小学奥数浓度问题综合讲义四套含答案与稀释问题
- 格式:doc
- 大小:223.50 KB
- 文档页数:21
20.浓度问题知识要点梳理一、浓度问题的基本量溶质:溶于液体的物质(通常指“盐,糖,酒精”)溶剂:溶解物质的液体(通常指“水”)溶液:溶质和溶剂的混合溶液浓度:溶质占溶液的百分比或百分率(盐占盐水的百分比)二、基本数量关系式溶液=溶质+溶剂浓度=溶质:溶液X100%=溶质:(溶质+溶剂)X100%溶液X浓度=溶质溶质:浓度=溶液溶剂=溶液X(1一浓度)混合溶液的浓度=(溶质1+溶质2+溶质3):(溶液1+溶液2+溶液3)三、解决浓度问题的基本方法加浓稀释问题:①抓不变量;②溶液的配比问题:列方程解,铁三角考点精讲分析典例精讲考点1 简单的配制问题【例1】糖完全溶解在水中变成糖水,已知某种糖水中糖和糖水的重量比是1 : 11。
则500克糖要加水多少千克?【精析】因为糖:糖水=1 :11,所以糖:水=1:10,要求500克糖要加水多少千克,根据分数除法的意义列式即可。
【答案】糖与水的重量比是1:(11-1)=1:10500克糖水要加水的千克数:500X10 = 5000 (克)5000克=5千克答:500克糖要加水5千克。
【归纳总结】这道应用题容易出错的地方在于条件是糖与糖水的重量比,而非糖与水的重量比。
所以要先弄清糖与水之间的数量关系。
考点2 加浓问题(溶剂不变,溶质增加)【例2】 有含糖量为7%的糖水 600克,要使其含糖量加大到10%,需要再加入多少 克糖?【精析】 含糖量是指糖的重量占糖水总重量的百分之几;先把原来糖水的总重量看成 单位“1”,那么原来水的重量就是糖水的总重量的(1-7%),用乘法求出水的重量;后来 的含糖量是10%,把后来的糖水的总重量看成单位“1”,那么后来水的重量是总重量的(1 -10%),用除法求出后来糖水的总重量,再用后来的总重量减去原来糖水的总重量就是需 要加糖多少克。
【答案】 原来糖水中水的质量:600 X (1 — 7%)=558 (克)现在糖水的质量:558:(1 — 10%)=620 (克)加入糖的质量:620 — 600 = 20 (克)答:需要加入20克糖。
一、浓度问题定义:有关浓度的问题,在我们的日常生活和生产实际中经常会遇到.在这部分内容里我们对有关浓度的问题做一些初步的探讨。
例如将糖溶于水就得到了糖水,而糖水甜的程度是由什么决定的呢?我们不妨来做一个小实验:在两只同样大小的杯子中放入相同量的水,再往两只杯子中分别放入白糖,使其中一只杯子中的糖是另一只杯子中的糖的2倍,品尝一下,有什么感觉.我们很容易发现,放糖多的杯子中的水甜.若将等量的糖放入两只杯子中,在两只杯子中放入不等量的水,比如一只杯子中放入的水的量是另一只杯子中放入水的量的2倍,这时结果会怎样呢?不难想象到放水少的杯子中的糖水甜.通过上面的小实验我们可以知道,糖水甜的程度是由糖与糖水二者重量的比值决定的.糖与糖水重量的比值叫糖水的浓度(也叫含糖率).这个比值一般我们将它写成百分数,所以称为百分比浓度.其中糖叫溶质,水叫做溶剂,糖水叫溶液,解答这类浓度问题的主要依据有:浓度=溶液重量溶质重量×100% 这个式子还可以转化为: 溶质质量溶质质量+溶剂质量×100% 溶液的重量=溶质的重量+溶剂的重量浓度=溶质重量÷溶液重量溶液重量=溶质重量÷浓度溶质重量=溶液重量×浓度二、解浓度问题的重要方法:1、利用浓度的基本定义以及三个量之间的关系:知识框架浓度问题综合(一)2、列方程解应用题也是解决浓度问题的重要方法。
解答浓度问题,首先要弄清什么是浓度。
有些问题根据题意列方程解答比较容易,在列方程时,要注意寻找题目中数量问题的相等关系。
溶度问题包括以下几种基本题型︰(1) 溶剂的增加或减少引起浓度变化。
面对这种问题,不论溶剂增加或减少,溶质是始终不变的,据此便可解题。
(2) 溶质的增加引起浓度变化。
面对这种问题,溶质和浓度都增大了,但溶剂是不变的,据此便可解题。
(3) 两种或几种不同溶度的溶液配比问题。
面对这种问题,要抓住混合前各溶液的溶质和与混合后溶液的溶质质量相等,据此便可解题。
