸烟者中一定有患肺癌的人
.在个吸烟者中可能一个患肺癌的人也没有
答案
.经过对的统计量的研究,得到了若干个观测值,当<时,我们认为两分类变量、( ) .有的把握认为与有关系
.有的把握认为与有关系
.没有充分理由说明与有关系
.不能确定
答案
.若两个分类变量和的×列联表为:
则与之间有关系的可信度为.
答案
解析≈>.
故有的把握认为与有关系.
.为了探究电离辐射的剂量与人体的受损程度是否有关,用两种不同剂量的电离辐射照射小白鼠.在照射后天内的结果如下表所示:
答案假设电离辐射的剂量与人体受损程度无关
.在研究某种药物对“”病毒的治疗效果时,进行动物试验,得到以下数据,对只动物服用药物,其中只动物存活,只动物死亡,对照组只动物进行常规治疗,其中只动物存活,只动物死亡.
()根据以上数据建立一个×列联表.
()试问该种药物以治疗“”病毒是否有效?
解析()×列联表如下:
()由()知
=≈>.
故我们有的把握认为该种药物对“”病毒有治疗效果.。
学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.通过对K2的统计量的研究得到了若干个临界值,当K2≤2.706时,我们认为()A.在犯错误的概率不超过0.05的前提下认为X与Y有关系B.在犯错误的概率不超过0.01的前提下认为X与Y有关系C.没有充分理由认为X与Y有关系D.不能确定【解析】∵K2≤2.706,∴没有充分理由认为X与Y有关系.【答案】 C2.下列关于等高条形图的叙述正确的是()A.从等高条形图中可以精确地判断两个分类变量是否有关系B.从等高条形图中可以看出两个变量频数的相对大小C.从等高条形图中可以粗略地看出两个分类变量是否有关系D.以上说法都不对【解析】在等高条形图中仅能粗略判断两个分类变量的关系,故A错.在等高条形图中仅能够找出频率,无法找出频数,故B错.【答案】 C3.分类变量X和Y的列联表如下:y1y2总计x1 a b a+bx2 c d c+d总计a+c b+d a+b+c+dA.ad-bc越小,说明X与Y关系越弱B.ad-bc越大,说明X与Y关系越弱C.(ad-bc)2越大,说明X与Y关系越强D.(ad-bc)2越接近于0,说明X与Y关系越强【解析】对于同一样本,|ad-bc|越小,说明X与Y之间关系越弱;|ad-bc|越大,说明X与Y之间的关系越强.【答案】 C4.利用独立性检验对两个分类变量是否有关系进行研究时,若有99.5%的把握认为事件A和B有关系,则具体计算出的数据应该是()A.k≥6.635B.k<6.635C.k≥7.879 D.k<7.879【解析】有99.5%的把握认为事件A和B有关系,即犯错误的概率为0.5%,对应的k0的值为7.879,由独立性检验的思想可知应为k≥7.879.【答案】 C5.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下表的列联表:由K2=n(ad(a+b)(c+d)(a+c)(b+d)算得,k=110×(40×30-20×20)260×50×60×50≈7.8.附表:A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C.有99%以上的把握认为“爱好该项运动与性别有关”D.有99%以上的把握认为“爱好该项运动与性别无关”【解析】由k≈7.8及P(K2≥6.635)=0.010可知,在犯错误的概率不超过1%的前提下认为“爱好该项运动与性别有关”,也就是有99%以上的把握认为“爱好该项运动与性别有关”.【答案】 C二、填空题6.在对某小学的学生进行吃零食的调查中,得到如下表数据:【导学号:97270063】【解析】由公式可计算得k=102×(27×29-34×12)239×63×61×41≈2.334.【答案】 2.3347.为了探究电离辐射的剂量与人体的受损程度是否有关,用两种不同剂量的电离辐射照射小白鼠,在照射14天内的结果如表所示:【解析】根据独立性检验的基本思想,可知类似于反证法,即要确认“两个分量有关系”这一结论成立的可信程度,首先假设该结论不成立.对于本题,进行统计分析时的统计假设应为“小白鼠的死亡与电离辐射的剂量无关”.【答案】小白鼠的死亡与电离辐射的剂量无关8.在吸烟与患肺病是否相关的判断中,有下面的说法:①若K2的观测值k>6.635,则在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系时,若某人吸烟,则他有99%的可能患有肺病;③从独立性检验可知在犯错误的概率不超过0.05的前提下,认为吸烟与患肺病有关系时,是指有5%的可能性使得推断错误.其中说法正确的是________.(填序号)【解析】K2是检验吸烟与患肺病相关程度的量,是相关关系,而不是确定关系,是反映有关和无关的概率,故说法①不正确;说法②中对“确定容许推断犯错误概率的上界”理解错误;说法③正确.【答案】③三、解答题9.用两种检验方法对某食品做沙门氏菌检验,结果如下表.阳性阴性总计荧光抗体法1605165常规培养法264874总计18653239附:P(K2≥k0)0.0100.0050.001k0 6.6357.87910.828(1)(2)能否在犯错误的概率不超过0.001的前提下认为采用荧光抗体法与检验结果呈阳性有关系?【解】(1)作出等高条形图如图所示,由图知采用荧光抗体法与检验结果呈阳性有关系.(2)通过计算可知K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)≈113.184 6.而查表可知,因为P(K2≥10.828)≈0.001,而113.184 6远大于10.828,所以在犯错误的概率不超过0.001的前提下认为采用荧光抗体法与检验结果呈阳性有关系.10.有人发现一个有趣的现象,中国人的邮箱里含有数字比较多,而外国人邮箱名称里含有数字比较少,为了研究国籍和邮箱名称里含有数字的关系,他收集了124个邮箱名称,其中中国人的64个,外国人的60个,中国人的邮箱中有43个含数字,外国人的邮箱中有27个含数字.(1)根据以上数据建立2×2列联表;(2)他发现在这组数据中,外国人邮箱里含数字的也不少,他不能断定国籍和邮箱名称里含有数字是否有关,你能帮他判断一下吗?【解】(1)2×2的列联表:(2)假设“由表中数据得k=124×(43×33-27×21)270×54×64×60≈6.201.因为k>5.024,所以有理由认为假设“国籍和邮箱名称里与是否含有数字无关”是不合理的,即在犯错误的概率不超过0.025的前提下认为“国籍和邮箱名称里与是否含有数字有关”.[能力提升]1.对两个分类变量A,B,下列说法中正确的个数为()①A与B无关,即A与B互不影响;②A与B关系越密切,则K2的值就越大;③K2的大小是判定A与B是否相关的唯一依据.A.1B.2C.3D.0【解析】①正确,A与B无关即A与B相互独立;②不正确,K2的值的大小只是用来检验A与B是否相互独立;③不正确,也可借助等高条形图等.故选A.【答案】 A2.(2016·晋江市季延中学期中)某研究所为了检验某血清预防感冒的作用,把500名使用了该血清的志愿者与另外500名未使用该血清的志愿者一年中的感冒记录作比较,提出假设H:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得K2≈3.918,经查临界值表知P(K2≥3.841)≈0.05.则下列叙述中正确的是()A.有95%的把握认为“这种血清能起到预防感冒的作用”B.若有人未使用该血清,那么他一年中有95%的可能性得感冒C.这种血清预防感冒的有效率为95%D.这种血清预防感冒的有效率为5%【解析】K2≈3.918>3.841,因此有95%的把握认为“这种血清能起到预防感冒的作用”,故选A.【答案】 A3.为研究某新药的疗效,给100名患者服用此药,跟踪调查后得下表中的数据:设H k≈________(小数点后保留一位有效数字),从而得出结论:服用此药的效果与患者的性别有关,这种判断出错的可能性为________.【解析】由公式计算得K2的观测值k≈4.9.∵k>3.841,∴我们有95%的把握认为服用此药的效果与患者的性别有关,从而有5%的可能性出错.【答案】 4.95%4.(2016·潍坊高二检测)为了研究玉米品种对产量的影响,某农科院对一块试验田种植的一批玉米共10 000株的生长情况进行研究,现采用分层抽样方法抽取50株作为样本,统计结果如下:(1)6株玉米,再从这6株玉米中随机选出2株,求这2株之中既有高茎玉米又有矮茎玉米的概率;(2)根据对玉米生长情况作出的统计,是否有95%的把握认为玉米的圆粒与玉米的高茎有关?【解】(1)依题意,取出的6株圆粒玉米中含高茎2株,记为a,b;矮茎4株,记为A,B,C,D,从中随机选取2株的情况有如下15种:aA,aB,aC,aD,bA,bB,bC,bD,ab,AB,AC,AD,BC,BD,CD.其中满足题意的共有aA,aB,aC,aD,bA,bB,bC,bD,共8种,则所求概率为P=8 15.(2)根据已知列联表,得k=50×(11×7-13×19)230×20×24×26≈3.860>3.841,即有95%的把握认为玉米的圆粒与玉米的高茎有关.。
数学人教版A2-3第三章 统计案例单元检测(时间:45分钟,满分:100分)一、选择题(每小题6分,共48分)1( ).A .一次函数模型B .二次函数模型C .指数函数模型D .对数函数模型2.工人月工资y (元)随劳动生产率x (千元)变化的回归方程为ˆy=50+80x .下列判断错误的是( ).A .劳动生产率为1 000元时,工资约为130元B .劳动生产率提高1 000元时,工资提高130元C .劳动生产率提高1 000元时,工资提高80元D .当月工资约为210元时,劳动生产率为2 000元3.某考察团对全国10大城市进行职工人均工资水平x (千元)与居民人均消费水平y (千元)统计调查,y 与x 具有相关关系,回归方程为ˆy=0.66x +1.562.若某城市居民人均消费水平为7.675(千元),估计该城市人均消费额占人均工资收入的百分比约为( ).A .83%B .72%C .67%D .66%4.若两个变量的残差平方和是325,21()nii x y =-∑=923,则随机误差对预报变量的贡献率约为( ). A .64.8% B .60% C .35.2% D .40% 5.下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适; ②用相关指数可以刻画回归的效果,值越小说明模型的拟合效果越好; ③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型拟合效果越好.其中说法正确的是( ). A .①② B .②③ C .①③ D .①②③6.(创新题)独立检验中,假设H 0:变量X 与变量Y 没有关系,则在H 0成立的情况下,P (K 2≥6.635)=0.010表示的意义是( ). A .变量X 与变量Y 有关系的概率为1%B .变量X 与变量Y 没有关系的概率为99.9%C .变量X 与变量Y 没有关系的概率为99%D .变量X 与变量Y 有关系的概率为99%7( ).A.K2=9.564 B.K2=3.564 C.K2<2.706 D.K2>3.841 8.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中由以上数据,计算得到K2的观测值k≈9.643,根据临界值表,以下说法正确的是().A.没有充足的理由认为课外阅读量大与作文成绩优秀有关B.有0.5%的把握认为课外阅读量大与作文成绩优秀有关C.有99.9%的把握认为课外阅读量大与作文成绩优秀有关D.有99.5%的把握认为课外阅读量大与作文成绩优秀有关二、填空题(每小题6分,共18分)9.(创新题)已知回归直线ˆy=bx+a斜率的估计值是52,且样本点的中心为(4,5).则当x=-2时,ˆy的值为______.10.若一组观测值(x1,y1),(x2,y2),…,(x n,y n)之间满足y i=bx i+a+e i(i=1,2,…,n),若e i恒为0,则R2为________.11.对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行了3年的试根据上述数据计算K2=______,比较这两种手术对病人又发作心脏病的影响有没有差别______.