(完整word版)小学四年级奥数二元一次方程组练习
- 格式:doc
- 大小:86.02 KB
- 文档页数:4
二元一次方程组解法练习题精选一.解答题(共16小题)1.求适合的x,y的值.2.解下列方程组(1)(2)(3)(4).3方程组:4.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?7.解方程组:(1);(2).8.解方程组:9.解方程组:10.解下列方程组:(1)(2)11.解方程组:(1)(2)12.解二元一次方程组:(1);(2)13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.14.15.解下列方程组:(1)(2).16.解下列方程组:(1)(2)二元一次方程组解法练习题精选(含答案)参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.,得到一组新的方程,然后在用加减消元法消,,x=(1)(2)(3)(4).故原方程组的解为故原方程组的解为)原方程组可化为,.所以原方程组的解为,,代入×﹣.所以原方程组的解为3.解方程组:解:原方程组可化为所以方程组的解为4.解方程组:)原方程组化为,.所以原方程组的解为5.解方程组:,.所以方程组的解为6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.的二元一次方程组)依题意得:k=b=x+y=x+(1);(2).)原方程组可化为,;)原方程可化为.8.解方程组:解:原方程组可化为则原方程组的解为9.解方程组:解:原方程变形为:..10.解下列方程组:(1)(2))﹣=所以原方程组的解为)原方程组整理为,所以原方程组的解为(1)(2))原方程组可化简为∴原方程组可化为,∴原方程组的解为(1);(2).;)此方程组通过化简可得:,.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?)把代入方程组.代入方程组.∴方程组为则原方程组的解是14.(,∴原方程组的解为(1);(2).)化简整理为故原方程组的解为)化简整理为故原方程组的解为16.解下列方程组:(1)(2)∴原方程组的解为)原方程组可化为,∴原方程组的解为。
《二元一次方程组》提升练习(一)填空题(每空2分,共28分):1.已知(a -2)x -by |a |-1=5是关于x 、y 的二元一次方程,则a =______,b =_____.2.若|2a +3b -7|与(2a +5b -1)2互为相反数,则a =______,b =______. 3.二元一次方程3x +2y =15的正整数解为_______________. 4.2x -3y =4x -y =5的解为_______________.5.已知⎩⎨⎧==12y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2的值为_________. 6.若满足方程组⎩⎨⎧=-+=-6)12(423y k kx y x 的x 、y 的值相等,则k =_______.7.已知2a =3b =4c ,且a +b -c =121,则a =_______,b =_______,c =_______.8.解方程组⎪⎩⎪⎨⎧=+=+=+634323x z z y y x ,得x =______,y =______,z =______.(二)选择题(每小题2分,共16分):9.若方程组⎩⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为…………………( )(A)8 (B )9 (C)10 (D )1110.若⎩⎨⎧-==20y x ,⎪⎩⎪⎨⎧==311y x 都是关于x 、y 的方程|a |x +by =6的解,则a +b 的值为( )(A )4 (B )-10 (C )4或-10 (D )-4或1011.关于x ,y 的二元一次方程ax +b =y 的两个解是⎩⎨⎧-==11y x ,⎩⎨⎧==12y x ,则这个二元一次方程是……………………( )(A )y =2x +3 (B )y =2x -3 (C)y =2x +1 (D )y =-2x +1 12.由方程组⎩⎨⎧=+-=+-0432032z y x z y x 可得,x ∶y ∶z 是………………………………( )(A )1∶2∶1 (B )1∶(-2)∶(-1) (C )1∶(-2)∶1 (D )1∶2∶(-1) 13.如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+1cy bx by ax 的解,那么,下列各式中成立的是…( )(A )a +4c =2 (B )4a +c =2 (C )a +4c +2=0 (D )4a +c +2=0 14.关于x 、y 的二元一次方程组⎩⎨⎧=+=-2312y mx y x 没有解时,m 的值是…………( )(A )-6 (B )-6 (C )1 (D )015.若方程组⎪⎩⎪⎨⎧=+=+52243y bax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,则a 、b 的值为( ) (A )2,3 (B )3,2 (C )2,-1 (D )-1,216.若2a +5b +4z =0,3a +b -7z =0,则a +b -c 的值是……………………( )(A )0 (B )1 (C)2 (D )-1(三)解方程组(每小题4分,共16分):17.⎪⎪⎩⎪⎪⎨⎧=+=-+.022325232y x y y x18.⎪⎩⎪⎨⎧⨯=++=-8001005.8%60%10)503(5)150(2y x y x 19.⎪⎩⎪⎨⎧=++-=+--.6)(2)(3152y x y x yx y x 20.⎪⎩⎪⎨⎧=---=+-=+-.441454y x z x z y z y x (四)解答题(每小题5分,共20分):21.已知⎩⎨⎧=+-=-+0254034z y x z y x ,xyz ≠0,求222223y x z xy x +++的值. 22.甲、乙两人解方程组⎩⎨⎧=+-=-514by ax by x ,甲因看错a ,解得⎩⎨⎧==32y x ,乙将其中一个方程的b 写成了它的相反数,解得⎩⎨⎧-=-=21y x ,求a 、b 的值.23.已知满足方程2 x -3 y =m -4与3 x +4 y =m +5的x ,y 也满足方程2x +3y =3m -8,求m 的值.24.当x =1,3,-2时,代数式ax 2+bx +c 的值分别为2,0,20,求:(1)a 、b 、c 的值;(2)当x =-2时,ax 2+bx +c 的值.(五)列方程组解应用题(第1题6分,其余各7分,共20分):25.有一个三位整数,将左边的数字移到右边,则比原来的数小45;又知百位上的数的9倍比由十位上的数与个位上的数组成的两位数小3.求原来的数.26.某人买了4 000元融资券,一种是一年期,年利率为9%,另一种是两年期,年利率是12%,分别在一年和两年到期时取出,共得利息780元.两种融资券各买了多少?27.汽车从A 地开往B 地,如果在原计划时间的前一半时间每小时驶40千米,而后一半时间由每小时行驶50千米,可按时到达.但汽车以每小时40千米的速度行至离AB 中点还差40千米时发生故障,停车半小时后,又以每小时55千米的速度前进,结果仍按时到达B 地.求AB 两地的距离及原计划行驶的时间.《二元一次方程组》提升练习(一)填空题(每空2分,共28分):1.已知(a -2)x -by |a |-1=5是关于x 、y 的二元一次方程,则a =______,b =_____. 【提示】要满足“二元”“一次"两个条件,必须a -2≠0,且b ≠0,及| a |-1=1. 【答案】a =-2,b ≠0.2.若|2a +3b -7|与(2a +5b -1)2互为相反数,则a =______,b =______.【提示】由“互为相反数”,得|2a +3 b -7|+(2a +5b -1)2=0,再解方程组⎩⎨⎧=-+=-+01520732b a b a 【答案】a =8,b =-3.3.二元一次方程3x +2y =15的正整数解为_______________. 【提示】将方程化为y =2315x-,由y >0、x >0易知x 比0大但比5小,且x 、y 均为整数. 【答案】⎩⎨⎧==61y x ,⎩⎨⎧==.33y x 4.2x -3y =4x -y =5的解为_______________.