浅谈不等式的证明
- 格式:doc
- 大小:115.00 KB
- 文档页数:7
不等式的证明技巧[共五篇]第一篇:不等式的证明技巧不等式的证明策略不等式的证明,方法灵活多样,它可以和很多内容结合.高考解答题中,常渗透不等式证明的内容,纯不等式的证明,历来是高中数学中的一个难点,本难点着重培养考生数学式的变形能力,逻辑思维能力以及分析问题和解决问题的能力.●难点磁场[例1].已知a>0,b>0,且a+b=1.求证:(a+1125)(b+)≥.ba4[例2]求使x+y≤ax+y(x>0,y>0)恒成立的a的最小值.知识依托:该题实质是给定条件求最值的题目,所求a的最值蕴含于恒成立的不等式中,因此需利用不等式的有关性质把a呈现出来,等价转化的思想是解决题目的突破口,然后再利用函数思想和重要不等式等求得最值.解法一:由于a的值为正数,将已知不等式两边平方,得:x+y+2xy≤a2(x+y),即2xy≤(a2-1)(x+y),∴x,y>0,∴x+y≥2xy,①②当且仅当x=y时,②中有等号成立.比较①、②得a的最小值满足a2-1=1,∴a2=2,a=2(因a>0),∴a的最小值是2.解法二:设u= x+y(x+y)2==x+yx+yx+y+2xy2xy.=1+x+yx+y∵x>0,y>0,∴x+y≥2xy(当x=y时“=”成立),∴2xy2xy≤1,的最大值是1.x+yx+y从而可知,u的最大值为+1=2,又由已知,得a≥u,∴a的最小值为2.解法三:∵y>0,∴原不等式可化为x+1≤ayx+1,y设xπ=tanθ,θ∈(0,).y2∴tanθ+1≤atan2θ+1;即tanθ+1≤asecθ∴a≥sinθ+cosθ=2sin(θ+π4),③又∵sin(θ+π4)的最大值为1(此时θ=π4).由③式可知a的最小值为2.●锦囊妙计1.不等式证明常用的方法有:比较法、综合法和分析法,它们是证明不等式的最基本的方法.(1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述;如果作差以后的式子可以整理为关于某一个变量的二次式,则考虑用判别式法证.(2)综合法是由因导果,而分析法是执果索因,两法相互转换,互相渗透,互为前提,充分运用这一辩证关系,可以增加解题思路,开扩视野.2.不等式证明还有一些常用的方法:换元法、放缩法、反证法、函数单调性法、判别式法、数形结合法、增量代换法,‘1’代换法等,换元法主要有三角代换,均值代换两种,在应用换元法时,要注意代换的等价性.放缩性是不等式证明中最重要的变形方法之一,放缩要有的放矢,目标可以从要证的结论中考查.有些不等式,从正面证如果不易说清楚,可以考虑反证法.凡是含有“至少”“惟一”或含有其他否定词的命题,适宜用反证法.证明不等式时,要依据题设、题目的特点和内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤、技巧和语言特点.●歼灭难点训练一、填空题ab1.已知x、y是正变数,a、b是正常数,且+=1,x+y的最小值为__________.xy2.设正数a、b、c、d满足a+d=b+c,且|a-d|<|b-c|,则ad与bc的大小关系是__________.3.)若m<n,p<q,且(p-m)(p-n)<0,(q-m)(q-n)<0,则m、n、p、q的大小顺序是__________.二、解答题4.已知a,b,c为正实数,a+b+c=1.求证:(1)a2+b2+c2≥13(2)3a+2+b+2+c+2< 612,证明:x,y,z∈[0,]23b+c2c+a2a+b26.若x,y,z∈R,a,b,c∈R+,证明:z≥2(xy+yz+zx)x+y+abc5.已知x,y,z∈R,且x+y+z=1,x2+y2+z2=7.若a>0,b>0,a3+b3=2,求证:a+b≤2,ab≤1.8.设a,b,c∈R+,求证:9.证明下列不等式:(1x≥4);(2)证明:ab+cd 1+1+1≥1+1+1。
高中数学不等式的证明高中数学中,不等式是一种重要的课程内容,也是数学证明的一个重要方向。
在本文中,我将对高中数学不等式的证明进行详细讨论。
不等式证明的一般步骤如下:1.提取已知条件:将不等式中的已知条件提取出来,以得到更清晰的表达式。
2.化简和变形:根据不等式的性质,对不等式进行适当的化简和变形操作,以便于进一步的证明。