三、解答题(共34分)12.(10分)某数学老师身高176 cm,他爷爷、父亲和儿子的身高分别是173 cm,170 cm和182 cm.因儿子的身高与父亲的身高有关,求该老师用线性回归分析的方法预测他孙子的身高为多少.13.(12分)为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.下表1和表2分别是注射药物A和药物B后的试验结果.(疱疹面积单位:mm2)表2:注射药物B后皮肤疱疹面积的频数分布表完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与14.(12分)一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了(1)建立零件数为解释变量,加工时间为预报变量的回归模型,并计算残差;(2)你能残差分析这个模型能较好地刻画零件数和加工时间的关系吗?参考答案1答案:A解析:画出散点图可观察得点都在一条直线上,故A正确.2答案:B解析:当x=1(千元)时,ˆy=130元,A正确;当ˆy=210元时,x=2105080-=2千元,D正确;当x增加一个单位时,ˆy增加80,C正确.3答案:A解析:因为当ˆy=7.675时,x=7.675 1.5620.66-≈9.262,所以7.6759.262≈0.829≈83%.4答案:C解析:由题意可知随机误差对预报变量的贡献率约为325923=0.352.5答案:C解析:相关指数R2越大,说明模型拟合效果越好,故②错误.6答案:D解析:由题意知变量X与Y没有关系的概率为0.01,即认为变量X与Y有关系的概率为99%.7答案:D解析:由K2=2()()()()()n ad bca b c d a c b d-++++,得K2的观测值k=285(4012528)68174540⨯⨯⨯⨯⨯⨯-≈4.722>3.841.8答案:D解析:根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为课外阅读量大与作文成绩优秀有关,即有99.5%的把握认为课外阅读量大与作文成绩优秀有关.9答案:-10解析:由已知b=52且4b+a=5,∴a=-5,5ˆ2y x=-5.∴x=-2时,y=-10.10答案:1解析:e i恒为0,说明随机误差总为0,于是y i=ˆy,故R2=1.11答案:1.78不能作出这两种手术对病人又发作心脏病的影响有差别的结论解析:提出假设H0:两种手术对病人又发作心脏病的影响没有差别.根据列联表中的数据,可以求得K2的观测值k=2392(3916729157)68324196196⨯⨯⨯⨯⨯⨯-≈1.78.当H 0成立时,K 2≈1.78,而K 2<2.072的概率为0.85.所以,不能否定假设H 0.也就是不能作出这两种手术对病人又发作心脏病的影响有差别的结论.12解:由题意父亲身高x cm 与儿子身高y cm 对应关系如下表:则1731701763x ++==173,1701761823y ++==176, 31()()iii x x y y =--∑=(173-173)×(170-176)+(170-173)×(176-176)+(176-173)×(182-176)=18,321()ii x x =-∑=(173-173)2+(170-173)2+(176-173)2=18.∴18ˆ18b==1. ∴ˆˆay bx =-=176-173=3. ∴线性回归直线方程ˆˆˆybx a =+=x +3. ∴可估计孙子身高为182+3=185(cm).由列联表中的数据,得K 2的观测值为k =2200(70653530)10010010595⨯⨯⨯⨯⨯⨯-≈24.561>10.828.因此,有99.9%的把握认为“注射药物A 后的疱疹面积与注射药物B 后的疱疹面积有差异”.14解:(1)根据表中数据作出散点图,如图所示.间对零件数的线性回归方程为ˆy=0.668x+54.93.(2)以零件数为横坐标,残差为纵坐标作出残差图如图所示.由图可知,残差点分布较均匀,即用上述回归模型拟合数据效果很好.但需注意,由残差图也可以看出,第4个样本点和第5个样本点的残差比较大,需要确认在采集这两个样本点的过程中是否有人为的错误.。
选修第三章一、选择题.已知变量与正相关,且由观测数据算得样本平均数=,=,则由该观测数据算得线性回归方程可能为( ).=+.=-.=-+.=-+[答案][解析]因为变量和正相关,所以回归直线的斜率为正,排除、;又将点()代入选项和的方程中检验排除,所以选..由变量与相对应的一组数据(,)、(,)、(,)、(,)、(,)得到的线性回归方程为=+,则=( )....[答案][解析]∵=(++++)=,=+,∴=×+=,故选..(·淄博高二检测)观测两个相关变量,得到如下数据:.=-.=.=+.=+[答案][解析]因为=,==,根据回归直线方程必经过样本中心点(,)可知,回归直线方程过点(),所以选..一位母亲记录了儿子~岁的身高,数据(略),由此建立的身高与年龄的回归模型为=+,用这个模型预测这个孩子岁时的身高,则正确的叙述是( ).身高一定是.身高在以上.身高在左右.身高在以下[答案][解析]将的值代入回归方程=+时,得到的值是年龄为时,身高的估计值,故选..(·天津高二检测)某咖啡厅为了了解热饮的销售量(个)与气温(℃)之间的关系,随机统计了某天的销售量与气温,并制作了对照表:( ) ....[答案][解析]∵=(++-)=,=(+++)=,∴=-×+,∴=,当=-时,=-×(-)+=..设某大学的女生体重(单位:)与身高(单位:)具有线性相关关系,根据一组样本数据(,)(=,…,),用最小二乘法建立的回归方程为=-,则下列结论中不正确...的是( ) .与具有正的线性相关关系.回归直线过样本点的中心(,).若该大学某女生身高增加,则其体重约增加.若该大学某女生身高为,则可断定其体重必为[答案][解析]本题考查线性回归方程.项中身高为时,体重“约为”,而不是“确定”,回归方程只能作出“估计”,而非确定“线性”关系.二、填空题.下列五个命题,正确命题的序号为①任何两个变量都具有相关关系;②圆的周长与该圆的半径具有相关关系;③某商品的需求量与该商品的价格是一种非确定性关系;④根据散点图求得的回归直线方程可能是没有意义的;⑤两个变量间的相关关系可以通过回归直线,把非确定性问题转化为确定性问题进行研究.[答案]③④⑤[解析]变量的相关关系是变量之间的一种近似关系,并不是所有的变量都有相关关系,而有些变量之间是确定的函数关系.例如,②中圆的周长与该圆的半径就是一种确定的函数关系;另外,线性回归直线是描述这种关系的有效方法;如果两个变量对应的数据点与所求出的直线偏离较大,那么,这条回归直线的方程就是毫无意义的..在块并排、形状大小相同的试验田上进行施化肥量对水稻产量影响的试验,得到如下表所示的一组数据(单位:).由散点图初步判定其具有线性相关关系,则由此得到的回归方程的斜率是。
本章测评一、选择题(每题只有一个正确答案,请把正确答案的序号填写在题后的括号内)1.下列说法正确的是( )A.相关关系是一种不确定的关系,回归分析是对相关关系的分析,因此没有实际意义B.独立性检验对分类变量关系的研究没有100%的把握,所以独立性检验研究的结果在实际中也没有多大的实际意义C.相关关系可以对变量的发展趋势进行预报,这种预报可能会是错误的D.独立性检验如果得出的结论有99%的可信度就意味着这个结论一定是正确的思路解析:相关关系虽然是一种不确定关系,但是回归分析可以在某种程度上对变量的发展趋势进行预报,这种预报在尽量减小误差的条件下可以对生产与生活起到一定的指导作用,独立性检验对分类变量的检验也是不确定的,但是其结果也有一定的实际意义.答案:C2.设有一个回归方程为x yˆ8.22ˆ-=,则变量x 增加一个单位时( ) A.y 平均增加2.8个单位 B.y 平均增加2个单位C.y 平均减少2.8个单位D.y 平均减少2个单位思路解析:根据回归方程可知y 是关于x 的单调递减函数,并且由系数知,x 增加一个单位,相应的y 值平均减少1.5个单位.答案:C3.为了研究男子的年龄与吸烟的关系,抽查了100个男人,按年龄超过和不超过40岁,吸烟量每天多于和不多于20支进行分组,如下表:年龄 合计 不超过40岁 超过40岁吸烟量不多于20支/天50 15 65 吸烟量多于20支/天10 25 35 合计60 40 100 则有____________的把握确定吸烟量与年龄有关. …( )A.99.9%B.99%C.95%D.没有理由 思路解析:利用题中列联表,代入公式计算.K 2=40603565)15102550(1002⨯⨯⨯⨯-⨯⨯≈22.16>10.828, 所以我们有99.9%的把握确定吸烟量与年龄有关.答案:A4.下列关于线性回归直线方程yˆ=a+bx 的叙述错误的是 ( ) A.这是根据样本数据近似得出的关系式B.根据回归直线方程可以近似估计某一变量x 对应的y 值C.根据回归直线方程可以估计某一组数据的大致分布情况D.对于同一组数据可以得到若干条直线方程,其中任意一条都可以作为回归直线方程思路解析:回归直线方程是近似描述数据之间的一种关系式,根据回归直线方程可以估计某一变量x 值对应的数值,它是根据样本数据得到的最贴近实际的一条而不是所有直线中的任意一条直线,所以,选项D 是错误的.答案:D5.根据表中提供的数据:x 49.2 50.0 49.3 49.0 49.0 49.5 50.8 50.2 y a 17.0 16.8 16.6 16.7 16.8 b 17.0 若表中数据满足线性相关关系,则表中a,b 的值最有可能是( )A.16.7 50.2B.16.7 16.9C.49.0 50.8D.50.0 47.1思路解析:根据表中数据的特点可以发现y 随着x 的增大而增大,结合表中数据的大小特点可知选项B 最有可能.答案:B 6.根据下表内容,下列说法正确的是( )事件A A 的对立事件 合计方法1a b a+b 方法2c d c+d 合计a+c b+d a+b+c+d A.不论a 、b 、c 、d 取什么值,方法1和方法2对事件A 的影响都是有区别的B.当dc b a =时,可以认为方法1和方法2对事件A 的影响有非常大的区别 C.|dc c b a a +-+|的值越大,说明方法1和方法2对事件A 发生影响的区别越大 D.|dc c b a a +-+|的值越大,说明方法1和方法2对事件A 发生影响的区别越小 思路解析:当b a a +与d c c +的差越大,则两个变量有关系的可能性越大. 答案:C二、填空题(请把正确答案直接填写在题后的括号内)7.一台机器可以按各种不同速度运转,其生产的物件有一些会有缺点,每小时生产有缺点物件的多寡,随机器运转的速度而变化,下列为其试验结果:速度(转/秒) 每小时生产有缺点物件数8 512 814 916 11则机器速度影响每小时生产有缺点物件数的回归直线方程为________________.思路解析:直接代入回归直线方程的公式,回归直线方程:yˆ=a+bx,其中回归系数是:.,1221x b y a x n xy x n y x b n i in i i i-=--=∑∑==答案:yˆ=0.728 6x-0.857 1 8.对于一条线性回归直线yˆ=a+bx,如果x=3时,对应的y 的估计值是17,当x=8时,对应的y 的估计值是22,那么,可以估计出回归直线方程是_____________,根据回归直线方程判断当x=_____________时,y 的估计值是38.思路解析:首先把两组值代入回归直线方程得⎩⎨⎧==⇒⎩⎨⎧=+=+.14,1228173a b a b a b 所以回归直线方程是yˆ=x+14.令x+14=38,可得x=24. 答案:yˆ=x+14 24 9.在对两个变量进行回归分析时,甲、乙分别给出两个不同的回归方程,并对回归方程进行检验,对这两个回归方程进行检验,与实际数据(个数)对比结果如下:与实际相符数据个数 与实际不符合数据个数 合计甲回归方程32 8 40 乙回归方程40 20 60 合计72 28 100 则从表中数据分析,_____________回归方程更好(即与实际数据更贴近).思路解析:可以根据表中数据分析,两个回归方程对数据预测的正确率进行判断,也可以画出二维条形图进行判断.甲回归方程的数据准确率为544032=,而乙回归方程的数据准确率为326040=,显然甲的准确率高些,因此甲回归方程好些. 