【提示】解方程组⎩⎨⎧=-=-54532y x y x .【答案】⎩⎨⎧-==.11y x 5.已知⎩⎨⎧==12y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2的值为_________.【提示】把⎩⎨⎧==12y x -代入方程组,求m ,n 的值.【答案】-438.6.若满足方程组⎩⎨⎧=-+=-6)12(423y k kx y x 的x 、y 的值相等,则k =_______.【提示】作y =x 的代换,先求出x 、y 的值.【答案】k =65.7.已知2a=3b =4c ,且a +b -c =121,则a =_______,b =_______,c =_______. 【提示】即作方程组⎪⎪⎩⎪⎪⎨⎧=-+==121432c b a c b a ,故可设a =2 k ,b =3 k ,c = 4 k ,代入另一个方程求k的值.【答案】a =61,b =41,c =31.【点评】设“比例系数"是解有关数量比的问题的常用方法.8.解方程组⎪⎩⎪⎨⎧=+=+=+634323x z z y y x ,得x =______,y =______,z =______.【提示】根据方程组的特征,可将三个方程左、右两边分别相加,得2 x +3 y +z =6,再与3 y +z =4相减,可得x .【答案】x =1,y =31,z =3.(二)选择题(每小题2分,共16分):9.若方程组⎩⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为…………………( )(A )8 (B )9 (C )10 (D)11 【提示】将y =-x 代入方程2 x -y =3,得x =1,y =-1,再代入含字母k 的方程求解.【答案】D .10.若⎩⎨⎧-==20y x ,⎪⎩⎪⎨⎧==311y x 都是关于x 、y 的方程|a |x +by =6的解,则a +b 的值为( )(A )4 (B )-10 (C )4或-10 (D)-4或10【提示】将x 、y 对应值代入,得关于| a |,b 的方程组⎪⎩⎪⎨⎧=+=-.631||62b a b 【答案】C . 【点评】解有关绝对值的方程,要分类讨论.11.关于x ,y 的二元一次方程ax +b =y 的两个解是⎩⎨⎧-==11y x ,⎩⎨⎧==12y x ,则这个二元一次方程是……………………( )(A)y =2x +3 (B )y =2x -3 (C)y =2x +1 (D )y =-2x +1【提示】将x 、y 的两对数值代入ax +b =y ,求得关于a 、b 的方程组,求得a 、b 再代入已知方程.【答案】B .【点评】通过列方程组求待定字母系数是常用的解题方法. 12.由方程组⎩⎨⎧=+-=+-0432032z y x z y x 可得,x ∶y ∶z 是………………………………( )(A)1∶2∶1 (B)1∶(-2)∶(-1)(C )1∶(-2)∶1 (D )1∶2∶(-1)【提示】解方程组时,可用一个未知数的代数式表示另外两个未知数,再根据比例的性质求解.【答案】A .【点评】当方程组未知数的个数多于方程的个数时,把其中一个未知数看作已知常数来解方程组,是可行的方法.13.如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+10cy bx by ax 的解,那么,下列各式中成立的是…( )(A)a +4c =2 (B)4a +c =2 (C)a +4c +2=0 (D )4a +c +2=0【提示】将⎩⎨⎧=-=21y x 代入方程组,消去b ,可得关于a 、c 的等式.【答案】C .14.关于x 、y 的二元一次方程组⎩⎨⎧=+=-2312y mx y x 没有解时,m 的值是…………( )(A )-6 (B )-6 (C )1 (D )0【提示】只要满足m ∶2=3∶(-1)的条件,求m 的值.【答案】B .【点评】对于方程组⎩⎨⎧=+=+222111c y b x a c y b x a ,仅当21a a =21b b ≠21c c时方程组无解.15.若方程组⎪⎩⎪⎨⎧=+=+52243y bax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,则a 、b 的值为( ) (A )2,3 (B)3,2 (C )2,-1 (D )-1,2【提示】由题意,有“相同的解”,可得方程组⎩⎨⎧=-=+52243y x y x ,解之并代入方程组⎪⎪⎩⎪⎪⎨⎧=-=-4352by x a y b ax ,求a 、b . 【答案】B . 【点评】对方程组“解”的含义的正确理解是建立可解方程组的关键.16.若2a +5b +4z =0,3a +b -7z =0,则a +b -c 的值是……………………( )(A )0 (B)1 (C)2 (D)-1【提示】把c 看作已知数,解方程组⎩⎨⎧=-+=++0730452c b a c b a 用关于c 的代数式表示a 、b ,再代入a+b -c .【答案】A .【点评】本题还可采用整体代换(即把a +b -c 看作一个整体)的求解方法. (三)解方程组(每小题4分,共16分):17.⎪⎪⎩⎪⎪⎨⎧=+=-+.022325232y x y y x【提示】将方程组化为一般形式,再求解.【答案】⎪⎩⎪⎨⎧-==.232y x18.⎪⎩⎪⎨⎧⨯=++=-8001005.8%60%10)503(5)150(2y x y x 【提示】将方程组化为整系数方程的一般形式,再用加减法消元.【答案】⎩⎨⎧==.30500y x19.⎪⎩⎪⎨⎧=++-=+--.6)(2)(3152y x y x yx y x【提示】用换元法,设x -y =A ,x +y =B ,解关于A 、B 的方程组⎪⎩⎪⎨⎧=+=-623152B A B A ,进而求得x ,y .【答案】⎩⎨⎧-==.11y x 20.⎪⎩⎪⎨⎧=---=+-=+-.441454y x z x z y z y x 【提示】 将三个方程左,右两边分别相加,得4x -4y +4z =8,故 x -y +z =2 ④,把④分别与第一、二个方程联立,然后用加、减消元法即可求得x 、z 的值.【答案】⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==.15451z y x (四)解答题(每小题5分,共20分):21.已知⎩⎨⎧=+-=-+0254034z y x z y x ,xyz ≠0,求222223y x z xy x +++的值. 【提示】把z 看作已知数,用z 的代数式表示x 、y ,可求得x ∶y ∶z =1∶2∶3.设x =k ,y =2 k ,z =3 k ,代入代数式. 【答案】516. 【点评】本题考查了方程组解法的灵活运用及比例的性质.若采用分别消去三个元可得方程21 y -14 z =0,21 x -7 z =0,14 x -7 y =0,仍不能由此求得x 、y 、z 的确定解,因为这三个方程不是互相独立的. 22.甲、乙两人解方程组⎩⎨⎧=+-=-514by ax by x ,甲因看错a ,解得⎩⎨⎧==32y x ,乙将其中一个方程的b 写成了它的相反数,解得⎩⎨⎧-=-=21y x ,求a 、b 的值.【提示】可从题意的反面入手,即没看错什么入手.如甲看错a ,即没看错b ,所求得的解应满足4 x -by =-1;而乙写错了一个方程中的b ,则要分析才能确定,经判断是将第二方程中的b 写错.【答案】a =1,b =3.23.已知满足方程2 x -3 y =m -4与3 x +4 y =m +5的x ,y 也满足方程2x +3y =3m -8,求m 的值. 【提示】由题意可先解方程组⎩⎨⎧-=+-=-8332432m y x m y x 用m 的代数式表示x ,y再代入3 x +4 y =m +5.【答案】m =5.24.当x =1,3,-2时,代数式ax 2+bx +c 的值分别为2,0,20,求:(1)a 、b 、c 的值;(2)当x =-2时,ax 2+bx +c 的值.【提示】由题得关于a 、b 、c 的三元一次方程组,求出a 、b 、c 再代入这个代数式. 【答案】a =1,b =-5,c =6;20.【点评】本例若不设第一问,原则上也应在求出a 、b 、c 后先写出这个代数式,再利用它求值.用待定系数法求a 、b 、c ,是解这类问题常用的方法.(五)列方程组解应用题(第1题6分,其余各7分,共20分):25.有一个三位整数,将左边的数字移到右边,则比原来的数小45;又知百位上的数的9倍比由十位上的数与个位上的数组成的两位数小3.