保密★启用前小学奥数思维训练-浓度问题(学校:___________姓名:___________班级:___________考号:___________一、解答题1.浓度为15%的盐水溶液60克,加入多少水就能达到浓度为10%的盐水?2.农民伯伯要配制浓度为20%的农药溶液6千克,需要浓度为50%的农药溶液多少千克?3.在一桶含盐率为6%的盐水中,加入50克盐溶解后,桶中盐水的浓度增加到15.4%,桶中原有多少克盐水?4.将浓度为10%的药水与浓度为40%的药水混合,配成浓度为30%的药水1200克,需要10%和40%的药水各多少克?5.有60克的食盐水溶液,若加入300克水,它的浓度就减少12.5%。
原食盐水溶液浓度为多少,有多少克水?6.甲、乙、丙3个试管中各盛水10克、20克、30克,把某种浓度的药水10克,倒入甲管中,混合后取10克倒入乙管中。
再混合后从乙管中取出10克倒入丙管中,现在丙管中药水浓度为2%。
最早倒入甲管中的药水浓度是多少?7.甲容器中有含盐20%的盐水300克,乙容器中有含盐25%的盐水600克,往甲、乙容器中分别倒入数量相等的盐,使两个容器中盐水的浓度一样,每个容器应倒入多少盐?8.有含盐25%的盐水30千克,现在加入清水,要使其含量降低为15%,需加清水多少千克?9.甲容器中有8%的食盐水300克,乙容器中有12.5%的食盐水120克。
往甲、乙两个容器分别倒入等量的水,使两个容器的食盐水浓度一样。
问倒入多少克水?10.现有含盐20%的盐水500克,要把它变成含15%的盐水,应加入5%的盐水多少克?11.30克盐溶入120克的水中,放置七天后,盐水重量只有100克,这时盐水的浓度是多少?浓度比原来提高了百分之几?12.配制成浓度为25%的糖水1000克,需用浓度为22%和27%的糖水各多少克?13.A种酒精中纯酒精的含量为40%,B种酒精中纯酒精的含量为36%,C种酒精中纯酒精的含量为35%,它们混合后得到纯酒精含量为38.5的酒精11升.其中B种酒精比C种酒精多3升,那么其中A种酒精有多少升?14.瓶子里装有浓度为15%的酒精1000克。
小学奥数专题15-浓度问题浓度问题1、“稀释”问题:特点是加“溶剂”,解题关键是找到始终不变的量(溶质)。
例1、要把30克含盐16%的盐水稀释成含盐0.15%的盐水,须加水多少克?例3、治棉铃虫须配制0.05%的“1059”溶液,问在599千克水中,应加入30%的“1059”溶液多少千克?2、“浓缩”问题:特点是减少溶剂,解题关键是找到始终不变的量(溶质)。
例4、在含盐0.5%的盐水中蒸去了236千克水,就变成了含盐30%的盐水,问原来的盐水是多少千克?例5、要从含盐12.5%的盐水40千克中蒸去多少水分才能制出含盐20%的盐水?3、“加浓”问题:特点是增加溶质,解题关键是找到始终不变的量(溶剂)。
例6、有含盐8%的盐水40千克,要配制成含盐20%的盐水,须加盐多少千克?4、配制问题:是指两种或两种以上的不同浓度的溶液混合配制成新溶液(成品),解题关键是分析所取原溶液的溶质与成品溶质不变及溶液前后质量不变,找到两个等量关系。
例7、把含盐5%的食盐水与含盐8%的食盐水混合制成含盐6%的食盐水600克,分别应取两种食盐水各多少千克?例8在浓度为50%的硫酸溶液100千克中,再加入多少千克浓度为5%的硫酸溶液,就可以配制成浓度为25%的硫酸溶液?5含水量问题例9 仓库运来含水量为90%的水果100千克,1星期后再测发现含水量降低了,变为80%,现在这批水果的总重量是多少千克?6、重复操作问题(牢记浓度公式,灵活运用浓度变化规律,浓度问题的难点)例10、从装满100克浓度为80%的盐水杯中倒出40克盐水,再用清水将杯加满;再倒出40克盐水,然后再用清水将杯加满,如此反复三次后,杯中盐水的浓度是多少?例13 现在有溶液两种,甲为50%的溶液,乙为30%的溶液,各900克,现在从甲、乙两溶液中各取300克,分别放到乙、甲溶液中,混合后,再从甲、乙两溶液中各取300克,分别放到乙、甲溶液中,……,问1)、第一次混合后,甲、乙溶液的浓度?2)、第四次混合后,甲、乙溶液的浓度?3)、猜想,如果这样无穷反复下去,甲、乙溶液的浓度。
六年级奥数题浓度问题及答案
六年级奥数题浓度问题及答案
要把30%的糖水与15%的糖水混合,配成25%的糖水600克,需要30%和15%的糖水各多少克?