答案:甲10.假如由数据:(1,2),(3,4),(2,2),(4,4),(5,6),(3,3.6)可以得出线性回归方程yˆ=a+bx 必经过的定点是以上点中的_____________.思路解析:易知,线性回归方程yˆ=a+bx 必经过定点(y x ,),而根据计算可知这几个点中满足条件的是(3,3.6).答案:(3,3.6)三、解答题(请写出详细解题过程)11.在7块并排、形状大小相同的试验田上进行施化肥量对水稻产量影响的试验,得到如下表所示的一组数据.(单位:kg )施化肥量x15 20 25 30 35 40 45 水稻产量y 330345 365 405 445 450 455 (1)画出散点图;(2)求y 关于x 的线性回归方程;(3)若施化肥量为38 kg,其他情况不变,请预测水稻的产量.思路分析:首先根据表中数据可以画出散点图,然后根据散点图的趋势判断相关关系是正相关还是负相关;利用最小二乘法求出回归直线系数,从而得到回归方程,把x=38代入方程即可估计出施肥量为38 kg 时水稻的产量.解:(1)根据表中数据可得散点图如下:(2)根据回归直线方程系数的公式计算可得回归直线方程yˆ=4.75x+257. (3)把x=38代入回归直线方程得y=438,所以,可以预测,施化肥量为38 kg,其他情况不变,水稻的产量是438 kg.12.在调查的480名男人中有38名患有色盲,520名女人中有6名患有色盲,分别利用图形和独立性检验的方法来判断色盲是否与性别有关?并给出结论的可信度.思路分析:本题应首先作出调查数据的列联表,再根据列联表画出二维条形图或者是三维柱形图,根据图形粗略给出结论,再根据独立性检验得出结论的可信度.解:根据题目中的数据可得列联表如下:色盲 不色盲 合计男人38 442 480 女人6 514 520 合计44 956 1 000 根据列联表作出二维条形图如下:从二维条形图来看,在男人中患色盲的比例为:48038,比在女人中患色盲的比例5206要大,其差值|48038-5206|≈0.068,差值较大,因而我们可以认为性别与患色盲是有关的,根据列联表中所给的数据可以有:a=38,b=442,c=6,d=514,代入公式K 2=))()()(()(2d b c a d c b a bc ad n ++++-,可得K 2=95644520480)442651438(10002⨯⨯⨯⨯-⨯⨯≈27.1,由于K 2≈27.1>10.828,所以,我们有99.9%的把握认为性别与色盲有关,这个结论只对调查的480名男人和520名女人适用.。
一、选择题1.假设有两个分类变量X 和Y 的22⨯列联表为:对同一样本,以下数据能说明X 与Y 有关系的可能性最大的一组为参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.A .5,35b d ==B .15,25b d ==C .20,20b d ==D .30,10b d ==2.已知x 与y 之间的几组数据如下表: x 1 2 4 5 y 0 2 3 5假设根据上表数据所得线性回归直线方程y=bx+a,若某同学根据上表中的前两组数据(1,0)和(2,2),求得的直线方程为y=b'x+a',则以下结论正确的是( ) A .b>b',a>a' B .b<b',a<a' C .b>b',a<a' D .b<b',a>a'3.经过对K 2的统计量的研究,得到了若干个观测值,当K 2≈6.706时,我们认为两分类变量A 、B ( )A .有67.06%的把握认为A 与B 有关系 B .有99%的把握认为A 与B 有关系C .有0.010的把握认为A 与B 有关系D .没有充分理由说明A 与B 有关系 4.有如下几个结论: ①相关指数R 2越大,说明残差平方和越小,模型的拟合效果越好; ②回归直线方程:y bx a =+,一定过样本点的中心:(,)x y ③残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适; ④在独立性检验中,若公式()()()()()22n ad bc K a b c d a c b d -=++++,中的|ad-bc|的值越大,说明“两个分类变量有关系”的可能性越强.其中正确结论的个数有( )个. A .1B .2C .3D .45.下列判断错误的是A .若随机变量ξ服从正态分布()()21,,30.72N P σξ≤=,则()10.28P ξ≤-=;B .若n 组数据()()()1122,,,,...,,n n x y x y x y 的散点都在1y x =-+上,则相关系数1r =-;C .若随机变量ξ服从二项分布: 15,5B ξ⎛⎫~ ⎪⎝⎭, 则()1E ξ=; D .am bm >是a b >的充分不必要条件;6.已知某种商品的广告费支出x (单位:万元)与销售额y (单位:万元)之间有如下对应数据:x 2 4 5 6 8 y3040506070根据上表可得回归方程y bx a =+,计算得7b =,则当投入10万元广告费时,销售额的预报值为 A .75万元 B .85万元 C .99万元D .105万元7.下列说法中,不正确的是A .两个变量的任何一组观测值都能得到线性回归方程B .在平面直角坐标系中,用描点的方法得到表示两个变量的关系的图象叫做散点图C .线性回归方程反映了两个变量所具备的线性相关关系D .线性相关关系可分为正相关和负相关8.为考察数学成绩与物理成绩的关系,在高二随机抽取了300名学生,得到下面的列联表:数学85~100分 数学85分以下 总计 物理85~100分 37 85 122 物理85分以下 35 143 178 总计72228300现判断数学成绩与物理成绩有关系,则犯错误的概率不超过 ( ) A .0.005 B .0.01C .0.02D .0.059.在调查中发现480名男人中有38名患有色盲,520名女人中有6名患有色盲.下列说法正确的是( )A .男、女人患色盲的频率分别为0.038,0.006B .男、女人患色盲的概率分别为,C .男人中患色盲的比例比女人中患色盲的比例大,患色盲与性别是有关的D .调查人数太少,不能说明色盲与性别有关10.已知,x y 的取值如下表:( )x0 1, 2 3 4 y11.33.25.68.9若依据表中数据所画的散点图中,所有样本点()(,)1,2,3,4,5i i x y i =都在曲线212y x a =+附近波动,则a =( ) A .1B .12C .13D .12-11.已知变量x ,y 的一组观测数据如表所示: x 3 4 5 6 7 y4.02.5-0.50.5-2.0据此得到的回归方程为y bx a =+,若a =7.9,则x 每增加1个单位,y 的预测值就( ) A .增加1.4个单位 B .减少1.2个单位C .增加1.2个单位D .减少1.4个单位12.下列说法:①分类变量A 与B 的随机变量2K 越大,说明“A 与B 有关系”的可信度越大.②以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则,c k 的值分别是4e 和0.3.③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y a bx =+中,2,1,3b x y ===,则1a =.④如果两个变量x 与y 之间不存在着线性关系,那么根据它们的一组数据()(,1,2,,)i i x y i n =不能写出一个线性方程正确的个数是( )A .1B .2C .3D .4二、填空题13.x ,y 的取值如下表: x-2-1.5-1-0.50.51y 0.26 0.35 0.51 0.71 1.1 1.41 2.05则x ,y 之间的关系可选用函数___进行拟合.14.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程=3-5x ,变量x 增加一个单位时,y 平均增加5个单位;③线性回归方程=x +必过(,);④曲线上的点与该点的坐标之间具有相关关系;⑤在一个2×2列联表中,由计算得K 2=13.079,则其两个变量之间有关系的可能性是90%.其中错误的个数是________. 15.教材上一例问题如下:一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据如下表,试建立y 与x 之间的回归方程. 温度 x /℃ 21 23 25 27 29 32 35 产卵数y /个711212466115325某同学利用图形计算器研究它时,先作出散点图(如图所示),发现两个变量不呈线性相关关系. 根据已有的函数知识,发现样本点分布在某一条指数型曲线21c xy c e =的附近(1c 和2c 是待定的参数),于是进行了如下的计算:根据以上计算结果,可以得到红铃虫的产卵数y 对温度x 的回归方程为__________.(精确到0.0001) (提示:21c xy c e =利用代换可转化为线性关系) 16.给出下列命题:①线性相关系数r 越大,两个变量的线性相关性越强;反之,线性相关性越弱;②由变量x 和y 的数据得到其回归直线方程:l ˆybx a =+,则l 一定经过点(),x y P ; ③从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;④在回归分析模型中,残差平方和越小,说明模型的拟合效果越好;⑤在回归直线方程0.110ˆyx =+中,当解释变量x 每增加一个单位时,预报变量ˆy 增加0.1个单位,其中真命题的序号是___________.17.以下四个命题中:①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量的线性相关性越强,相关系数的绝对值越接近于1; ③某项测量结果服从正太态布,则; ④对于两个分类变量和的随机变量的观测值来说,越小,判断“与有关系”的把握程度越大.以上命题中其中真命题的个数为___________.18.在吸烟与患肺病这两个分类变量的计算中,“若2x 的观测值为6.635,我们有99%的把握认为吸烟与患肺病有关系”这句话的意思: ①是指“在100个吸烟的人中,必有99个人患肺病 ②是指“有1%的可能性认为推理出现错误”; ③是指“某人吸烟,那么他有99%的可能性患有肺病”; ④是指“某人吸烟,如果他患有肺病,那么99%是因为吸烟”. 其中正确的解释是______.19.一个三位自然数百位,十位,个位上的数字依次为a ,b ,c ,当且仅当有两个数字的和等于第三个数字时称为“有缘数”(如213,134等),若{},,1234a b c ∈,,,,且a ,b ,c 互不相同,则这个三位数为”有缘数”的概率是__________. 20.下列说法:①线性回归方程y bx a =+必过(),x y ;②命题“21,34x x ∀≥+≥”的否定是“21,34x x ∃<+<” ③相关系数r 越小,表明两个变量相关性越弱;④在一个22⨯列联表中,由计算得28.079K =,则有99%的把握认为这两个变量间有关系;其中正确..的说法是__________.(把你认为正确的结论都写在横线上) 本题可参考独立性检验临界值表:三、解答题21.今年疫情期间,许多老师进行抖音直播上课某校团委为了解学生喜欢抖音上课是否与性别有关,从高三年级中随机抽取30名学生进行了问卷调查,得到如下列联表:男生 女生 合计 喜欢抖音上课 10不喜欢抖音上课8合计 30已知在这30人中随机抽取1人抽到喜欢抖音上课的学生的概率是815. (1)请将上面的列联表补充完整,并据此资料分析能否有95%的把握认为喜欢抖音上课与性别有关?(2)若从这30人中的女生中随机抽取2人,记喜欢抖音上课的人数为X ,求X 的分布列、数学期望. 附临界值表:()20P K k ≥0.10 0.05 0.010 0.005 0k2.7063.8416.637.879参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.22.某校从高三年级的男女生中各随机抽取了100人的体育测试成绩(以下称体测成绩,单位:分),数据都落在[)60100,内,其统计数据如表所示(其中不低于80分的学生为优秀).(1)请根据如表数据完成22⨯列联表,并通过计算判断,是否有95%的把握认为体测成绩与性别有关?(2)视频率为概率,在全校的高三学生中任取3人,记取出的3人中优秀的人数为X ,求X 的分布列和数学期望.