求原来的数.【提示】设百位上的数为x ,由十位上的数与个位上的数组成的两位数为y ,根据题意,得⎩⎨⎧=++=-+.y x xy y x 391045100 【答案】x =4,y =39,三位数是439.【点评】本例分别设十位上的数和个位上的数为不同的未知数,无论从列方程组还是解方程组都更加简捷易行. 26.某人买了4 000元融资券,一种是一年期,年利率为9%,另一种是两年期,年利率是12%,分别在一年和两年到期时取出,共得利息780元.两种融资券各买了多少? 【提示】若设一年期、二年期的融资券各买x 元,y 元,由题意,得⎪⎩⎪⎨⎧=⋅+=+78010012210090004y x y x 【答案】x =1 200,y =2 800.【点评】本题列方程组时,易将二年期的融资券的利息误认为是10012y 元,应弄清题设给出的是年利率,故几年到期的利息应该乘几.27.汽车从A 地开往B 地,如果在原计划时间的前一半时间每小时驶40千米,而后一半时间由每小时行驶50千米,可按时到达.但汽车以每小时40千米的速度行至离AB 中点还差40千米时发生故障,停车半小时后,又以每小时55千米的速度前进,结果仍按时到达B 地.求AB 两地的距离及原计划行驶的时间.【提示】设原计划用x 小时,AB 两地距离的一半为y 千米, 根据题意,得⎪⎪⎩⎪⎪⎨⎧-=++-=⋅+⋅21554040402250240x y y y x x 【答案】x =8,2y =360.【点评】 与本例中设AB 两地距离的一半为y 千米一样,也可设原计划的一半时间为x 小时.恰当地设未知数,可以使列方程组和解方程组都更加简便.。
《解⼆元⼀次⽅程组》教案(例题+练习+答案)word版本⼆元⼀次⽅程组的解法1.⼆元⼀次⽅程的概念:含有两个未知数,且含未知数的项的次数为1的整式⽅程叫做⼆元⼀次⽅程。
例1.下列⽅程组中,哪些是⼆元⼀次⽅程组_______________判断⼀个⽅程是为⼆元⼀次⽅程的三个要素:①含有两个未知数②未知数的次数为1 ③整式⽅程想⼀想:⼆元⼀次⽅程的解与⼀元⼀次⽅程的解有什么区别?①⼆元⼀次⽅程的解是成对出现的;②⼆元⼀次⽅程的解有⽆数个;③⼀元⼀次⽅程的解只有⼀个。
例2 若⽅程是⼆元⼀次⽅程,求m 、n 的值.分析:变式:⽅程是⼆元⼀次⽅程,试求a 的值.注意:①含未知项的次数为1;②含有未知项的系数不能为02.⼆元⼀次⽅程组的解⼆元⼀次⽅程组的解法,即解⼆元⼀次⽅程的⽅法;今天我们就⼀起探究⼀下有什么⽅法能解⼆元⼀次⽅程组。
练⼀练:1、若 =-??=?x 1y 2是关于 x 、y 的⽅程 5x +ay = 1 的解,则a=().2、⽅程组 +=??-=?y z 180y z ()的解是 =??=y 100z ().3、若关于x 、y 的⼆元⼀次⽅程组––=??+=?4x 3y 1kx k 1y 3()的解x 与 y 的值相等,则k =().3、⽤⼀个未知数表⽰另⼀个未知数想⼀想:(1)24x y +=,所以________x =;2(1)3x y y z +=??+=?,5(2)6x y xy +=??=?,7(3)6a b b -=??=?,2(4)13x y x y +=--=??,52(5)122y x x y=-??+=,25(6)312321m n -=??-=?1(2)2a x a y -+-=(2)345x y +=,所以________x =,________y =; (3) 2y x ,所以x =,________y =.总结出⽤⼀个未知数表⽰另⼀个未知数的⽅法步骤:①被表⽰的未知数放在等式的左边,其他的放在等式的右边.②把被表⽰的未知数的系数化为1.4.⼆元⼀次⽅程的解法(1)⽤代⼊法解⼆元⼀次⽅程组将⽅程组中的⼀个⽅程的某个未知数⽤含有另⼀个未知数的代数式表⽰,并代⼊到另⼀个⽅程中,消去⼀个未知数,得到⼀元⼀次⽅程,最后求得⽅程组的解,这种解⽅程组的⽅法叫做代⼊消元法,简称代⼊法. 代⼊消元法解⽅程组的步骤是:①⽤⼀个未知数表⽰另⼀个未知数;②把新的⽅程代⼊另⼀个⽅程,得到⼀元⼀次⽅程(代⼊消元);③解⼀元⼀次⽅程,求出⼀个未知数的值;④把这个未知数的值代⼊⼀次式,求出另⼀个未知数的值;⑤检验,并写出⽅程组的解.例3:⽅程组92x y y x ……①………②ì+=?í= 解:把②代⼊①得,29x x +=3x 9= 3x =把x=3代⼊②,得6y =所以,原⽅程组的解是36x y ì=??í= 总结:解⽅程组的⽅法的图解:练⼀练:1、如果31014x y +=,那么x =________;2、解⽅程组35,23 1.x y x y ì-=??í?-=??3、解⽅程组31014101532x y x y ì+=??í?+=??3、以?-=-=5.05.1y x 为解的⽅程组是()A.=-+=--0530=++=+-05301y x y x C. ??-=+=-y x y x 531D. ??=+=-531y x y x 4、⽤代⼊消元法解下列⼆元⼀次⽅程组:(1)23321y x x y =-??+=? (2)??-=-=+42357y x y x (3) 233418x yx y ?=?+=?(2)加减消元法:两个⼆元⼀次⽅程中同⼀未知数的系数相反或相等时,将两个⽅程的两边分别相加或相减,就能消去这个未知数,得到⼀个⼀元⼀次⽅程,这种⽅法叫做加减消元法,简称加减法。
二元一次方程组练习题16 小题)一.解答题(共x2y12 1.解下列方程组(9)(10)32x21y1(1)(2)325x11a3)((a为已知数)(4)2 y 6a4 x4 y2.求适合的x,y的值..()(5)6.x3.已知关于,y 的二元一次方程和y=kx+b 的解有(k 1)求,b 的值.(y 的值.时,)当2 x=2(y=3 x )当3为何值时,?x)1) x( y y(1 2)()78(2x y 1) x(x 0..1.解下列方程组(1)(2);(9)(10);)43);((,而得解为时,由于粗心,甲看错了方程组中的2.在解方程组a,乙看错).(6(5)了方程组中的b,而得解为.(1)甲把a 看成了什么,乙把b 看成了什么?(2)求出原方程组的正确解.)7()8(版本word..故原方程组的解为.二元一次方程组解法练习题参精考选答案与试题解析(2)①×3﹣②×2一.解答题(共16 小题)得,﹣13y=﹣39,解得,y=3,的值.x,y 1.求适合的把y=3 代入①得,2x﹣3×3=﹣5,解得x=2.解二元一次方程组.考点:.故原方程组的解为分析:,x,然后在用加减消元法消去未知数先把两方程变形(去分母),得到一组新的方程)原方程组可化为(的值.求出y 的值,继而求出x 3,解答:,6x=36+①②得,,解:由题意得:,x=6,4①﹣②得,8y=﹣),3﹣由(1)×2 得:3x 2y=2(.所以原方程组的解为4),y=﹣6x+y=3 2由()×3 得:(.(4y=4 5),﹣3()×2得:6x)﹣((5 4,﹣)得:y=,)原方程组可化为:(4,)得:3 x=把y 的值代入(,②得,x=①×2+×3x=代入②得,把.∴,﹣4y=6.﹣y=本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.点评:.解下列方程组2.所以原方程组的解为.()1(2)3)(4()利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:点评:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知时,宜用代入法.解二元一次方程组.:考点1 数的系数为)用代入消元法或加减消元法均可;分析:2 1()()应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.3(4)(.解方程组:3)①﹣②得,﹣解:(解答:1,2﹣x=,解得x=2把,2+y=1代入①得,x=2解二元一次方程组.﹣y=解得考.1版本word..考点:解二元一次方程组.点:专题:计算题;换元法.专计算题.分析:本题用加减消元法即可或运用换元法求解.题:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.分解答:解:,析:解,答:解:原方程组可化为①﹣②,得s+t=4 ,①+②,得s﹣t=6 ,,得﹣②×4 3①×即,,7x=42.解得x=6解得..把x=6 代入①,得y=4所以方程组的解为..所以方程组的解为点评:点;此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.