答案与解析:假设全用30%的糖水溶液,那么含糖量就会多出
600×(30%-25%)=30(克)
这是因为30%的糖水多用了。
于是,我们设想在保证总重量600克不变的情况下,用15% 的溶液来“换掉”一部分30%的.溶液。
这样,每“换掉”100克,就会减少糖100×(30%-15%)=15(克) 所以需要“换掉”30%的溶液(即“换上”15%的溶液) 100×(30÷15)=200(克)
由此可知,需要15%的溶液200克。
需要30%的溶液 600-200=400(克)
答:需要15%的糖水溶液200克,需要30%的糖水400克。
【六年级奥数题浓度问题及答案】。
小学奥数之溶液的浓度问题解法1、明确溶液的质量,溶质的质量,溶剂的质量之间的关系2、浓度三角的应用3、会将复杂分数应用题及其他类型题目转化成浓度三角形式来解4、利用方程解复杂浓度问题浓度问题的内容与我们实际的生活联系很紧密,就知识点而言它包括小学所学2个重点知识:百分数,比例。
一、浓度问题中的基本量溶质:通常为盐水中的“盐”,糖水中的“糖”,酒精溶液中的“酒精”等 溶剂:一般为水,部分题目中也会出现煤油等 溶液:溶质和溶液的混合液体。
浓度:溶质质量与溶液质量的比值。
二、几个基本量之间的运算关系1、溶液=溶质+溶剂2、=100%=100%+⨯⨯溶质溶质浓度溶液溶质溶液三、解浓度问题的一般方法1、寻找溶液配比前后的不变量,依靠不变量建立等量关系列方程2、十字交叉法:(甲溶液浓度大于乙溶液浓度)形象表达:A B =甲溶液质量乙溶液质量B A =甲溶液与混合溶液的浓度差混合溶液与乙溶液的浓度差注:十字交叉法在浓度问题中的运用也称之为浓度三角,浓度三角与十字交叉法实质上是相同的.浓度三角的表示方法如下:3、列方程解应用题也是解决浓度问题的重要方法.溶液浓度问题(一)教学目标知识精讲利用十字交叉即浓度三角进行解题(一)简单的溶液浓度问题【例 1】 某种溶液由40克食盐浓度15%的溶液和60克食盐浓度10%的溶液混合后再蒸发50克水得到,那么这种溶液的食盐浓度为多少?【考点】溶液浓度问题 【难度】2星 【题型】解答 【解析】 两种配置溶液共含食盐40×15%+60×10%=12克,而溶液质量为40+60-50=50克,所以这种溶液的浓度为12÷50=24%.【答案】24%【巩固】 一容器内有浓度为25%的糖水,若再加入20千克水,则糖水的浓度变为15%,问这个容器内原来含有糖多少千克?【考点】溶液浓度问题 【难度】2星 【题型】解答【解析】 100100207.51525⎛⎫÷-= ⎪⎝⎭。
六年级数学奥数讲义练习浓度问题(全国通用版含答案)一、知识要点在百分数应用题中有一类叫溶液配比问题,即浓度问题。
我们知道,将糖溶于水就得到了糖水,其中糖叫溶质,水叫溶剂,糖水叫溶液。
如果水的量不变,那么糖加得越多,糖水就越甜,也就是说糖水甜的程度是由糖(溶质)与糖水(溶液=糖+水)二者质量的比值决定的。
这个比值就叫糖水的含糖量或糖含量。
类似地,酒精溶于水中,纯酒精与酒精溶液二者质量的比值叫酒精含量。
因而浓度就是溶质质量与溶液质量的比值,通常用百分数表示,即,浓度=溶质质量/溶液质量×100%=溶质质量/(溶质质量+溶剂质量)×100%解答浓度问题,首先要弄清什么是浓度。
在解答浓度问题时,根据题意列方程解答比较容易,在列方程时,要注意寻找题目中数量问题的相等关系。
浓度问题变化多,有些题目难度较大,计算也较复杂。
要根据题目的条件和问题逐一分析,也可以分步解答。
二、精讲精练【例题1】有含糖量为7%的糖水600克,要使其含糖量加大到10%,需要再加入多少克糖?【思路导航】根据题意,在7%的糖水中加糖就改变了原来糖水的浓度,糖的质量增加了,糖水的质量也增加了,但水的质量并没有改变。