附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++23.支付宝和微信支付是目前市场占有率较高的支付方式,某第三方调研机构对使用这两种支付方式的人数作了对比,从全国随机抽取了100个地区作为研究样本,计算了各个地区样本的使用人数,其频率分布直方图如下,(1)记A表示事件“微信支付人数低于50千人”,估计A的概率;(2)填写下面2╳2列联表,并根据2╳2列联表判断是否有99%的把握认为支付人数与支付方式有关;支付人数<50千支付人数≥50千人总计人微信支付 支付宝支付 总计附:2()P K k ≥0.050 0.010 0.001 k3.8416.63510.828()()()()()22n ad bc K a b c d a c b d -=++++.24.2020突如其来的疫情让我们经历了最漫长、最特殊的一个假期,教育行政部门部署了“停课不停学”的行动,全力帮助学生在线学习.复课后某校进行了摸底考试,某数学教师为了调查高二学生这次摸底考试的数学成绩与每天在线学习数学的时长之间的相关关系,对在校高二学生随机抽取45名进行调查,了解到其中有25人每天在线学习数学的时长不超过1小时,并得到如下的等高条形图:(1)根据等高条形图填写下面22⨯列联表,并根据列联表判断能否在犯错误的概率不超过0.05的前提下认为“高二学生的这次摸底考试数学成绩与其每天在线学习数学的时长有关”;数学成绩不超过120分 数学成绩超过120分 总计 每天在线学习数学不超过1小时 25每天在线学习数学超过1小时总计45(2)从被抽查的,且这次数学成绩超过120分的学生中,再随机抽取3人,求抽取的3人中每天在线学习数学的时长超过1小时的人数ξ的分布列与数学期望. 附临界值表()20P K k ≥0.050 0.010 0.001 0k3.8416.63510.828参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.25.某单位组织开展“学习强国”的学习活动,活动第一周甲、乙两个部门员工的学习情况统计如下:学习活跃的员工人数 学习不活跃的员工人数甲 18 12 乙328(1)根据表中数据判断能否有95%的把握认为员工学习是否活跃与部门有关; (2)活动第二周,单位为检查学习情况,从乙部门随机抽取2人,发现这两人学习都不活跃,能否认为乙部门第二周学习的活跃率比第一周降低了?说明理由.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:2(0.1) 2.706P K ≥=,2(0.05) 3.841P K ≥=,2(0.01) 6.635P K ≥=. 26.根据国家统计局数据,1999年至2019年我国进出口贸易总额从3万亿元跃升至31.6万亿元,中国在国际市场上的贸易份额越来越大对外贸易在国民经济中的作用日益突出.将年份1999,2004,2009,2014,2019分别用1,2,3,4,5代替,并表示为t ,y 表示全国进出口贸易总额.(1)根据以上统计数据及图表,给出了下列两个方案,请解决方案1中的问题. 方案1:用y bt a =+作为全国进出口贸易总额y 关于t 的回归方程,根据以下参考数据,求出y 关于t 的回归方程,并求相关指数21R .方案2:用dt y ce =作为全国进出口贸易总额y 关于t 的回归方程,求得回归方程0.57212.3259x y e =,相关指数22R .(2)通过对比(1)中两个方案的相关指数,你认为哪个方案中的回归方程更合适,并利用此回归方程预测2020年全国进出口贸易总额. 参考数据:①0.140.340.66 1.86 2.048.192++++=②222220.140.34 1.86 2.04 2.1412.336++++=③8.1920.0147555.792≈④12.3360.0222555.792≈参考公式:线性回归方程中的斜率和截距的最小二乘法估计公式分别为:()()()121nii i nii xx y yb xx==--=-∑∑,a y bx =-,相关指数()()221211ni ii n ii y y R yy==-=--∑∑.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 根据公式()()()()()22n ad bc K a b c d a c b d -=++++,分别利用4个选项中所给数据求出2K 的值,比较所求值的大小即可得结果. 【详解】选项A :22160(535155)3204010502K ⨯⨯-⨯==⨯⨯⨯,选项B :22260(5251515)152040204016K ⨯⨯-⨯==⨯⨯⨯,选项C :22360(5201520)24204025357K ⨯⨯-⨯==⨯⨯⨯,选项D :22460(5101530)96204035257K ⨯⨯-⨯==⨯⨯⨯,可得222431K K K >>22K >,所以由选项D 中的数据得到的2K 值最大,说明X 与Y 有关系的可能性最大,故选D . 【点睛】本题主考查独立性检验的基本性质,意在考查对基本概念的理解与应用,属于基础题.解答独立性检验问题时,要注意应用2 K 越大两个变量有关的可能性越大这一性质.2.D解析:D 【解析】 【分析】先根据()()1,0,2,2求得直线y b x a ='+'的方程.然后计算出回归直线方程y bx a =+,由此比较大小,得出正确的结论. 【详解】由于直线y b x a ='+'过()()1,0,2,2,将两点坐标代入直线方程得022b a b a +=⎧⎨+=''''⎩,解得2,2b a ''==-.124534x +++==,02352.54y +++==,1122334414122542x y x y x y x y +++=+++=.2222123414162546x x x x +++=+++=,故24243 2.54230121.24643463610b -⨯⨯-====-⨯-, 2.5 1.23 2.5 3.6 1.1a =-⨯=-=-.所以,a a b b >'<',故选D.【点睛】本小题主要考查利用直线上的两点坐标求直线方程的方法,考查回归直线方程的计算,属于中档题.3.B解析:B 【分析】根据所给的观测值,同临界值表中的临界值进行比较,根据P (K 2>3.841)=0.05,得到我们有1-0.05=95%的把握认为A 与B 有关系. 【详解】 依据下表:2 6.635K > , 2 6.6350.01P K =(>)∴我们在错误的概率不超过0.01的前提下有99%的把握认为A 与B 有关系, 故选B . 【点睛】本题考查独立性检验的应用,本题解题的关键是正确理解临界值对应的概率的意义,本题不用运算只要理解概率的意义即可.4.D解析:D 【分析】根据相关指数定义、残差平方和含义可得①为真,根据回归直线方程特征可得②为真,根据残差点含义可得③为真,根据卡方含义可得④为真. 【详解】相关指数R 2越大,则残差平方和越小,模型的拟合效果越好;回归直线方程:ˆy bx a =+,一定过点() ,x y ;若残差点比较均匀地落在水平的带状区域中,则选用的模型比较合适; 在独立性检验中,若公式()()()()()22n ad bc K a b c d a c b d -=++++,中的|ad-bc|的值越大,则2K 越大, “两个分类变量有关系”的可能性越强.选D. 【点睛】相关指数R 2越大,残差平方和越小,残差点比较均匀地落在水平的带状区域,则模型的拟合效果越好;在独立性检验中,若2 K 越大,则两个变量有关系越强;回归直线方程:ˆy bx a =+,一定过点() ,x y .5.D解析:D 【解析】分析:根据正态分布的对称性求出()1P ξ≤-的值,判断A 正确; 根据线性相关关系与相关系数的定义,判断B 正确; 根据二项分布的均值计算公式求出()E ξ的值,判断C 正确; 判断充分性和必要性是否成立,得出D 错误.详解:对于A ,随机变量ξ服从正态分布()21,N σ,∴曲线关于1ξ=对称,131310.720.28PP P ξξξ∴≤-=≥=-≤=-=()()(),A 正确;对于B ,若n 组数据()()()1122,,,,...,,n n x y x y x y 的散点都在1y x =-+上, 则x y ,成负相关,且相关关系最强,此时相关系数1r =-,B 正确;对于C ,若随机变量ξ服从二项分布: 15,5B ξ⎛⎫~ ⎪⎝⎭,则1515E(),ξ=⨯= C 正确;对于D ,am >bm 时,a >b 不一定成立,即充分性不成立,a b am bm >时,> 不一定成立,即必要性不成立,是既不充分也不必要条件,D 错误. 故选:D .点睛:本题考查了命题真假的判断问题,是综合题.6.B解析:B 【解析】分析:根据表中数据求得样本中心(,)x y ,代入回归方程ˆ7ˆyx a =+后求得ˆa ,然后再求当10x =的函数值即可. 详解:由题意得11(24568)5,(3040506070)5055x y =++++==++++=, ∴样本中心为(5,50).∵回归直线ˆ7ˆyx a =+过样本中心(5,50), ∴ˆ5075a=⨯+,解得ˆ15a =, ∴回归直线方程为ˆ715yx =+. 当10x =时,710158ˆ5y=⨯+=, 故当投入10万元广告费时,销售额的预报值为85万元. 故选B .点睛:本题考查回归直线过样本中心这一结论和平均数的计算,考查学生的运算能力,属容易题.7.A解析:A 【解析】要得到线性回归方程应至少有两个变量的两组观测值,因此A 不正确.根据散点图、线性回归方程、线性相关关系的概念可得B ,C ,D 都正确.故选A .8.D解析:D 【解析】因为K 2的观测值k=2300(371433585)12217872228⨯-⨯⨯⨯⨯≈4.514>3.841, 所以在犯错误的概率不超过0.05的前提下认为数学成绩与物理成绩有关系. 选D.9.C解析:C 【解析】男人中患色盲的比例为,要比女人中患色盲的比例大,其差值为,差值较大,所以认为患色盲与性别是有关的.考点:独立性检验.10.A解析:A 【解析】 设2t x = ,则11(014916)6,(1 1.3 3.2 5.68.9)455t y =++++==++++=,所以点(6,4)在直线12y t a =+上,求出1a =,选A. 点睛:本题主要考查了散点图,属于基础题.样本点的中心(),x y 一定在直线回归直线上,本题关键是将原曲线变形为12y t a =+,将点(6,4)代入,求出值. 11.D解析:D 【解析】由表格得 5x =, 0.9y =,∵回归直线方程为7ˆ9ˆ.y bx=+,过样本中心, ∴57.90.9b +=,即75b =-,则方程为77.95ˆyx =-+,则x 每增加1个单位,y 的预测值就减少1.4个单位,故选D.12.C解析:C 【解析】①分类变量A 与B 的随机变量2K 越大,说明“A 与B 有关系”的可信度越大,正确; ②∵kx y ce =,∴两边取对数,可得lny ln =(kx ce )kx lnc lnce lnc kx =+=+, 令z lny =,可得z lnc kx =+, ∵0.34z x =+, ∴40.3lnc k ==, ∴4c e =.即②正确;③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y =a +bx 中,2,1,3b x y ===,则a =1,正确。