3.应用不等式性质:应用已知的不等式性质、定理和公式,将给定的不等式与这些知识相结合,引入新的变量或不等式形式。
4.利用已知条件和定理进行推导:根据已知条件和定理,进行推导,从当前推导出的结论重新应用已知条件和定理。
5.逆向思考和反证法:如果直接的推导困难,可以尝试使用逆向思考或反证法来换一种证明的角度。
下面,我将通过实际的例子,对高中数学不等式的证明进行详细解释。
例子1:证明对于任意正实数a、b,有(a+b)² ≥ 4ab。
解:要证明这个不等式,我们可以根据一般的证明步骤来进行推导。
1.提取已知条件:已知条件为a、b是正实数。
2. 化简和变形:将不等式进行展开和化简得到a² + 2ab + b² ≥4ab。
3. 应用不等式性质:根据已知条件和定理,我们可以将不等式右边的4ab化简成2ab + 2ab,即得到a² + 2ab + b² ≥ 2ab + 2ab。
4. 利用已知条件和定理进行推导:我们可以继续推导,将左边的a² + b²进行分解成(a + b)² - 2ab,得到(a + b)² - 2ab ≥ 2ab + 2ab。
5. 逆向思考和反证法:我们可以将不等式进行变形,得到(a + b)² ≥ 4ab,即相当于证明了(a + b)² - 4ab ≥ 0。
由于(a + b)² - 4ab = (a - b)² ≥ 0,这是显然成立的,因为平方数是非负的。
不等式的基本性质:①如果x>y,那么y<x;如果y<x,那么x>y;(对称性)②如果x>y,y>z;那么x>z;(传递性)③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)④如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)⑤如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z<y÷z;⑥如果x>y,m>n,那么x+m>y+n;(充分不必要条件)⑦如果x>y>0,m>n>0,那么xm>yn;⑧如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<y的n次幂(n为负数)或者说,不等式的基本性质有:①对称性;②传递性:③加法单调性:即同向不等式可加性:④乘法单调性:⑤同向正值不等式可乘性:⑥正值不等式可乘方:⑦正值不等式可开方:⑧倒数法则。
[2]……如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式,以上是其中比较有名的。
不等式的基本性质和等式的基本性质的异同:①相同点:无论是等式还是不等式,都可以在它的两边加(或减)同一个数或同一个整式;②不同点:对于等式来说,在等式的两边乘(或除以)同一个正数(或同一个负数),等式仍然成立,但是对于不等式来说,却不大一样,在不等式的两边乘(或除以)同一个正数,不等号的方向不变,而在不等式的两边乘(或除以)同一个负数,不等号要改变方向。
原理:①不等式F(x)< G(x)与不等式G(x)>F(x)同解。
②如果不等式F(x)< G(x)的定义域被解析式H(x )的定义域所包含,那么不等式F (x)<G(x)与不等式F(x)+H(x)<G(x)+H(x)同解。
不等式的证明(一)【知识点精讲】1. 比较法证明不等式是最基本的方法也是最常用的方法。
比较法的两种形式:①比差法:要证a>b ,只须证a-b>0。
②比商法:要证a>b 且b>0,只须证 >ba 0。
说明:①作差比较法证明不等式时, 通常是进行因式分解,利用各因式的符号进行判断,或进行配方,利用非负数的性质进行判断;②一般地运用比商法时要考虑正负,尤其是作为除式式子的值必须确定符号;③证幂指数或乘积不等式时常用比商法,证对数不等式时常用比差法。
2. 综合法:利用某些已经证明过的不等式作为基础,再运用不等式的性质推导出所要求证的不等式的方法。
证明时要注意字母是否为正和等号成立的条件。
基本不等式:(1)若,0,0>>b a 则ba ab b a b a 1122222+≥≥+≥+ 当且仅当a=b 时取等号。