因此,可以先根据原来糖水中的浓度求出水的质量,再根据后来糖水中的浓度求出现在糖水的质量,用现在糖水的质量减去原来糖水的质量就是增加的糖的质量。
原来糖水中水的质量:600×(1-7%)=558(克)现在糖水的质量:558÷(1-10%)=620(克)加入糖的质量:620-600=20(克)答:需要加入20克糖。
练习1:1、现在有浓度为20%的糖水300克,要把它变成浓度为40%的糖水,需要加糖多少克?2、有含盐15%的盐水20千克,要使盐水的浓度为20%,需加盐多少千克?3、有甲、乙两个瓶子,甲瓶里装了200毫升清水,乙瓶里装了200毫升纯酒精。
第一次把20毫升纯酒精由乙瓶倒入甲瓶,第二次把甲瓶中20毫升溶液倒回乙瓶,此时甲瓶里含纯酒精多,还是乙瓶里含水多?【答案】1.需要加糖100克。
浓度问题整理专题简析:在百分数应用题中有一类叫溶液配比问题,即浓度问题。
我们知道,将糖溶于水就得到了糖水,其中糖叫溶质,水叫溶剂,糖水叫溶液。
如果水的量不变,那么糖加得越多,糖水就越甜,也就是说糖水甜的程度是由糖(溶质)与糖水(溶液=糖+水)二者质量的比值决定的。
这个比值就叫糖水的含糖量或糖含量。
类似地,酒精溶于水中,纯酒精与酒精溶液二者质量的比值叫酒精含量。
因而浓度就是溶质质量与溶液质量的比值,通常用百分数表示,即,浓度=溶质质量溶液质量×100%=溶质质量溶质质量+溶剂质量×100%解答浓度问题,首先要弄清什么是浓度。
在解答浓度问题时,根据题意列方程解答比较容易,在列方程时,要注意寻找题目中数量问题的相等关系。
浓度问题变化多,有些题目难度较大,计算也较复杂。
要根据题目的条件和问题逐一分析,也可以分步解答。
例题1。
有含糖量为7%的糖水600克,要使其含糖量加大到10%,需要再加入多少克糖?练习11、现在有浓度为20%的糖水300克,要把它变成浓度为40%的糖水,需要加糖多少克?2、有含盐15%的盐水20千克,要使盐水的浓度为20%,需加盐多少千克?3、有甲、乙两个瓶子,甲瓶里装了200毫升清水,乙瓶里装了200毫升纯酒精。
第一次把20毫升纯酒精由乙瓶倒入甲瓶,第二次把甲瓶中20毫升溶液倒回乙瓶,此时甲瓶里含纯酒精多,还是乙瓶里含水多?例题2。
一种35%的新农药,如稀释到1.75%时,治虫最有效。
用多少千克浓度为35%的农药加多少千克水,才能配成1.75%的农药800千克?练习21、用含氨0.15%的氨水进行油菜追肥。
现有含氨16%的氨水30千克,配置时需加水多少千克?2、仓库运来含水量为90%的一种水果100千克。
一星期后再测,发现含水量降低到80%。
现在这批水果的质量是多少千克?3、一容器内装有10升纯酒精,倒出2.5升后,用水加满;再倒出5升,再用水加满。
这时容器内溶液的浓度是多少?例题3。
小学奥数教程之-稀释问题介绍本教程将介绍小学奥数中的稀释问题。
稀释是指将一种物质加入到另一种物质中,以降低其浓度或强度。
在小学奥数中,我们常常需要解决一些与稀释相关的问题,例如计算溶液的浓度、混合物中物质的比例等。
稀释公式在处理稀释问题时,我们可以使用以下的稀释公式:\[C_1V_1 = C_2V_2\]其中,\(C_1\)表示初始溶液的浓度,\(V_1\)表示初始溶液的体积,\(C_2\)表示稀释后溶液的浓度,\(V_2\)表示稀释后溶液的体积。
解决问题的步骤要解决一个稀释问题,可以按照以下步骤进行:1. 确定已知条件和未知量:首先,确定问题中给出的已知条件和需要计算的未知量。
通常已知条件会提供初始溶液的浓度和体积,以及稀释后溶液的浓度或体积。
2. 应用稀释公式:根据已知条件和未知量,将稀释公式应用于求解方程。