一、选择题1.已知x 与y 之间的几组数据如下表: x 1 2 3 4 y1mn4参考公式:线性回归方程y bx a =+,其中()()()121niii nii x x y y b x x ==--=-∑∑,a y bx =-;相关系数()()()()12211niii nniii i x x y y r x x y y ===--=--∑∑∑.上表数据中y 的平均值为2.5,若某同学对m 赋了三个值分别为1.5,2,2.5得到三条线性回归直线方程分别为11y b x a =+,22y b x a =+,33y b x a =+,对应的相关系数分别为1r ,2r ,3r ,下列结论中错误..的是( ) A .三条回归直线有共同交点 B .相关系数中,2r 最大 C .12b b >D .12a a >2.以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,其变换后得到线性回归方程0.53z x =+,则c =( ) A .3B .3eC .0.5D .0.5e3.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是A .10200ˆyx =-+ B .10200ˆyx =+ C .10200ˆyx =-- D .10200ˆyx =- 4.设导弹发射的事故率为0.01,若发射10次,其出事故的次数为ξ,则下列结论正确的是 ( ) A .0.1E ξ=B .•01D ξ=C .10()0.01?0.99k k P k ξ-==D .1010()0.99?0.01k k kP k C ξ-==5.某研究型学习小组调查研究学生使用智能手机对学习的影响.部分统计数据如下表:附表:经计算2K 的观测值10k =,则下列选项正确的是( ) A .有99.5%的把握认为使用智能手机对学习有影响 B .有99.5%的把握认为使用智能手机对学习无影响 C .有99.9%的把握认为使用智能手机对学习有影响 D .有99.9%的把握认为使用智能手机对学习无影响 6.下列命题中正确命题的个数是(1)对分类变量X 与Y 的随机变量2K 的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握越大;(2)若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变; (3)在残差图,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高; (4)设随机变量ξ服从正态分布()0,1N ; 若()1P p ξ>=,则()1102P p ξ-<<=-( ) A .4B .3C .2D .17.在独立性检验中,统计量2χ有三个临界值:2.706、3.841和6.635,在一项打鼾与患心脏病的调查中,共调查了1000人,经计算的2χ=18.87,根据这一数据分析,认为打鼾与患心脏病之间 ( )A .有95%的把握认为两者无关B .约有95%的打鼾者患心脏病C .有99%的把握认为两者有关D .约有99%的打鼾者患心脏病8.对于独立性检验,下列说法正确的是( ) A .K 2>3.841时,有95%的把握说事件A 与B 无关 B .K 2>6.635时,有99%的把握说事件A 与B 有关 C .K 2≤3.841时,有95%的把握说事件A 与B 有关 D .K 2>6.635时,有99%的把握说事件A 与B 无关9.利用独立性检验来考虑两个分类变量X 和Y 是否有关系时,通过查阅临界值表来确定推断“X 与Y 有关系”的可信度,如果k >5.024,那么就推断“X 和Y 有关系”,这种推断犯错误的概率不超过( ) A .0.25 B .0.75 C .0.025 D .0.97510.已知,x y 的取值如下表:( )x0 1, 2 3 4 y11.33.25.68.9若依据表中数据所画的散点图中,所有样本点()(,)1,2,3,4,5i i x y i =都在曲线212y x a =+附近波动,则a =( ) A .1B .12C .13D .12-11.通过随机询问2016名性别不同的大学生是否爱好某项运动,得到2 6.023K =,则根据这一数据查阅表,则有把握认为“爱好该项运动与性别有关”的可信程度是( )A .90%B .95%C .97.5%D .99.5%12.下列说法:①将一组数据中的每个数据都乘以同一个非零常数a 后,标准差也变为原来的a 倍; ②设有一个回归方程35y x =-,变量x 增加1个单位时,y 平均减少5个单位; ③线性相关系数r 越大,两个变量的线性相关性越强;反之,线性相关性越弱;④在某项测量中,测量结果ξ服从正态分布()()21,0N σσ>,若ξ位于区域()0,1的概率为0.4,则ξ位于区域()1,+∞内的概率为0.6⑤利用统计量2χ来判断“两个事件,X Y 的关系”时,算出的2χ值越大,判断“X 与Y 有关”的把握就越大 其中正确的个数是 A .1B .2C .3D .4二、填空题13.在一次独立试验中,有200人按性别和是否色弱分类如下表(单位:人)你能在犯错误的概率不超过_____的前提下认为“是否色弱与性别有关”?14.某中学为了调研学生的数学成绩和物理成绩是否有关系,随机抽取了189名学生进行调查,调查结果如下:在数学成绩较好的94名学生中,有54名学生的物理成绩较好,有40名学生的物理成绩较差;在成绩较差的95名学生中,有32名学生的物理成绩较好,有63名学生的物理成绩较差.根据以上的调查结果,利用独立性检验的方法可知,约有________的把握认为“学生的数学成绩和物理成绩有关系”.15.为了解适龄公务员对放开生育二胎政策的态度,某部门随机调查了200位30~40岁之间的公务员,得到的情况如下表:男公务员 女公务员 生二胎 80 40 不生二胎4040则________(填“有”或“没有”)99%以上的把握认为“生二胎与性别有关”. 附:K 2=. P (K 2≥k 0) 0.10 0.05 0.025 0.010 0.005 0.001 k 02.7063.8415.0246.6357.87910.82816.为了解某班学生喜爱打篮球是否与性别有关,对该班50名 学生进行了问卷调查, 得到了如下22⨯ 列联表喜爱打篮球 不喜爱打篮球 合计男生20 525 女生 10 1525合计30 2050则至少有_____的把握认为喜爱打篮球与性别有关(请用百分数表示). 17.给出下列命题:①线性相关系数r 越大,两个变量的线性相关性越强;反之,线性相关性越弱;②由变量x 和y 的数据得到其回归直线方程:l ˆybx a =+,则l 一定经过点(),x y P ; ③从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;④在回归分析模型中,残差平方和越小,说明模型的拟合效果越好;⑤在回归直线方程0.110ˆyx =+中,当解释变量x 每增加一个单位时,预报变量ˆy 增加0.1个单位,其中真命题的序号是___________.18.某单位为了了解用电量y (度)与气温x (℃)之间的关系,随机统计了某4天的用电量与当天气温(如表),并求得线性回归方程为^=-2x +60.不小心丢失表中数据c ,d ,那么由现有数据知2c+d=______. x c 13 10 -1 y243438d19.下列4个命题:①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔为40;②四边形ABCD 为长方形,2AB =,1BC =,O 为AB 中点,在长方形ABCD 内随机取一点P ,取得的P 点到O 的距离大于1的概率为12π-; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 2y x =的图象; ④已知回归直线的斜率的估计值为1.23,样本点的中心为()4,5,则回归直线方程为1.230.08y x =+.其中正确的命题有__________.(填上所有正确命题的编号)20.2018年春季,世界各地相继出现流感疫情,这已经成为全球性的公共卫生问题.为了考察某种流感疫苗的效果,某实验室随机抽取100只健康小鼠进行试验,得到如下列联表:关系.(参考公式:()()()()()22n ad bc K a b c d a c b d -=++++.)三、解答题21.第十八届中国国际农产品交易会于11月27日在重庆国际博览中心开幕,我市全面推广“遂宁红薯”及“遂宁鲜”农产品区域公用品牌,并组织了100家企业、1000个产品进行展示展销,扩大优质特色农产品市场的占有率和影响力,提升遂宁特色农产品的社会认知度和美誉度,让来自世界各地的与会者和消费者更深入了解遂宁,某记者对本次农交会进行了跟踪报道和实际调查,对某特产的最满意度()%x 和对应的销售额y (万元)进行了调查得到以下数据:关系数r 的绝对值在0.95以上(含0.95)是线性相关性较强;否则,线性相关性较弱.请你对线性相关性强弱作出判断,并给出理由;(2)如果没有达到较强线性相关,则采取“末位淘汰”制(即销售额最少的那一天不作为计算数据),并求在剔除“末位淘汰”的那一天后的销量额y 关于最满意度x 的线性回归方程(系数精确到0.1). 参考数据:24x =,81y =,52215146ii x x =-=∑, 52215176i i y y =-=∑,515151i ii x y xy =-=∑13.27≈≈.附:对于一组数据()()()1122,,,,,,n n x y x y x y ⋅⋅⋅.其回归直线方程 ˆˆˆy bx a =+的斜率和截距的最小二乘法估计公式分别为:1221ˆ·ni ii ni i x y nx y bx nx ==-=-∑∑,ˆa y bx=-,线性相关系数·ni ix y nx y r -=∑22.为了调查某生产线上质量监督员甲对产品质量好坏有无影响,现统计数据如下:质量监督员甲在生产现场时,990件产品中合格品有982件,次品有8件;甲不在生产现场时,510件产品中合格品有493件,次品有17件,试分别用列联表、独立性检验的方法分析监督员甲是否在生产现场对产品质量好坏有无影响?23.2020年初,新型冠状病毒(2019-nCoV )肆虐,全民开启防疫防控.新型冠状病毒的传染主要是人与人之间进行传播,感染人群年龄大多数是40岁以上人群.该病毒进入人体后有潜伏期,潜伏期是指病原体侵入人体至最早出现临床症状的这段时间.潜伏期越长,感染到他人的可能性越高,现对200个病例的潜伏期(单位:天)进行调查,统计发现潜伏期平均数为7.1,方差为22.25.如果认为超过8天的潜伏期属于“长潜伏期”,按照年龄统计样本,得到下面的列联表:(1)是否有95%的把握认为“长期潜伏”与年龄有关;(2)假设潜伏期X 服从正态分布()2,N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s .(ⅰ)现在很多省份对入境旅客一律要求隔离14天,请用概率的知识解释其合理性;(ⅱ)以题目中的样本频率估计概率,设1000个病例中恰有()*k k ∈N 个属于“长期潜伏”的概率是()g k ,当k 为何值时,()g k 取得最大值. 附:()()()()()22n ad bc a b c d a c b d χ-=++++若()2,N ξμσ则()0.6862P μσξμσ-<<+=.()220.9544P μσξμσ-<<+=,()330.9974P μσξμσ-<<+=.24.某地一所妇产科医院为了解婴儿性别与出生时间(白天或晚上)之间的联系,从该医院最近出生的200名婴儿获知如下数据:这200名婴儿中男婴的比例为55%,晚上出生的男婴比白天出生的男婴多75%,晚上出生的女婴人数与白天出生的男婴人数恰好相等. (1)根据题意,完成下列2×2列联表;(2)根据列联表,判断能否有99%的把握认为婴儿的性别与出生时间有关,说明你的理由.附:22()()()()()n ad bcKa b c d a c b d-=++++(n=a+b+c+d),参考数据:221999≈0.0368.25.在第十五次全国国民阅读调查中,某地区调查组获得一个容量为200的样本,其中城镇居民150人,农村居民50人,在这些居民中,经常阅读的城镇居民100人,农村居民24人.(1)完成上面2×2列联表,并判断是否有95%的把握认为经常阅读与居民居住地有关?(2)从该地区居民城镇的居民中,随机抽取5位居民参加一次阅读交流活动,记这5位居民中经常阅读的人数为X,若用样本的频率作为概率,求随机变量X的分布列和期望.附:K2=2()()()()()n ad bca b c d a c b d-++++,其中n=a+b+c+d.26.“微粒贷”是腾讯旗下2015年9月开发上市的微众银行网货产品.腾讯公司为了了解“微粒贷”上市以来在C市的使用情况,统计了C市2015年至2019年使用了“微粒货”贷款的累计人数,统计数据如表所示:(1)已知变量x ,y 具有线性相关关系,求累计人数y (万人)关于年份代号x 的线性回归方程y bx a =+;并预测2020年使用“微粒贷“贷款的累计人数;(2)“微粒贷”用户拥有的贷款额度是根据用户的账户信用资质判定的,额度范围在500元至30万元不等,腾讯公司在统计使用人数的同时,对他们所拥有的贷款额度也作了相应的统计.