评:6.已知关于x,y 的二元一次方程y=kx+b 的解有和..解方程组:4的值.1)求k,b ((2)当x=2 时,y 的值.(3)当x 为何值时,y=3?解二元一次方程组.:考点考点::专题计算题.解二元一次方程组.专题:计算题.分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.分析:解答:(1)将两组x,yk、b 的二元一次方程组,再运用加减消元的值代入方程得出关于)原方程组化为1解:(,法求出k、b 的值.(2)将(1)中的k、b 代入,再把x=2 代入化简即可得出y 的值.,+①②得:6x=18(3)将(1)中的k、b 和y=3 代入方程化简即可得出x 的值..x=3∴解答:解:.代入①得:y=(1)依题意得:①﹣②得:2=4k,.所以原方程组的解为所以k=,要注意:两个二元一次方程中同一未知数的系数相反或相等时,点评:把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.所以b=..解方程组:5,2(y= )由x+版本word..点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入y= .把x=2 代入,得消元法.根据未知数系数的特点,选择合适的方法.)由y= x+(3.y=3 代入,得x=1把8.解方程组:可得出要求的数.本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,点评:.解方程组:7考点:解二元一次方程组.专题:计算题.;)(1分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,.2()①+②,得10x=30,x=3,解二元一次方程组.考点:代入①,得15+3y=15,y=0.)先去括号,再转化为整式方2)先去分母再用加减法,(1(根据各方程组的特点选用相应的方法:分析:程解答.则原方程组的解为.解答:,)原方程组可化为1解:(点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.﹣②得:①×2,y=﹣1代入①得:﹣将y= 1 9.解方程组:.x=1;∴方程组的解为考点:解二元一次方程组.专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.,2()原方程可化为解答:解:原方程变形为:,,即两个方程相加,得4x=12,②得:①×2+x=3.,17x=51把x=3 代入第一个方程,得,x=34y=11,代入将x=3 ﹣x4y=3 中得:y=..y=0.∴方程组的解为版本word..化和运用..解之得11.解方程组:消方程中含有分母的要先化去分母,再对方程进行化简、点评:本题考查的是二元一次方程组的解法,元,即可解出此类题目.(1).解下列方程组:101()(2)2)(考点:解二元一次方程组.专题:计算题;换元法.分析:方程组(1)需要先化简,再根据方程组的特点选择解法;方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解二元一次方程组.:考点解答:计算题.专题:解:(1)原方程组可化简为,此题根据观察可知:分析:)运用代入法,把①代入②,可得出(1的值;y x,)先将方程组化为整系数方程组,再利用加减消元法求解.(2解答:解得.,1)解:(由①,得③,x=4+y代入②,得,(44+y)+2y=﹣1(2)设x+y=a,x﹣y=b,,﹣y=所以∴原方程组可化为,x=4.﹣= 代入③,得﹣把y= 解得,所以原方程组的解为.∴∴原方程组的解为.)原方程组整理为2(,点评:此题考查了学生的计算能力,解题时要细心.,3 2③×﹣④×y= ,得﹣2412 24 ﹣y=把x=60代入④,得,.解二元一次方程组:(1);.所以原方程组的解为此题考查的是对二元一次方程组的解法的运用和理解,点评:学生可以通过题目的训练达到对知识的强版本word...)(2得,解得:.解二元一次方程组.考点:计算题.:专题把代入方程组,)运用加减消元的方法,可求出(1分析:的值;x、y )先将方程组化简,然后运用加减消元的方法可求出(2的值.、y x﹣②,得解答:解:(1)将①×2得,,15x=30,x=2解得:.代入第一个方程,得把x=2.y=1∴甲把 a 看成﹣5;乙把 b 看成6;;则方程组的解是(2)∵正确的a 是﹣2,b 是8,∴方程组为,,(2)此方程组通过化简可得:解得:x=15,y=8.,①﹣②得:y=7则原方程组的解是.代入第一个方程,得把y=7 .x=5点评:此题难度较大,需同学们仔细阅读,弄清题意再解答..则方程组的解是此题考查的是对二元一次方程组的解法的运用和理解,点评:学生可以通过题目的训练达到对知识的强14.化和运用.,而得解为.在解方程组13a时,由于粗心,甲看错了方程组中的,乙看错了方考点:解二元一次方程组.分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得.程组中的,而得解为b看成了什么,乙把 a 1()甲把 b 看成了什么?,)求出原方程组的正确解.(2由(1)+(2),并解得解二元一次方程组.:考点x=(),3计算题.专题:)把甲乙求得方程组的解分别代入原方程组即可;分析:(1把(3)代入(1),解得)把甲乙所求的解分别代入方程②和①,求出正确的2(,然后用适当的方法解方程组.a、b y=解答:,)把1解:(代入方程组版本word..16.解下列方程组:(1)(2).∴原方程组的解为考点:解二元一次方程组.用加减法解二元一次方程组的一般步骤:点评:分析:观察方程组中各方程的特点,用相应的方法求解..方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去1解答:解:(1)①×2﹣②得:x=1,将x=1 代入①得:乘方程的两边,使一个未知数的系数互为相反数或相等;.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;22+y=4,.解这个一元一次方程;3y=2..将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组4∴原方程组的解为;的解..解下列方程组:15(2)原方程组可化为,;(1)①×2﹣②得:﹣y=﹣3,.)(2y=3.将y=3 代入①得:x=﹣2.解二元一次方程组.考点:将两个方程先化简,再选择正确的方法进行消元.分析:解答:∴原方程组的解为.,1解:()化简整理为③,3①×,得3x+3y=1500点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解..x=350②﹣③,得,把350+y=500代入①,得x=350∴y=150..故原方程组的解为,)化简整理为(2③,10x+15y=75,得5①×④,14y=46 10x,得2②×﹣,29y=29 ③﹣④,得y∴.=1,把1=15×2x+3y=1 代入①,得x=6∴..故原方程组的解为方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.点评:版本word。
二元一次方程组解法一、消元法1)代入消元法用代入消元法的一般步骤是:1.选一个系数比较简单的方程进行变形,变成 y = ax +b 或 x = ay + b 的形式;2.将y = ax + b 或 x = ay + b代入另一个方程,消去一个未知数,从而将另一个方程变成一元一次方程;3.解这个一元一次方程,求出 x 或 y 值;4.将已求出的 x 或 y 值代入方程组中的任意一个方程(y = ax +b 或 x = ay + b),求出另一个未知数;5。
把求得的两个未知数的值用大括号联立起来,这就是二元一次方程的解。
例:解方程组:x+y=5 ①2x+3y=13 ②解:由①得x=5-y ③把③代入②,得2(5-y)+3y=13得 y = 3把y= 3代入③,得x=5-3得x = 2∴ x = 2y = 3 为方程组的解我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法,简称代入法。