3. 计算并验证结果:根据计算得到的结果,进行必要的计算并验证是否符合实际情况。
示例问题下面是一个关于稀释问题的示例:问题:某药店有一瓶浓度为20%的酒精溶液,体积为500毫升。
现需要制备一瓶浓度为10%的酒精溶液,问需要加入多少毫升的水?解决步骤:1. 已知条件和未知量:- 初始溶液的浓度 \(C_1 = 20\%\)- 初始溶液的体积 \(V_1 = 500\, \text{毫升}\)- 稀释后溶液的浓度 \(C_2 = 10\%\)- 需要计算的未知量:稀释后溶液的体积 \(V_2\)2. 应用稀释公式:\[C_1V_1 = C_2V_2\]将已知量代入公式,得到:\[0.2 \times 500 = 0.1 \times V_2\]3. 计算并验证结果:\[V_2 = \frac{0.2 \times 500}{0.1} = 1000\, \text{毫升}\]因此,需要添加1000毫升的水。
总结通过本教程,我们了解了小学奥数中的稀释问题以及解决步骤。
通过应用稀释公式,我们可以计算出稀释后溶液的体积,从而解决与稀释相关的问题。
浓度问题整理第一套讲义专题简析:在百分数应用题中有一类叫溶液配比问题,即浓度问题。
我们知道,将糖溶于水就得到了糖水,其中糖叫溶质,水叫溶剂,糖水叫溶液。
如果水的量不变,那么糖加得越多,糖水就越甜,也就是说糖水甜的程度是由糖(溶质)与糖水(溶液=糖+水)二者质量的比值决定的。
这个比值就叫糖水的含糖量或糖含量。
类似地,酒精溶于水中,纯酒精与酒精溶液二者质量的比值叫酒精含量。
因而浓度就是溶质质量与溶液质量的比值,通常用百分数表示,即,浓度=溶质质量溶液质量×100%=溶质质量溶质质量+溶剂质量×100%解答浓度问题,首先要弄清什么是浓度。
在解答浓度问题时,根据题意列方程解答比较容易,在列方程时,要注意寻找题目中数量问题的相等关系。
浓度问题变化多,有些题目难度较大,计算也较复杂。
要根据题目的条件和问题逐一分析,也可以分步解答。
例题1。
有含糖量为7%的糖水600克,要使其含糖量加大到10%,需要再加入多少克糖?【思路导航】根据题意,在7%的糖水中加糖就改变了原来糖水的浓度,糖的质量增加了,糖水的质量也增加了,但水的质量并没有改变。
因此,可以先根据原来糖水中的浓度求出水的质量,再根据后来糖水中的浓度求出现在糖水的质量,用现在糖水的质量减去原来糖水的质量就是增加的糖的质量。
原来糖水中水的质量:600×(1-7%)=558(克)现在糖水的质量:558÷(1-10%)=620(克)加入糖的质量:620-600=20(克)答:需要加入20克糖。
练习11、现在有浓度为20%的糖水300克,要把它变成浓度为40%的糖水,需要加糖多少克?2、有含盐15%的盐水20千克,要使盐水的浓度为20%,需加盐多少千克?3、有甲、乙两个瓶子,甲瓶里装了200毫升清水,乙瓶里装了200毫升纯酒精。
第一次把20毫升纯酒精由乙瓶倒入甲瓶,第二次把甲瓶中20毫升溶液倒回乙瓶,此时甲瓶里含纯酒精多,还是乙瓶里含水多?例题2。
一种35%的新农药,如稀释到1.75%时,治虫最有效。
用多少千克浓度为35%的农药加多少千克水,才能配成1.75%的农药800千克?【思路导航】把浓度高的溶液经添加溶剂变为浓度低的溶液的过程称为稀释。
在这种稀释过程中,溶质的质量是不变的。
这是解这类问题的关键。
800千克1.75%的农药含纯农药的质量为800×1.75%=14(千克)含14千克纯农药的35%的农药质量为14÷35%=40(千克)由40千克农药稀释为800千克农药应加水的质量为800-40=760(千克)答:用40千克的浓度为35%的农药中添加760千克水,才能配成浓度为1.75%的农药800千克。