我们把拥有货款额度在500元至5万元(不包括5万元)的人群称为“低额度贷款人群”,简称“A 类人群”;把拥有贷款额度在5万元及以上的人群称为“高额度贷款人群”,简称“B 类人群”.根据统计结果,随机抽取6人,其中A 类人群4人,B 类人群2人.现从这6人中任取3人,记随机变量ξ为A 类人群的人数,求ξ的分布列及其期望.参考公式:1122211()()()()nni iiii i nniii i x y nx y x x y y b xn x x x ====---==--∑∑∑∑, a y bx =-参考数据:5162i ii x y=≈∑【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由题意可得5m n +=,分别取m 与n 的值,由公式计算出1122123,,,,,,b a b a r r r 的值,逐一分析四个选项,即可得到答案. 【详解】由题意,1410m n +++=,即5m n +=. 若 1.5m =,则 3.5n =,此时12342.54x +++==, 2.5y =. ()()()()()()()()()()411 2.51 2.52 2.5 1.5 2.53 2.5 3.5 2.54 2.54 2.5 5.5iii x x y y =--=--+--+--+--=∑ ,()()()42222211.50.50.5 1.55i i x x =-=-+-++=∑ ,()()()42222211.511 1.5 6.5i i y y =-=-+-++=∑.则1 5.51.15b ==,1 2.5 1.1 2.50.25a =-⨯=- ,1r =≈; 若2m =,则3n =,此时12342.54x +++==, 2.5y =. ()()()()()()()()()()411 2.51 2.52 2.52 2.53 2.53 2.54 2.54 2.55iii x x y y =--=--+--+--+--=∑,()4215ii x x =-=∑,()()()42222211.50.50.5 1.55i i y y =-=-+-++=∑.2515b ==,2 2.51 2.50a =-⨯=,21r ==; 若 2.5m =,则 2.5n =,此时12342.54x +++==, 2.5y =. ()()()()()()()()()()411 2.51 2.52 2.5 2.5 2.53 2.5 2.5 2.54 2.54 2.5 4.5iii x x y y =--=--+--+--+--=∑,()4215i i x x =-=∑,()()422211.5 1.5 4.5i i y y =-=-+=∑,3r ==由样本点的中心相同,故A 正确;由以上计算可得,相关系数中,2r 最大,12b b >,12a a <,故B ,C 正确,D 错误. 故选:D . 【点睛】本题考查线性回归方程与相关系数的求法,考查计算能力,是中档题.2.B解析:B 【分析】根据指对数互化求解即可. 【详解】解:因为0.53z x =+,ln z y =,所以0.53ln x y +=,所以0.5330.5x x y e e e +==⨯,故3c e =.故选:B. 【点睛】本题考查非线性回归问题的转化,是基础题.3.A解析:A 【解析】试题分析:因为商品销售量x 与销售价格ˆy负相关,所以排除B ,D 选项, 将0x =代入10200ˆyx =--可得2000ˆy =-<,不符合实际.故A 正确. 考点:线性回归方程.【方法点睛】本题主要考查线性回归方程,属容易题.线性回归方程ˆˆˆy bx a =+当ˆ0b<时ˆ,x y 负相关;当ˆ0b >时ˆ,x y 正相关. 4.A解析:A 【解析】 【分析】由题意知本题是在相同的条件下发生的试验,发射的事故率都为0.01,实验的结果只有发生和不发生两种结果,故本题符合独立重复试验,由独立重复试验的期望公式得到结果. 【详解】由题意知本题是在相同的条件下发生的试验,发射的事故率都为0.01,故本题符合独立重复试验,即ξ~(10,0.01)B . ∴100.010.1E ξ=⨯= 故选A . 【点睛】解决离散型随机变量分布列和期望问题时,主要依据概率的有关概念和运算,同时还要注意题目中离散型随机变量服从什么分布,若服从特殊的分布则运算要简单的多.5.A解析:A 【解析】 【分析】由题意结合2K 的观测值k 由独立性检验的数学思想给出正确的结论即可. 【详解】由于2K 的观测值10k =7.879>,其对应的值0.0050.5%=,据此结合独立性检验的思想可知:有99.5%的把握认为使用智能手机对学习有影响. 本题选择A 选项. 【点睛】独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.6.B解析:B 【解析】 【分析】根据独立性检验的定义可判断(1);根据方差的性质可判断(2);根据残差的性质可判断(3);根据正态分布的对称性可判断(4).【详解】(1)对分类变量X 与Y 的随机变量2K 的观测值K 来说,K 越大,判断“X 与Y 有关系”的把握越大,故(1)错误;(2)若将一组样本数据中的每个数据都加上同一个常数后,数据的离散程度不变,则样本的方差不变,故(2)正确;(3)根据残差的定义可知,在残差图,残差点分布的带状区域的宽度越狭窄,预测值与实际值越接近,其模型拟合的精度越高,(3)正确;(4)设随机变量ξ服从正态分布()0,1N ,若()1P p ζ>=,则()1P p ζ<-=,则()1112P p ζ-<<=-,则()1102P p ζ-<<=-,故(4)正确, 故正确的命题的个数为3个,故选B. 【点睛】本题主要通过对多个命题真假的判断,主要综合考查独立性检验的定义、方差的性质、残差的性质以及正态分布的对称性,属于中档题. 这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.7.C解析:C 【解析】因为统计量2χ有三个临界值:2.706、3.841和6.635,而2χ=18.87>6.635,所以有99%的把握认为两者有关,选C.8.B解析:B【解析】由独立性检验的知识知:K 2>3.841时,有95%的把握认为“变量X 与Y 有关系”;K 2>6.635时,有99%的把握认为“变量X 与Y 有关系”.故选项B 正确.9.C解析:C【解析】∵P (k >5.024)=0.025,故在犯错误的概率不超过0.025的条件下,认为“X 和Y 有关系”. 考点:独立性检验.10.A解析:A 【解析】 设2t x = ,则11(014916)6,(1 1.3 3.2 5.68.9)455t y =++++==++++=,所以点(6,4)在直线12y t a =+上,求出1a =,选A.点睛:本题主要考查了散点图,属于基础题.样本点的中心(),x y 一定在直线回归直线上,本题关键是将原曲线变形为12y t a =+,将点(6,4)代入,求出值. 11.C解析:C 【解析】因为2 6.023K =,且5.024 6.023 6.635≤≤,所以有把握认为“爱好该项运动与性别有关”的可信度P 满足10.02510.010P -≤≤-,即0.9750.99P ≤≤,应选答案C 。
选修2-3 第三章 3.2一、选择题1.给出下列实际问题:①一种药物对某种病的治愈率;②两种药物治疗同一种病是否有区别;③吸烟者得肺病的概率;④吸烟是否与性别有关系;⑤网吧与青少年的犯罪是否有关系.其中用独立性检验可以解决的问题有导学号 03960657( )A .①②③B .②④⑤C .②③④⑤D .①②③④⑤[答案] B[解析] 独立性检验是判断两个分类变量是否有关系的方法,而①③都是概率问题,不能用独立性检验.2.假设有两个分类变量X 与Y ,它们的可能取值分别为{x 1,x 2}和{y 1,y 2},其2×2列联表为:以下各组数据中,对于同一样本能说明X与Y有关系的可能性最大的一组为导学号 03960658( )A.a=5,b=4,c=3,d=2B.a=5,b=3,c=4,d=2C.a=2,b=3,c=4,d=5D.a=2,b=3,c=5,d=4[答案] D[解析] 比较|aa+b-cc+d|.选项A中,|59-35|=245;选项B中,|58-46|=124;选项C中,|25-49|=245;选项D中,|25-59|=745.故选D.3.某卫生机构对366人进行健康体检,其中某项检测指标阳性家族史者糖尿病发病的有16人,不发病的有93人;阴性家族史者糖尿病发病的有17人,不发病的有240人,有______的把握认为糖尿病患者与遗传有关系.导学号 03960659 ( )A.99.9% B.99.5%C .99%D .97.5%[答案] D[解析] 可以先作出如下列联表(单位:人): 糖尿病患者与遗传列联表根据列联表中的数据,得到K 2的观测值为 k =366×(16×240-17×93)2109×257×33×333≈6.067>5.024.故我们有97.5%的把握认为糖尿病患者与遗传有关系.4.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:。
一、选择题1.某高校为调查学生喜欢“应用统计”课程是否与性别有关,随机抽取了选修课程的55名学生,得到数据如下表:临界值参考:(参考公式:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++)参照附表,得到的正确结论是()A.在犯错误的概率不超过0.1%的前提下,认为“喜欢“应用统计”课程与性别有关”B.在犯错误的概率不超过0.1%的前提下,认为“喜欢“应用统计”课程与性别无关”C.有99.99%以上的把握认为“喜欢“应用统计”课程与性别有关”D.有99.99%以上的把握认为“喜欢“应用统计”课程与性别无关”2.为了调查某校高二学生的身高是否与性别有关,随机调查该校64名高二学生,得到2×2列联表如表:附:K 2()()()()2()n ad bc a b c d a c b d -=++++由此得出的正确结论是( )A .在犯错误的概率不超过0.01的前提下,认为“身高与性别无关”B .在犯错误的概率不超过0.01的前提下,认为“身高与性别有关”C .有99.9%的把握认为“身高与性别无关”D .有99.9%的把握认为“身高与性别有关” 3.下列说法中错误的是( )A .先把高二年级的2000名学生编号:1到2000,再从编号为1到50的学生中随机抽取1名学生,其编号为m ,然后抽取编号为50m +,100m +,150m +,……的学生,这种抽样方法是系统抽样法.B .一组数据的方差为2s ,平均数为x ,将这组数据的每一个数都乘以2,所得的一组新数据的方差和平均数为24s ,2x .C .若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1.D .若一组数据1,a ,3的平均数是2,则该组数据的方差是23. 4.假设有两个分类变量X 和Y 的22⨯列联表为:对同一样本,以下数据能说明X 与Y 有关系的可能性最大的一组为参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.A .5,35b d ==B .15,25b d ==C .20,20b d ==D .30,10b d ==5.某科研机构为了研究中年人秃发与患心脏病是否有关,随机调查了一些中年人的情况,具体数据如表,根据表中数据则可判定秃发与患心脏病有关,那么这种判定出错的可能性为( )患心脏病情况秃发情况 患心脏病无心脏病 秃发 20 300 不秃发5450A .0.1B .0.05C .0.01D .0.996.经过对K 2的统计量的研究,得到了若干个观测值,当K 2≈6.706时,我们认为两分类变量A 、B ( )A .有67.06%的把握认为A 与B 有关系 B .有99%的把握认为A 与B 有关系C .有0.010的把握认为A 与B 有关系D .没有充分理由说明A 与B 有关系 7.对两个分类变量A ,B 的下列说法中正确的个数为( )①A 与B 无关,即A 与B 互不影响; ②A 与B 关系越密切,则K 2的值就越大; ③K 2的大小是判定A 与B 是否相关的唯一依据 A .0 B .1 C .2 D .38.