2)加减消元法①在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可直接相减(或相加),消去一个未知数;②在二元一次方程组中,若不存在①中的情况,可选择一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数,得到一元一次方程;③解这个一元一次方程;④将求出的一元一次方程的解代入原方程组系数比较简单的方程,求另一个未知数的值;⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程组的解。
用加减消元法解方程组的的第一种方法例:解方程组:x+y=9①x-y=5②解:①+②得: 2x=14∴x=7把x=7代入①得: 7+y=9∴y=2∴方程组的解是:x=7y=2用加减消元法解方程组的的第二种方法例:解方程组:x+y=9①x-y=5②解:①+②得: 2x=14∴x=7①-②得: 2y=4∴y=2∴方程组的解是:x=7y=2利用等式的性质使方程组中两个方程中的某一个未知数前的系数的绝对值相等,然后把两个方程相加(或相减),以消去这个未知数,使方程只含有一个未知数而得以求解,再代入方程组的其中一个方程。
二元一次方程组练习题100道(卷一)(范围:代数:二元一次方程组)一、判断1、是方程组的解…………()2、方程组的解是方程3x—2y=13的一个解()3、由两个二元一次方程组成方程组一定是二元一次方程组()4、方程组,可以转化为()5、若(a2-1)x2+(a—1)x+(2a-3)y=0是二元一次方程,则a的值为±1()6、若x+y=0,且|x|=2,则y的值为2 …………()7、方程组有唯一的解,那么m的值为m≠-5 …………()8、方程组有无数多个解…………()9、x+y=5且x,y的绝对值都小于5的整数解共有5组…………( )10、方程组的解是方程x+5y=3的解,反过来方程x+5y=3的解也是方程组的解………()11、若|a+5|=5,a+b=1则………()12、在方程4x—3y=7里,如果用x的代数式表示y,则( )二、选择:13、任何一个二元一次方程都有()(A)一个解; (B)两个解;(C)三个解;(D)无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有()(A)5个 (B)6个(C)7个(D)8个15、如果的解都是正数,那么a的取值范围是()(A)a〈2; (B); (C); (D);16、关于x、y的方程组的解是方程3x+2y=34的一组解,那么m的值是( )(A)2;(B)-1;(C)1;(D)—2;17、在下列方程中,只有一个解的是( )(A)(B)(C)(D)18、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( )(A)15x-3y=6 (B)4x-y=7 (C)10x+2y=4 (D)20x—4y=319、下列方程组中,是二元一次方程组的是( )(A)(B)(C)(D)20、已知方程组有无数多个解,则a、b的值等于( )(A)a=—3,b=-14 (B)a=3,b=-7(C)a=-1,b=9 (D)a=—3,b=1421、若5x—6y=0,且xy≠0,则的值等于( )(A)(B)(C)1 (D)-122、若x、y均为非负数,则方程6x=—7y的解的情况是()(A)无解(B)有唯一一个解(C)有无数多个解(D)不能确定23、若|3x+y+5|+|2x—2y-2|=0,则2x2-3xy的值是( )(A)14 (B)-4 (C)—12 (D)1224、已知与都是方程y=kx+b的解,则k与b的值为()(A),b=—4 (B),b=4(C),b=4 (D),b=-4三、填空:25、在方程3x+4y=16中,当x=3时,y=________,当y=—2时,x=_______若x、y都是正整数,那么这个方程的解为___________;26、方程2x+3y=10中,当3x—6=0时,y=_________;27、如果0.4x-0.5y=1。
二元一次方程组典型例题【例1】 已知方程组的解x ,y 满足方程5x —y=3,求k 的值.【思考与分析】 本题有三种解法,前两种为一般解法,后一种为巧解法.(1) 由已知方程组消去k ,得x 与y 的关系式,再与5x-y=3联立组成方程组求出x ,y 的值,最后将x ,y 的值代入方程组中任一方程即可求出k 的值.(2) 把k 当做已知数,解方程组,再根据5x-y=3建立关于k 的方程,便可求出k 的值。
(3) 将方程组中的两个方程相加,得5x —y=2k+11,又知5x-y=3,所以整体代入即可求出k 的值.把代入①,得,解得 k=-4。
解法二: ①×3-②×2,得 17y=k —22,解法三: ①+②,得 5x —y=2k+11. 又由5x-y=3,得 2k+11=3,解得 k=—4。
【小结】 解题时我们要以一般解法为主,特殊方法虽然巧妙,但是不容易想到,有思考巧妙解法的时间,可能这道题我们已经用一般解法解了一半了,当然,巧妙解法很容易想到的话,那就应该用巧妙解二元一次方程组能力提升讲义知识提要1. 二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解的情况有以下三种:① 当212121c c b b a a ==时,方程组有无数多解.(∵两个方程等效) ② 当212121c c b b a a ≠=时,方程组无解。
(∵两个方程是矛盾的) ③ 当2121b b a a ≠(即a 1b 2-a 2b 1≠0)时,方程组有唯一的解: ⎪⎪⎩⎪⎪⎨⎧--=--=1221211212211221b a b a a c a c y b a b a b c b c x (这个解可用加减消元法求得)2. 方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按二元一次方程整数解的求法进行。
3. 求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解含待定系数的不等式或加以讨论.(见例2、3)例题例1。
二元一次方程组解法练习题精选(含答案)一.解答题(共16小题)1.求适合的x,y的值.2.解下列方程组(1)(2)(3)(4).解方程组:4.解方程组:5.解方程组:3.6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?7.解方程组:(1);(2).解方程组:9.解方程组:8.10.解下列方程组:(1)(2)11.解方程组:(1)(2)12.解二元一次方程组:(1);(2).13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.14.15.解下列方程组:(1);(2).解下列方程组:(1)(2)16.第二十六章《二次函数》检测试题1,(2008年芜湖市)函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是 ( )2,在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s =5t 2+2t ,则当t =4时,该物体所经过的路程为( )3,已知二次函数y =ax 2+bx +c (a ≠0)的图象如图2所示,给出以下结论:① a +b +c <0;② a -b +c <0;③ b +2a <0;④ abc >0 .其中所有正确结论的序号是( )A. ③④B. ②③C. ①④D. ①②③4,二次函数y =ax 2+bx +c 的图象如图3所示,若M =4a +2b +c ,N =a -b +c ,P =4a +2b ,则( )A.M >0,N >0,P >0B. M >0,N <0,P >0C. M <0,N >0,P >0D. M <0,N >0,P <05,如果反比例函数y =k x 的图象如图4所示,那么二次函数y =kx 2-k 2x -1的图象大致为( )6,用列表法画二次函数y =x 2+bx +c 的图象时先列一个表,当表中对自变量x 的值以相等间隔的值增加时,函数y 所对应的函数值依次为:20,56,110,182,274,380,506,650.其中有一个值不正确,这个不正确的值是( )A. 506B.380C.274D.187,二次函数y =x 2的图象向上平移2个单位,得到新的图象的二次函数表达式是( )A. y =x 2-2B. y =(x -2)2C. y =x 2+2D. y =(x +2)2图3y x O 图4 y x O A . y x O B . y x O y x O 图4x -11yO 图18如图6,小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数h =3.5t -4.9t 2(t 的单位:s ,h 的单位:m )可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是( )A.0.71sB.0.70sC.0.63sD.0.36s9,如果将二次函数y =2x 2的图象沿y 轴向上平移1个单位,那么所得图象的函数解析式是 .10,平移抛物线y =x 2+2x -8,使它经过原点,写出平移后抛物线的一个解析式______ .11,若二次函数y =x 2-4x +c 的图象与x 轴没有交点,其中c 为整数,则c =12,二次函数y =ax 2+bx +c 的图像如图7所示,则点A (a ,b )在第___象限.13,已知抛物线y =x 2-6x +5的部分图象如图8,则抛物线的对称轴为直线x = ,满足y <0的x 的取值范围是 .14,已知一抛物线与x 轴的交点是)0,2( A 、B (1,0),且经过点C (2,8)。