练习21、用含氨0.15%的氨水进行油菜追肥。
现有含氨16%的氨水30千克,配置时需加水多少千克?2、仓库运来含水量为90%的一种水果100千克。
一星期后再测,发现含水量降低到80%。
现在这批水果的质量是多少千克?3、一容器内装有10升纯酒精,倒出2.5升后,用水加满;再倒出5升,再用水加满。
这时容器内溶液的浓度是多少?例题3。
现有浓度为10%的盐水20千克。
再加入多少千克浓度为30%的盐水,可以得到浓度为22%的盐水?【思路导航】这是一个溶液混合问题。
混合前、后溶液的浓度改变了,但总体上溶质及溶液的总质量没有改变。
所以,混合前两种溶液中溶质的和等于混合后溶液中的溶质的量。
20千克10%的盐水中含盐的质量20×10%=2(千克)混合成22%时,20千克溶液中含盐的质量20×22%=404(千克)需加30%盐水溶液的质量(4.4-2)÷(30%-22%)=30(千克)答:需加入30千克浓度为30%的盐水,可以得到浓度为22%的盐水。
练习31、在100千克浓度为50%的硫酸溶液中,再加入多少千克浓度为5%的硫酸溶液就可以配制成25%的硫酸溶液?2、浓度为70%的酒精溶液500克与浓度为50%的酒精溶液300克混合后所得到的酒精溶液的浓度是多少?3、在20%的盐水中加入10千克水,浓度为15%。
再加入多少千克盐,浓度为25%?例题4。
将20%的盐水与5%的盐水混合,配成15%的盐水600克,需要20%的盐水和5%的盐水各多少克?【思路导航】根据题意,将20%的盐水与5%的盐水混合配成15%的盐水,说明混合前两种盐水中盐的质量和与混合后盐水中盐的质量是相等的。
可根据这一数量间的相等关系列方程解答。
解:设20%的盐水需x克,则5%的盐水为600-x克,那么20%x+(600-x)×5%=600×15%X =400600-400=200(克)答:需要20%的盐水400克,5%的盐水200克。
练习41、两种钢分别含镍5%和40%,要得到140吨含镍30%的钢,需要含镍5%的钢和含镍40%的钢各多少吨?2、甲、乙两种酒各含酒精75%和55%,要配制含酒精65%的酒3000克,应当从这两种酒中各取多少克?3、甲、乙两只装糖水的桶,甲桶有糖水60千克,含糖率为40%;乙桶有糖水40千克,含糖率为20%。
要使两桶糖水的含糖率相等,需把两桶的糖水相互交换多少千克?例题5。
甲、乙、丙3个试管中各盛有10克、20克、30克水。
把某种质量分数的盐水10克倒入甲管中,混合后取10克倒入乙管中,再混合后从乙管中取出10克倒入丙管中。
现在丙管中的盐水的质量分数为0.5%。
最早倒入甲管中的盐水质量分数是多少?【思路导航】混合后甲、乙、丙3个试管中应有的盐水分别是20克、30克、40克。
根据题意,可求出现在丙管中盐的质量。
又因为丙管中原来只有30克的水,它的盐是从10克盐水中的乙管里取出的。
由此可求出乙管里30克盐水中盐的质量。
而乙管里的盐又是从10克盐水中的甲管里取出的,由此可求出甲管里20克盐水中盐的质量。
而甲管里的盐是某种浓度的盐水中的盐,这样就可得到最初倒入甲管中盐水的质量分数。
丙管中盐的质量:(30+10)×0.5%=02(克)倒入乙管后,乙管中盐的质量:0.2×【(20+10)÷10】=0.6(克)倒入甲管,甲管中盐的质量:0.6×【(10+10)÷10】=1.2(克)1.2÷10=12%答:最早倒入甲管中的盐水质量分数是12%。
练习51、从装满100克80%的盐水中倒出40克盐水后,再用清水将杯加满,搅拌后再倒出40克盐水,然后再用清水将杯加满。
如此反复三次后,杯中盐水的浓度是多少?2、甲容器中又8%的盐水300克,乙容器中有12.5%的盐水120克。