通过随机询问250名不同性别的高中生在购买食物时是否看营养说明书,得到如下列联表:从调查的结果分析,认为性别和读营养说明书的关系为( ) 附:()()()()()22n ad bc K a b c d a c b d -=++++ .A .95%以上认为无关B .90%~95%认为有关C .95%~99.9%认为有关D .99.9%以上认为有关9.春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居民是否能做到“光盘”,得到如下的列联表:由此表得到的正确结论是( )A .在犯错误的概率不超过0.01的前提下,认为“该市居民能否做到‘光盘’与性别有关”B .在犯错误的概率不超过0.01的前提下,认为“该市居民能否做到‘光盘’与性别无关”C .在犯错误的概率不超过0.1的前提下,认为“该市居民能否做到‘光盘’与性别有关”D .在犯错误的概率不超过0.1的前提下,认为“该市居民能否做到‘光盘’与性别无关” 10.若在区间[-5,5]内任取一个实数a ,则使直线x +y +a =0与圆(x -1)2+(y +2)2=2有公共点的概率为( )A .5B .25C .35D .1011.如表为某公司员工工作年限x (年)与平均月薪y (千元)对照表.已知y 关于x 的线性回归方程为0.70.35y x =+,则下列结论错误的是( )A .回归直线一定过点(4.5,3.5)B .工作年限与平均月薪呈正相关C .t 的取值是3.5D .工作年限每增加1年,工资平均提高700元12.下列说法:①分类变量A 与B 的随机变量2K 越大,说明“A 与B 有关系”的可信度越大.②以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则,c k 的值分别是4e 和0.3.③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y a bx =+中,2,1,3b x y ===,则1a =.④如果两个变量x 与y 之间不存在着线性关系,那么根据它们的一组数据()(,1,2,,)i i x y i n =不能写出一个线性方程正确的个数是( ) A .1B .2C .3D .4二、填空题13.在一次独立试验中,有200人按性别和是否色弱分类如下表(单位:人)男 女 正常 73 117 色弱73你能在犯错误的概率不超过_____的前提下认为“是否色弱与性别有关”?14.登山族为了了解某山高y (km)与气温x (℃)之间的关系,随机统计了4次山高与相应的气温,并制作了对照表: 气温x (℃) 18 13 10 -1 山高y (km)24343864由表中数据,得到线性回归方程ˆy=-2x+ˆa (ˆa ∈R),由此估计出山高为72(km)处的气温为_____℃.15. 2.5PM 是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,下图是据某地某日早7点至晚8点甲、乙两个 2.5PM 监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是_________.16.某单位为了了解用电量y (度)与气温x (度)之间的关系,随机统计了某4天的用电量与当天气温,并制作了如下的对照表由表中数据,得回归直线方程ˆˆˆy bx a =+,若ˆ2b=-,则ˆa =________. 17.在西非肆虐的“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁,为了考查某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下列联表:附表:参照附表,在犯错误的概率不超过______(填百分比)的前提下,认为“小动物是否被感染与有没有服用疫苗有关”. 18.给出下列四个结论:(1)如图Rt ABC ∆中,2,90,30.AC B C =∠=︒∠=︒是斜边上的点,.以为起点任作一条射线交于点,则点落在线段上的概率是32;(2)设某大学的女生体重与身高具有线性相关关系,根据一组样本数据,用最小二乘法建立的线性回归方程为,则若该大学某女生身高增加,则其体重约增加;(3)若()f x 是定义在上的奇函数,且满足,则函数()f x 的图像关于对称;(4)已知随机变量ξ服从正态分布()()21,,40.79,N P σξ≤=则.其中正确结论的序号为________________19.关于变量,x y 的一组样本数据11()a b ,,22()a b ,,……,(),n n a b (2n ≥,12,,,n a a a ⋅⋅⋅不全相等)的散点图中,若所有样本点(,)i i a b (1,2,,i n =⋅⋅⋅)恰好都在直线21y x =-+上,则根据这组样本数据推断的变量,x y 的相关系数为_____________.20.在西非肆虐的“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁,为了考察某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下联表:感染 未感染 总计服用10 40 50参考公式:()()()()()22n ad bcKa b c d a c b d-=++++参照附表,在犯错误的概率最多不超过__________(填百分比)的前提下,可认为“该种疫苗由预防埃博拉病毒感染的效果”.三、解答题21.今年疫情期间,许多老师进行抖音直播上课某校团委为了解学生喜欢抖音上课是否与性别有关,从高三年级中随机抽取30名学生进行了问卷调查,得到如下列联表:已知在这30人中随机抽取1人抽到喜欢抖音上课的学生的概率是8 15.(1)请将上面的列联表补充完整,并据此资料分析能否有95%的把握认为喜欢抖音上课与性别有关?(2)若从这30人中的女生中随机抽取2人,记喜欢抖音上课的人数为X,求X的分布列、数学期望.附临界值表:参考公式:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.22.网购是当前人们购物的新方式,某公司为了改进营销方式,随机调查了100名市民,统计了不同年龄的人群网购的人数如下表:(1)若把年龄在2060,的人称为“网购迷”,否则称为“非网购迷”,请完成下面的22⨯列联表,并判断能否在犯错误的概率不超过1%的前提下,认为网购与性别有关?附:()()()()()2n ad bc K a b c d a c b d -=++++.两人年龄都小于20岁的概率.23.随着新冠疫情防控进入常态化,人们的生产生活逐步步入正轨.为拉动消费,某市发行2亿元消费券.为了解该消费券使用人群的年龄结构情况,该市随机抽取了50人,对是否使用过消费券的情况进行调查,结果如下表所示,其中年龄低于45岁的人数占总人数的35.99%的把握认为是否使用消费券与人的年龄有关.参考数据:)20k 0.152.0722()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++. (2)从使用消费券且年龄在[15,25)与[25,35)的人中按分层抽样方法抽取6人,再从这6人中选取2名,记抽取的两人中年龄在[15,25)的人数为X ,求X 的分布列与数学期望. 24.随着新高考改革的不断深入,高中学生生涯规划越来越受到社会的关注,下表为某高中为了调查学生成绩与选修生涯规划课程的关系,随机抽取50名学生的统计数据.(1)求a ,b ,c .(2)根据22⨯列联表,运用独立性检验的思想方法分析:能否有99%的把握认为“学生的成绩是否优秀与选修生涯规划课有关”.(3)如果从全校选修生涯规划课的学生中随机地抽取3名学生,求恰好抽到2名成绩不够优秀的学生的概率(将频率当作概率计算). 参考附表:参考公式()()()()()22n ad bc K a b a c b d c d -=++++,其中n a b c d =+++.25.2020年初,新型冠状病毒(2019-nCoV )肆虐,全民开启防疫防控.新型冠状病毒的传染主要是人与人之间进行传播,感染人群年龄大多数是40岁以上人群.该病毒进入人体后有潜伏期,潜伏期是指病原体侵入人体至最早出现临床症状的这段时间.潜伏期越长,感染到他人的可能性越高,现对200个病例的潜伏期(单位:天)进行调查,统计发现潜伏期平均数为7.1,方差为22.25.如果认为超过8天的潜伏期属于“长潜伏期”,按照年龄统计样本,得到下面的列联表:(1)是否有95%的把握认为“长期潜伏”与年龄有关;(2)假设潜伏期X 服从正态分布()2,N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s .(ⅰ)现在很多省份对入境旅客一律要求隔离14天,请用概率的知识解释其合理性;(ⅱ)以题目中的样本频率估计概率,设1000个病例中恰有()*k k ∈N 个属于“长期潜伏”的概率是()g k ,当k 为何值时,()g k 取得最大值. 附:()()()()()22n ad bc a b c d a c b d χ-=++++若()2,N ξμσ则()0.6862P μσξμσ-<<+=.()220.9544P μσξμσ-<<+=,()330.9974P μσξμσ-<<+=.26.已知某种新型病毒的传染能力很强,给人们生产和生活带来很大的影响,所以创新研发疫苗成了当务之急.为此,某药企加大了研发投入,市场上这种新型冠状病毒的疫苗A 的研发费用x (百万元)和销量y (万盒)的统计数据如下:(1)根据上表中的数据,建立y 关于x 的线性回归方程y bx a =+(用分数表示); (2)根据所求的回归方程,估计当研发费用为1600万元时,销售量为多少?参考公式:()()()1122211n niii i i i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】计算212.010.828K ≈>,对比临界值表得到答案. 【详解】()222552020105()53912.010.828()()()()3025302545n ad bc K a b c d a c b d ⨯-⨯-===≈>++++⨯⨯⨯,故在犯错误的概率不超过0.1%的前提下,认为“喜欢“应用统计”课程与性别有关”. 故选:A. 【点睛】本题考查了独立性检验,意在考查学生的计算能力和应用能力.2.D解析:D 【分析】根据22⨯列联表,计算2k ,与临界值表比较即可得出结论. 【详解】K 的观测值:K 2264(862426)34303232⨯⨯-⨯=≈⨯⨯⨯20.330;由于20.330>10.828,∴有99.9%的把握认为“身高与性别有关”,即在犯错误的概率不超过0.001的前提下,认为“身高与性别有关” 故选:D . 【点睛】本题主要考查了独立性检验的应用问题,K 2的计算,22⨯列联表,考查了运算能力,属于中档题.3.C解析:C 【分析】根据题意,对选项中的命题进行分析,判断真假性即可. 【详解】对于A ,根据抽样方法特征是数据多,抽样间隔相等,是系统抽样,所以A 正确; 对于B ,一组数据的方差为2s ,平均数为x ,将这组数据的每一个数都乘以2,所得的一组新数据的方差和平均数为24s ,2x ,所以B 正确;对于C ,两个随机变量的线性相关性越强,则相关系数||r 的值越接近于1,所以C 错误;对于D ,一组数据1、a 、3的平均数是2,所以2a =;所以该组数据的方差是222212[(12)(22)(32)]33s =⨯-+-+-=,所以D 正确.故选:C . 【点睛】本题主要考查抽样和统计,考查方差和平均数的计算,考查两个随机变量的相关性,意在考查学生对这些知识的理解掌握水平4.D解析:D 【解析】 【分析】 根据公式()()()()()22n ad bc K a b c d a c b d -=++++,分别利用4个选项中所给数据求出2K 的值,比较所求值的大小即可得结果. 【详解】选项A :22160(535155)3204010502K ⨯⨯-⨯==⨯⨯⨯,选项B :22260(5251515)152040204016K ⨯⨯-⨯==⨯⨯⨯,选项C :22360(5201520)24204025357K ⨯⨯-⨯==⨯⨯⨯,选项D :22460(5101530)96204035257K ⨯⨯-⨯==⨯⨯⨯,可得222431K K K >>22K >,所以由选项D 中的数据得到的2K 值最大,说明X 与Y 有关系的可能性最大,故选D . 