15、如果⎩⎨⎧=+=-423y x a y x 的解都是正数,那么a 的取值范围是( ) (A )a <2; (B )34->a ; (C )342<<-a ; (D )34-<a ; 16、关于x 、y 的方程组⎩⎨⎧=-=+m y x m y x 932的解是方程3x +2y =34的一组解,那么m 的值是( ) (A )2; (B )-1; (C )1;(D )-2; 17、在下列方程中,只有一个解的是( )(A )⎩⎨⎧=+=+0331y x y x (B )⎩⎨⎧-=+=+2330y x y x (C )⎩⎨⎧=-=+4331y x y x (D )⎩⎨⎧=+=+3331y x y x 20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( )(A )a =-3,b =-14(B )a =3,b =-7 (C )a =-1,b =9 (D )a =-3,b =1421、若5x -6y =0,且xy ≠0,则yx y x 3545--的值等于( ) (A )32 (B )23 (C )1 (D )-122、若x 、y 均为非负数,则方程6x =-7y 的解的情况是( )(A )无解 (B )有唯一一个解(C )有无数多个解 (D )不能确定23、若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是( )(A )14 (B )-4 (C )-12 (D )1224、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,则k 与b 的值为( ) (A )21=k ,b =-4 (B )21-=k ,b =4 (C )21=k ,b =4 (D )21-=k ,b =-4 31、已知方程组⎩⎨⎧-=+=+m y x ay x 26432有无数多解,则a =______,m =______; 38、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x y x y x 37、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+;45、当a 、b 满足什么条件时,方程(2b 2-18)x =3与方程组⎩⎨⎧-=-=-5231b y x y ax 都无解;46、a 、b 、c 取什么数值时,x 3-ax 2+bx +c 程(x -1)(x -2)(x -3)恒等?47、m 取什么整数值时,方程组⎩⎨⎧=-=+0242y x my x 的解: (1)是正数;(2)是正整数?并求它的所有正整数解。
二元一次方程组练习题一.解答题(共16小题) 1.解下列方程组 (1)(2)(3))(6441125为已知数a a y x a y x ⎩⎨⎧=-=+ (4)(5)(6).(7)(8)⎩⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x(9)(10) ⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x 2.求适合的x ,y 的值.3.已知关于x ,y 的二元一次方程y=kx+b 的解有和.(1)求k ,b 的值.(2)当x=2时,y 的值. (3)当x 为何值时,y=3?1.解下列方程组(1)(2);(3); (4)(5). (6)(7)(8)(9)(10); 2.在解方程组时,由于粗心,甲看错了方程组中的a ,而得解为,乙看错了方程组中的b ,而得解为.(1)甲把a 看成了什么,乙把b 看成了什么?(2)求出原方程组的正确解.二元一次方程组解法练习题精选参考答案与试题解析一.解答题(共16小题)1.求适合的x ,y 的值.考点: 解二元一次方程组. 分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x ,求出y 的值,继而求出x 的值.解答:解:由题意得:,由(1)×2得:3x ﹣2y=2(3),由(2)×3得:6x+y=3(4), (3)×2得:6x ﹣4y=4(5), (5)﹣(4)得:y=﹣, 把y 的值代入(3)得:x=,∴.点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.2.解下列方程组(1)(2)(3)(4).考点:解二元一次方程组.分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣x=﹣2,解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x=,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考点:解二元一次方程组.专题:计算题.分析:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.解答:解:原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.点评:;二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.4.解方程组:考点:解二元一次方程组.专题:计算题.分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.解答:解:(1)原方程组化为,①+②得:6x=18,∴x=3.代入①得:y=.所以原方程组的解为.点评:要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考点:解二元一次方程组.专题:计算题;换元法.分析:本题用加减消元法即可或运用换元法求解.解答:解:,①﹣②,得s+t=4,①+②,得s﹣t=6,即,解得.所以方程组的解为.点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于x,y的二元一次方程y=kx+b 的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?考点:解二元一次方程组.专题:计算题.分析:(1)将两组x,y的值代入方程得出关于k、b 的二元一次方程组,再运用加减消元法求出k、b的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.解答:解:(1)依题意得:①﹣②得:2=4k,所以k=,所以b=.(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).考点:解二元一次方程组.分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为.点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考点:解二元一次方程组.专题:计算题.分析:此题根据观察可知:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y)+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.11.解方程组:(1)(2)考点:解二元一次方程组.专题:计算题;换元法.分析:方程组(1)需要先化简,再根据方程组的特点选择解法;方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为.