(2)时取等号当且仅当b a ab b a R b a =≥+∈2,,22 (3)a,b 同号, 时取等号当且仅当b a a b b a =≥+13. 分析法:从求证的不等式出发,分析使这个不等式成立的充分条件,把证明这个不等式的问题转化为这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立。
这种证明方法叫做分析法。
要注意书写的格式, 综合法是分析法的逆过程4. 重点难点: 作差比较法的顺序是“作差---变形---判断差式的正负”;作商比较法的顺序是“作商---变形---判断商式与1的大小”(注意商式的分子分母均正);综合法证明不等式是“由因导果”。
5. 思维方式: 掌握证明不等式的常用方法,对较复杂的不等式先用分析法探求证明途径,再用综合法加以证明。
6. 特别注意: 在利用不等式的性质或基本不等式时要注意等号、不等号成立的条件。
【例题选讲】例1、已知a,b ∈R,求证: a 2+b 2+1>ab+a证明:p= a 2+b 2+1-ab-a=]1)12()2[(212222+++-++-b a a b ab a =]1)1()[(21222++-+-b a b a 显然p>0 ∴得证[思维点拔] 作差比较法的顺序是“作差---变形---判断差式的正负”. 通常是进行因式分解,利用各因式的符号进行判断,或进行配方,利用非负数的性质进行判断 例2、P87例1. 设,0,0>>b a 求证.)()(2121212212b a ab b a +≥+ 【分析】不等式两端都是多项式的形式,故可用比差法证明或比商法证明。
第2讲 不等式的证明1.基本不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a 、b 为正数,则a +b2≥ab ,当且仅当a =b 时,等号成立.定理3:如果a 、b 、c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a nn ≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立. 2.不等式的证明方法证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法、数学归纳法等. 3.数学归纳法证明不等式的关键使用数学归纳法证明与自然数有关的不等式,关键是由n =k 时不等式成立推证n =k +1时不等式成立,此步的证明要具有目标意识,要注意与最终达到的解题目标进行分析、比较,以便确定解题方向.对于任意的x 、y ∈R ,求证|x -1|+|x |+|y -1|+|y +1|≥3. 证明:根据绝对值的几何意义,可知|x -1|+|x |≥1, |y -1|+|y +1|≥2,所以|x -1|+|x |+|y -1|+|y +1|≥1+2=3.若a ,b ∈(0,+∞)且a +b =1,求证:1a 2+1b 2≥8.证明:因为a +b =1, 所以a 2+2ab +b 2=1. 因为a >0,b >0,所以1a 2+1b 2=(a +b )2a 2+(a +b )2b 2=1+2b a +b 2a 2+1+2a b +a 2b 2=2+⎝⎛⎭⎫2b a +2a b +⎝⎛⎭⎫b 2a 2+a 2b 2≥2+22b a ·2a b+2b 2a 2·a 2b 2=8⎝⎛⎭⎫当a =b =12时取等号. 若x ,y ,z ∈R +,且x +y >z ,求证:x 1+x +y 1+y >z1+z .证明:因为x +y >z , 所以x +y -z >0.由分数性质得z1+z <z +(x +y -z )1+z +(x+y -z )=x +y 1+x +y .因为x >0,y >0,所以x +y 1+x +y =x 1+x +y +y 1+x +y <x 1+x +y 1+y .所以x 1+x +y 1+y >z 1+z.若a >b >1,证明:a +1a >b +1b.证明:a +1a -⎝⎛⎭⎫b +1b =a -b +b -a ab =(a -b )(ab -1)ab . 由a >b >1得ab >1,a -b >0, 所以(a -b )(ab -1)ab>0.即a +1a -⎝⎛⎭⎫b +1b >0,所以a +1a >b +1b.比较法证明不等式[典例引领](2016·高考全国卷Ⅱ)已知函数f (x )=⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.