【点睛】本题主考查独立性检验的基本性质,意在考查对基本概念的理解与应用,属于基础题.解答独立性检验问题时,要注意应用2 K 越大两个变量有关的可能性越大这一性质.5.C解析:C 【分析】首先列出22⨯联表,通过计算出2K 的值,然后作统计推断,得出正确的结论. 【详解】列出22⨯联表如下图所示:()277520450530015.96825750455320K ⨯⨯-⨯=≈⨯⨯⨯ 6.635>,故判断错误的概率不超过0.01,故选C .【点睛】本小题主要考查补全22⨯联表,考查2K 的计算以及独立性检验的概念,属于基础题. 独立性检验的步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式22n ad bc K a b c d a c b d -=++++()()()()(),计算2K 的观测值;(3)比较2K 与临界值的大小关系作统计推断. 6.B解析:B 【分析】根据所给的观测值,同临界值表中的临界值进行比较,根据P (K 2>3.841)=0.05,得到我们有1-0.05=95%的把握认为A 与B 有关系. 【详解】 依据下表:2 6.635K > ,2 6.6350.01P K =(>)∴我们在错误的概率不超过0.01的前提下有99%的把握认为A 与B 有关系, 故选B . 【点睛】本题考查独立性检验的应用,本题解题的关键是正确理解临界值对应的概率的意义,本题不用运算只要理解概率的意义即可.7.B解析:B 【解析】【分析】根据独立性检验的思想,对题目中的命题进行分析、判断正误即可. 【详解】对于①,对事件A 与B 无关时,说明两事件的影响较小,不是两个互不影响,①错误; 对于②,事件A 与B 关系密切,说明事件A 与B 的相关性就越强,K 2就越大,②正确; 对于③,K 2的大小不是判定事件A 与B 是否相关的唯一根据,判定两事件是否相关除了公式外;还可以用三维柱形图和二维条形图等方法来判定,③错误; 故选:B . 【点睛】本题考查了独立性检验思想的应用问题,属于基础题.K 2值是用来判断两个变量相关的把握度的,不是用来判断两个变量是否相关的.8.D解析:D 【解析】分析:由列联表中的数据,利用公式()()()()()22n ad bc K a b c d a c b d -=++++求得2K ,与邻界值比较,即可得到结论. 详解:()222509070603021.6310.828120130150100K ⨯⨯-⨯=≈>⨯⨯⨯,∴有0099.9的把握认为性别和读营养说明书的有关.点睛:独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)9.C解析:C 【解析】由2×2列联表得到a =45,b =10,c =30,d =15.则a +b =55,c +d =45,a +c =75,b +d =25,ad =675,bc =300,n =100.所以K 2的观测值k =2100675-30055457525⨯⨯⨯()≈3.030.因为2.706<3.030<3.841.选C. 点睛:根据卡方公式求K 2,再与参考数据比较,最后作出判断.10.B解析:B 【解析】∵直线0x y a ++=与圆()()22122x y -+=+有公共点,∴≤13a -≤≤,∴在区间[55]-,内任取一个实数a ,使直线0x y a ++=与圆()()22122x y -+=+有公共点的概率为312555+=+,故选B. 点睛:本题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题;利用圆心到直线的距离小于等于半径可得到直线与圆有公共点,可求出满足条件的a ,最后根据几何概型的概率公式可求出所求.11.C解析:C 【解析】由已知中的数据可得:3456 4.54x +++== , 2.54 4.51144t ty ++++==,∵数据中心点(),x y 一定在回归直线上,∴110.7 4.50.354t+=⨯+解得3t =,故C 错误;故11 3.54t+=, 回归直线一定过点(4.53.5,),ABD 正确;故选C . 12.C解析:C 【解析】①分类变量A 与B 的随机变量2K 越大,说明“A 与B 有关系”的可信度越大,正确; ②∵kx y ce =,∴两边取对数,可得lny ln =(kx ce )kx lnc lnce lnc kx =+=+, 令z lny =,可得z lnc kx =+, ∵0.34z x =+, ∴40.3lnc k ==, ∴4c e =.即②正确;③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y =a +bx 中,2,1,3b x y ===,则a =1,正确。
高中新课标选修(2-3)第三章统计案例综合测试题一、选择题1.下列属于相关现象的是( ) A.利息与利率 B.居民收入与储蓄存款 C.电视机产量与苹果产量 D.某种商品的销售额与销售价格 答案:B2.如果有95%的把握说事件A 和B 有关,那么具体算出的数据满足( ) A.2 3.841K > B.2 3.841K < C.2 6.635K > D.2 6.635K <答案:A3.如图所示,图中有5组数据,去掉组数据后(填字母代号),剩下的4组数据的线性相关性最大( ) A.E B.C C.D D.A答案:A4.为调查吸烟是否对患肺癌有影响,某肿瘤研究所随机地调查了9965人, 得到如下结果(单位:人)9 根据表中数据,你认为吸烟与患肺癌有关的把握有( ) A.90% B.95%C.99%D.100%答案:C5.调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据表:1你认为婴儿的性别与出生时间有关系的把握为( ) A.80% B.90%C.95%D.99%答案:B6.已知有线性相关关系的两个变量建立的回归直线方程为y a bx =+,方程中的回归系数b ( ) A.可以小于0 B.只能大于0 C.可以为0D.只能小于0答案:A7.每一吨铸铁成本c y (元)与铸件废品率x %建立的回归方程568c y x =+,下列说法正确的是( ) A.废品率每增加1%,成本每吨增加64元 B.废品率每增加1%,成本每吨增加8% C.废品率每增加1%,成本每吨增加8元 D.如果废品率增加1%,则每吨成本为56元 答案:C8.下列说法中正确的有:①若0r >,则x 增大时,y 也相应增大;②若0r <,则x 增大时,y 也相应增大;③若1r =,或1r =-,则x 与y 的关系完全对应(有函数关系),在散点图上各个散点均在一条直线上( ) A.①②B.②③C.①③D.①②③答案:C9.有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表:如果某天气温是2℃,则这天卖出的热饮杯数约为( ) A.100 B.143C.200D.243答案:B10.甲、乙两个班级进行一门考试,按照学生考试成绩优秀和不优秀统计成绩后,得到如下列联表:利用独立性检验估计,你认为推断“成绩与班级有关系”错误的概率介于()A.0.3~0.4 B.0.4~0.5 C.0.5~0.6 D.0.6~0.7答案:B二、填空题11.某矿山采煤的单位成本Y与采煤量x有关,其数据如下:则Y对x的回归系数.答案:0.1229-12.对于回归直线方程 4.75257y x=+,当28x=时,y的估计值为.答案:39013.在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175人秃顶,则2K=.答案:16.37314.某工厂在2005年里每月产品的总成本y(万元)与该月产量x(万件)之间有如下一组数据:0 2.55则月总成本y对月产量x的回归直线方程为.答案: 1.2150.975y x=+三、解答题15.某教育机构为了研究人具有大学专科以上学历(包括大学专科)和对待教育改革态度的关系,随机抽取了392名成年人进行调查,所得数据如下表所示:对于教育机构的研究项目,根据上述数据能得出什么结论.解:22392(3916715729)1.7819619668324K⨯⨯-⨯=≈⨯⨯⨯.因为1.78 2.706<,所以我们没有理由说人具有大学专科以上学历(包括大学专科)和对待教育改革态度有关.16.1907年一项关于16艘轮船的研究中,船的吨位区间位于192吨到3246吨,船员的人数从5人到32人,船员的人数关于船的吨位的回归分析得到如下结果:船员人数=9.1+0.006×吨位.(1)假定两艘轮船吨位相差1000吨,船员平均人数相差多少?(2)对于最小的船估计的船员数为多少?对于最大的船估计的船员数是多少?解:由题意知:(1)船员平均人数之差=0.006×吨位之差=0.006×1000=6,∴船员平均相差6人;(2)最小的船估计的船员数为:9.1+0.006×192=9.1+1.152=10.252≈10(人).最大的船估计的船员数为:9.1+0.006×3246=9.1+19.476=28.576≈28(人).17.假设一个人从出生到死亡,在每个生日都测量身高,并作出这些数据散点图,则这些点将不会落在一条直线上,但在一段时间内的增长数据有时可以用线性回归来分析.下表是一位母亲给儿子作的成长记录:11(1)作出这些数据的散点图;(2)求出这些数据的回归方程;(3)对于这个例子,你如何解释回归系数的含义?(4)用下一年的身高减去当年的身高,计算他每年身高的增长数,并计算他从3~16岁身高的年均增长数.(5)解释一下回归系数与每年平均增长的身高之间的联系.解:(1)数据的散点图如下:(2)用y表示身高,x表示年龄,则数据的回归方程为y=6.317x+71.984;(3)在该例中,回归系数6.317表示该人在一年中增加的高度; (4)每年身高的增长数略.3~16岁身高的年均增长数约为6.323cm ; (5)回归系数与每年平均增长的身高之间近似相等.18.某个服装店经营某种服装,在某周内获纯利y (元),与该周每天销售这种服装件数x 之间的一组数据关系见表:已知721280ii x ==∑,2145309ii y ==∑,13487i i i x y ==∑.(1)求x y ,; (2)画出散点图;(3)判断纯利y 与每天销售件数x 之间是否线性相关,如果线性相关,求出回归方程. 解:(1)345678967x ++++++==,6669738189909179.867y ++++++=≈;(2)略;(3)由散点图知,y 与x 有线性相关关系, 设回归直线方程:y bx a =+,5593487761337 4.7528073628b -⨯⨯===-⨯,79.866 4.7551.36a =-⨯=.∴回归直线方程 4.7551.36y x =+.。
课后巩固
1.在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得“吸烟与患肺癌有关”的结论,并有99%以上的把握认为这个结论是成立的,下列说法中正确的( ) A.100个吸烟者中至少有99个患有肺癌
B.1个人吸烟,那么这个人一定患有肺癌
C.在100个吸烟者中一定有患肺癌的人
D.在100个吸烟者中可能一个患肺癌的人也没有
答案 D
2.经过对K2的统计量的研究,得到了若干个观测值,当K2<2.706时,我们认为两分类变量A、B( )
A.有95%的把握认为A与B有关系
B.有99%的把握认为A与B有关系
C.没有充分理由说明A与B有关系
D.不能确定
答案 C
3.若两个分类变量X和Y的2×2列联表为:
则X与Y
答案99.9%
解析K2≈18.8>10.828.
故有99.9%的把握认为X与Y有关系.
4.为了探究电离辐射的剂量与人体的受损程度是否有关,用两种不同剂量的电离辐射照射小白鼠.在照射后14天内的结果如下表所示:
答案假设电离辐射的剂量与人体受损程度无关
5.在研究某种药物对“H7N9”病毒的治疗效果时,进行动物试验,得到以下数据,对150只动物服用药物,其中132只动物存活,18只动物死亡,对照组150只动物进行常规治疗,其中114只动物存活,36只动物死亡.
(1)根据以上数据建立一个2×2列联表.
(2)试问该种药物以治疗“H7N9”病毒是否有效?解析(1)2×2列联表如下:
(2)由(1)
K2=(132×36-114×18)2
246×54×150×150
≈7.317>6.635.
故我们有99%的把握认为该种药物对“H7N9”病毒有治疗效果.。