往甲、乙两个容器分别倒入等量的水,使两个容器中盐水的浓度一样。
每个容器应倒入多少克水?3、甲种酒含纯酒精40%,乙种酒含纯酒精36%,丙种酒含纯酒精35%。
将三种酒混在一起得到含酒精38.5%的酒11千克。
已知乙种酒比丙种酒多3千克,那么甲种酒有多少千克?答案:练11、300×(1-20%)÷(1-40%)-300=100克2、20×(1-15%)÷(1-20%)-20=1.25千克3、第一次把20毫升的纯酒精倒入甲瓶,则甲瓶的浓度为:20÷(200+20)=111,第二次把甲瓶中20毫升溶液倒回乙瓶,此时甲瓶中含酒精200×1 11=20011毫升,乙瓶中含水20×(1-111)=20011毫升,即两者相等。
练21、30×(16%-0.15%)÷0.15%=3170千克2、100×(1-90%)÷(1-80%)=50千克3、10×(1-2.510)×(1-510)÷10=37.5%练31、100×(50%-25%)÷(25%-5%)=125千克2、(500×70%+300×50%)÷(500+300)×100%=62.5%3、原有浓度为20%的盐水的质量为:10×15%÷(20%-15%)=30千克第二次加入盐后,溶液浓度为25%的质量为:【30×(1-20%)+10】÷(1-25%)=1363千克加入盐的质量:1363-(30+10)=163千克练41、解:设需含镍5%的钢x吨,则含镍40%的钢140-x吨,5%x+(140-x)×40%=140×30%X =40140-40=100吨2、(3000×75%-3000×65%)÷【1×(75%-55%)】=1500克3000-1500=1500克3、解法一:设互相交换x千克糖水。
【(60-x)×40%+x×20%】÷60=【(40-x)×20%+x×40%】÷40X=24解法二:60-60×6040+60=24千克练51、解法一:100×80%=80克 40×80%=32克(80-32)÷100=48% 40×48%=19.2克(80-32-19.2)÷100=28.8%40×28.8=11.52克(80-32-19.2-11.52)÷100=17.28%解法二:80×(1-40100)×(1-40100)×(1-40100)÷100=17.28%2、 300×8%=24克 120×12.5%=15克解:设每个容器应倒入x克水。
24 300+x =15120+xX =1803、解:设丙种酒有x千克,则乙种酒有(x+3)千克,甲种酒有(11-2x-3)千克。
(11-2x-3)×40%+(x+3)×36%+35%x=11×38.5% X=0.511-2×0.5-3=7千克第二套讲义知识体系及常规解法:我们把被溶解的物质称为“溶质”,把被溶解物质成为“溶剂”。
如在,酒中,酒精是溶质,水是溶剂。
我们现在所说的浓度为质量浓度;溶液质量=溶质质量+溶剂质量; 溶液浓度=溶质质量=溶质质量=溶液质量-溶剂质量。
当我们用百分数来表示浓度时,我们将溶液浓度的数字乘以100%。
当多种不同浓度的溶液混合,混合后溶液浓度等于混合后总溶剂质量除以混合后总溶液质量。
混合后溶液浓度=总溶液质量总溶质质量 =+最后一份溶液质量份溶液质量+第一份溶液质量+第二+最后一份溶质质量份溶质质量+第一份溶质质量+第二⋯⋯⋯⋯【熟能生巧】(每题10分)1、 现在有浓度为20%的糖水300克,要把它变成浓度为40%的糖水,需要加糖多少克?300×(1-20%)÷(1-40%)-300=100克2、 有含盐15%的盐水20千克,要使盐水的浓度为20%,需加盐多少千克? 20×(1-15%)÷(1-20%)-20=1.25千克3、 用含氨0.15%的氨水进行油菜追肥。