点评:此题考查了学生的计算能力,解题时要细心.12.解二元一次方程组:(1);(2).考点:解二元一次方程组.专题:计算题.分析:(1)运用加减消元的方法,可求出x、y的值;(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值.解答:解:(1)将①×2﹣②,得15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a ,而得解为,乙看错了方程组中的b ,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.专题:计算题.分析:(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考点:解二元一次方程组.分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.16.解下列方程组:(1)(2)考点:解二元一次方程组.分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①×2﹣②得:x=1,将x=1代入①得:2+y=4,y=2.∴原方程组的解为;(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.。
二元一次方程组习题及答案100道1。
2x+9y=813x+y=342.9x+4y=358x+3y=303.7x+2y=527x+4y=624。
4x+6y=549x+2y=875。
2x+y=72x+5y=196。
x+2y=213x+5y=567.5x+7y=525x+2y=228。
5x+5y=657x+7y=203 9.8x+4y=56x+4y=2110.5x+7y=41 5x+8y=44 11。
7x+5y=54 3x+4y=38 12.x+8y=154x+y=2913。
3x+6y=24 9x+5y=46 14。
9x+2y=62 4x+3y=36 15.9x+4y=46 7x+4y=42 16.9x+7y=135 4x+y=4117.3x+8y=51 x+6y=2718。
9x+3y=99 4x+7y=95 19。
9x+2y=38 3x+6y=18 20.5x+5y=45 7x+9y=69 21。
8x+2y=28 7x+8y=62 22.x+6y=143x+3y=27 23。
7x+4y=67 2x+8y=26 24.5x+4y=52 7x+6y=74 25。
7x+y=94x+6y=1626.6x+6y=486x+3y=4227。
8x+2y=167x+y=1128。
4x+9y=778x+6y=9429.6x+8y=687x+6y=6630.2x+2y=227x+2y=471)66x+17y=396725x+y=1200答案:x=48y=47(2)18x+23y=2303 74x—y=1998答案:x=27y=79(3)44x+90y=779644x+y=3476答案:x=79y=48(4)76x—66y=408230x—y=2940答案:x=98y=51(5)67x+54y=854671x—y=5680答案:x=80y=59(6)42x—95y=-1410 21x—y=1575答案:x=75y=48(7)47x-40y=85334x-y=2006答案:x=59y=48(8)19x—32y=—1786 75x+y=4950答案:x=66y=95(9)97x+24y=720258x—y=2900答案:x=50y=98(10)42x+85y=636263x—y=1638答案:x=26y=62(11)85x-92y=—2518 27x—y=486答案:x=18y=44 (12)79x+40y=241956x-y=1176答案:x=21y=19 (13)80x-87y=215622x—y=880答案:x=40y=12 (14)32x+62y=513457x+y=2850答案:x=50y=57(15)83x-49y=8259x+y=2183答案:x=37y=61(16)91x+70y=584595x-y=4275答案:x=45y=25(17)29x+44y=528188x-y=3608答案:x=41y=93(18)25x—95y=—4355 40x-y=2000答案:x=50y=59(19)54x+68y=328478x+y=1404答案:x=18y=34(20)70x+13y=3520 52x+y=2132答案:x=41y=50(21)48x—54y=-3186 24x+y=1080答案:x=45y=99(22)36x+77y=7619 47x—y=799答案:x=17y=91(23)13x-42y=-2717 31x-y=1333答案:x=43y=78(24)28x+28y=333252x—y=4628答案:x=89y=30 (25)62x-98y=—2564 46x-y=2024答案:x=44y=54 (26)79x—76y=-4388 26x—y=832答案:x=32y=91(27)63x-40y=—821 42x-y=546答案:x=13y=41 (28)69x—96y=-1209 42x+y=3822答案:x=91y=78(29)85x+67y=7338 11x+y=308答案:x=28y=74 (30)78x+74y=12928 14x+y=1218答案:x=87y=83(31)39x+42y=533159x—y=5841答案:x=99y=35 (32)29x+18y=191658x+y=2320答案:x=40y=42(33)40x+31y=604345x—y=3555答案:x=79y=93(34)47x+50y=8598 45x+y=3780答案:x=84y=93(35)45x-30y=-145529x-y=725答案:x=25y=86(36)11x-43y=—1361 47x+y=799答案:x=17y=36(37)33x+59y=3254 94x+y=1034答案:x=11y=49(38)89x—74y=-2735 68x+y=1020答案:x=15y=55(39)94x+71y=7517 78x+y=3822答案:x=49y=41(40)28x—62y=-4934 46x+y=552答案:x=12y=85 (41)75x+43y=8472 17x—y=1394答案:x=82y=54 (42)41x-38y=-1180 29x+y=1450答案:x=50y=85(43)22x—59y=824 63x+y=4725答案:x=75y=14(44)95x—56y=-401 90x+y=1530答案:x=17y=36(45)93x-52y=—852 29x+y=464答案:x=16y=45(46)93x+12y=8823 54x+y=4914答案:x=91y=30(47)21x-63y=84 20x+y=1880答案:x=94y=30 (48)48x+93y=975638x—y=950答案:x=25y=92 (49)99x-67y=4011 75x-y=5475答案:x=73y=48 (50)83x+64y=9291 90x—y=3690答案:x=41y=92(51)17x+62y=3216 75x—y=7350答案:x=98y=25(52)77x+67y=2739 14x—y=364答案:x=26y=11 (53)20x-68y=—4596 14x-y=924答案:x=66y=87(54)23x+87y=4110 83x-y=5727答案:x=69y=29(55)22x—38y=804 86x+y=6708答案:x=78y=24(56)20x-45y=-3520 56x+y=728答案:x=13y=84 (57)46x+37y=708561x-y=4636答案:x=76y=97(58)17x+61y=4088 71x+y=5609答案:x=79y=45 (59)51x—61y=-1907 89x—y=2314答案:x=26y=53 (60)69x—98y=—2404 21x+y=1386答案:x=66y=71(61)15x-41y=754 74x-y=6956答案:x=94y=16 (62)78x-55y=65689x+y=5518答案:x=62y=76 (63)29x+21y=163331x-y=713答案:x=23y=46(64)58x—28y=2724 35x+y=3080答案:x=88y=85 (65)28x—63y=-225488x-y=2024答案:x=23y=46(66)43x+50y=7064 85x+y=8330答案:x=98y=57 (67)58x—77y=1170 38x-y=2280答案:x=60y=30(68)92x+83y=11586 43x+y=3010答案:x=70y=62(69)99x+82y=6055 52x-y=1716答案:x=33y=34(70)15x+26y=1729 94x+y=8554答案:x=91y=14(71)64x+32y=355256x-y=2296答案:x=41y=29 (72)94x+66y=1052484x-y=7812答案:x=93y=27(73)65x—79y=—5815 89x+y=2314答案:x=26y=95 (74)96x+54y=621663x—y=1953答案:x=31y=60(75)60x—44y=—352 33x—y=1452答案:x=44y=68(76)79x—45y=51014x-y=840答案:x=60y=94 (77)29x-35y=-21859x-y=4897答案:x=83y=75 (78)33x-24y=1905 30x+y=2670答案:x=89y=43(79)61x+94y=11800 93x+y=5952答案:x=64y=84 (80)61x+90y=5001 48x+y=2448答案:x=51y=21 (81)93x-19y=286x—y=1548答案:x=18y=88(82)19x-96y=-591030x-y=2340答案:x=78y=77 (83)80x+74y=8088 96x-y=8640答案:x=90y=12(84)53x—94y=1946 45x+y=2610答案:x=58y=12 (85)93x+12y=911728x-y=2492答案:x=89y=70(86)66x-71y=—1673 99x-y=7821答案:x=79y=97(87)43x—52y=-1742 76x+y=1976答案:x=26y=55(88)70x+35y=8295 40x+y=2920答案:x=73y=91(89)43x+82y=4757 11x+y=231答案:x=21y=47 (90)12x—19y=236 95x—y=7885答案:x=83y=40(91)51x+99y=8031 71x—y=2911答案:x=41y=60 (92)37x+74y=4403 69x-y=6003答案:x=87y=16(93)46x+34y=4820 71x-y=5183答案:x=73y=43 (94)47x+98y=586155x-y=4565答案:x=83y=20 (95)30x—17y=239 28x+y=1064答案:x=38y=53 (96)55x—12y=4112 79x-y=7268答案:x=92y=79(97)27x—24y=-450 67x—y=3886答案:x=58y=84 (98)97x+23y=8119 14x+y=966答案:x=69y=62(99)84x+53y=1127570x+y=6790答案:x=97y=59 (100)51x-97y=297 19x—y=1520答案:x=80y=39。
二元一次方程与一次函数班级:___________姓名:___________得分:__________一.选择题(每小题5分,30分)1.若一次函数y=k 1x+b 1与y=k 2x+b 2的图像没有交点,则方程组⎩⎨⎧=+=0b y -x K -b y -x k 2211的解的情况是 ( ) 。
A 。
有无数组解 B. 有两组解C 。
只有一组解 D. 没有解2。
如果一次函数y=3x+6与y=2x-4的交点坐标为(a,b),则⎩⎨⎧==b y a x 是方程组( )的解。
A 。
⎩⎨⎧=+=-4y 2x 63x -y B.⎩⎨⎧==++0y -4-2x 0y 63x C 。
⎩⎨⎧== 04-y -2x -6y -3x D.⎩⎨⎧==4y -2x 6y -3x3。
若方程组⎩⎨⎧=+=+32y 2x 2y x 没有解,由此一次函数y=2—x 与y=23-x 的图像必定 ( )。
A. 重合 B. 平行 C. 相交 D. 无法判断4。
已知方程组有正数⎩⎨⎧==+02y -x 4ky 2x 解,则k 的取值范围是 ( ).A. k 〉4 B 。
k ≥4 C. k>0 D. k>—45.图中两直线L 1,L 2的交点坐标可以看作方程组( )的解.A .121x y x y -=⎧⎨-=-⎩ B. 121x y x y -=-⎧⎨-=⎩C .321x y x y -=⎧⎨-=⎩ D. 321x y x y -=-⎧⎨-=-⎩6.直线y=12x —6与直线y=-231x —1132的交点坐标是( ).A .(-8,—10)B .(0,-6);C .(10,—1)D .以上答案均不对二、解答题(每小题14分,70分)1.若直线y=ax+7经过一次函数y=4-3x和y=2x—1的交点,求a的值.2.(1)在同一直角坐标系中作出一次函数y=x+2,y=x-3的图像.(2)两者的图像有何关系?(3)你能找出一组数适合方程x-y=2,x—y=3吗?_________________,•这说明方程组2,3, x yx y-=-⎧⎨-=⎩________.3.如图所示,求两直线的解析式及图像的交点坐标.4。
二元一次方程组
(一)代入消元法
例1、解方程组
(1)、
50(1)
190(2)
x y
x y
=-
⎧
⎨
+=
⎩
(2)、
37(1)
1(2)
x y
y x
+=
⎧
⎨
-=
⎩
3、
23(1) 3511(2) x y
x y
+=
⎧
⎨
-=
⎩
练习:
(1)、
23(1)
3511(2)
x y
x y
+=
⎧
⎨
-=
⎩
(2)、
23(1)
7517(2)
x y
x y
=-
⎧
⎨
+=
⎩
(3)、
3(1)
722(2)
y x
x y
=
⎧
⎨
-=
⎩
(4)、
50(1)
3217(2)
x y
x y
-=
⎧
⎨
+=
⎩
(一)加减消元法 例2、解方程组 (1)、50
(1)3516
(2)
x y x y -=⎧⎨+=⎩ (2)、2211
(1)2736
(2)
x y x y +=⎧⎨
+=⎩
(3)、425(1)4916
(2)
x y x y -=⎧⎨+=⎩ (4)、468
(1)4317
(2)
x y x y -=⎧⎨
-=⎩
(5)、235(1)3912
(2)x y x y -=⎧⎨
+=⎩ (6)、328
(1)435
(2)
x y x y -=⎧⎨-=⎩
练习:
(1)3
7x y x y -=⎧⎨
+=⎩ (2)⎩⎨
⎧=+=-8
3120
34y x y x
(3)⎩⎨
⎧=+=-1464534y x y x (4)⎩⎨
⎧=-=+1
235
4y x y x
(5)⎩⎨
⎧=+=+132645y x y x (6)⎩⎨
⎧=+=-17
327
23y x y x
三、拓展与提高
(1)⎩⎨
⎧-=-+=-85)1(21)2(3y x x y (2)
(3)⎩⎨
⎧=--=--023*********y x y x (4)
四、综合与应用
1、甲、乙两人从同一地点出发,同向而行,甲乘车,乙步行。
如果乙先走20 公里,那么甲用1 小时就能追上乙;如果乙先走1 小时,那么甲只用15分钟就能追上乙,求甲、乙二人的速度。
2、某学校共有5个大餐厅和2个小餐厅,经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐。
求1个大餐厅、1个小餐厅分别可供多少名学生就餐。
3、已知梯形的高是7,面积是56cm 2
,又它的上底比下底的三分之一还多4cm ,求该梯形的上底和下底的长度是多少?
4、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。
已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元。
初一年级人数是多少?原计划租用45座汽车多少辆?
5、某人用24000元买进甲、乙两种股票,在甲股票升值15%,乙股票下跌10%时卖出,共获利1350元,试问某人买的甲、乙两股票各是多少元?
五、复习与作业
1、解二元一次方程组 (1)⎩⎨⎧=-=+5
34734y x y x (2)234
443x y x y +=⎧⎨-=⎩
(3)523611x y x y -=⎧⎨
+=⎩ (4)326
2317x y x y -=⎧⎨+=⎩
2、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天 35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间?。