【解】 (1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1;当-12<x <12时,f (x )<2;当x ≥12时,由f (x )<2得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0. 因此|a +b |<|1+ab |.比较法证明不等式的方法与步骤(1)作差比较法:作差、变形、判号、下结论. (2)作商比较法:作商、变形、判断、下结论.[提醒] (1)当被证的不等式两端是多项式、分式或对数式时,一般使用作差比较法. (2)当被证的不等式两边含有幂式或指数式或乘积式时,一般使用作商比较法.[通关练习]1.若a ,b ∈R +,证明:(a +b )(a 5+b 5)≤2(a 6+b 6).证明:因为(a +b )(a 5+b 5)-2(a 6+b 6)=a 6+a 5b +ab 5+b 6-2a 6-2b 6=a 5b +ab 5-a 6-b 6=a 5(b -a )+b 5(a -b )=(a -b )(b 5-a 5).当a >b >0时,a -b >0,b 5-a 5<0,有(a -b )(b 5-a 5)<0. 当b >a >0时,a -b <0,b 5-a 5>0,有(a -b )(b 5-a 5)<0. 当a =b >0时,a -b =0,有(a -b )(b 5-a 5)=0. 综上可知(a +b )(a 5+b 5)≤2(a 6+b 6). 2.已知a ,b ∈(0,+∞),求证:a b b a≤(ab )a +b2.证明:a b b a(ab )a +b 2=ab -a +b 2ba -a +b 2=⎝⎛⎭⎫b a a -b2. 当a =b 时,⎝⎛⎭⎫b a a -b2=1;当a >b >0时,0<ba<1,a -b 2>0,⎝⎛⎭⎫b a a -b2<1. 当b >a >0时,b a >1,a -b 2<0,⎝⎛⎭⎫b a a -b2<1. 所以a b b a≤(ab )a +b 2.用综合法、分析法证明不等式[典例引领](2017·高考全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.【证明】 法一:(综合法) (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3 =2+3ab (a +b )≤2+3(a +b )24·(a +b )=2+3(a +b )34,所以(a +b )3≤8,因此a +b ≤2. 法二:(分析法)(1)因为a >0,b >0,a 3+b 3=2. 要证(a +b )(a 5+b 5)≥4,只需证(a +b )(a 5+b 5)≥(a 3+b 3)2, 再证a 6+ab 5+a 5b +b 6≥a 6+2a 3b 3+b 6, 再证a 4+b 4≥2a 2b 2,因为(a 2-b 2)2≥0,即a 4+b 4≥2a 2b 2成立. 故原不等式成立. (2)要证a +b ≤2成立, 只需证(a +b )3≤8,再证a 3+3a 2b +3ab 2+b 3≤8, 再证ab (a +b )≤2, 再证ab (a +b )≤a 3+b 3,再证ab (a +b )≤(a +b )(a 2-ab +b 2), 即证ab ≤a 2-ab +b 2显然成立. 故原不等式成立.分析法与综合法常常结合起来使用,称为分析综合法,其实质是既充分利用已知条件,又时刻瞄准解题目标,即不仅要搞清已知什么,还要明确干什么,通常用分析法找到解题思路,用综合法书写证题过程.[通关练习]1.设x ≥1,y ≥1,求证:x +y +1xy ≤1x +1y +xy .证明:由于x ≥1,y ≥1, 要证x +y +1xy ≤1x +1y+xy ,只需证xy (x +y )+1≤y +x +(xy )2. 因为[y +x +(xy )2]-[xy (x +y )+1] =[(xy )2-1]-[xy (x +y )-(x +y )] =(xy +1)(xy -1)-(x +y )(xy -1) =(xy -1)(xy -x -y +1) =(xy -1)(x -1)(y -1),因为x ≥1,y ≥1,所以(xy -1)(x -1)(y -1)≥0, 从而所要证明的不等式成立.2.已知实数a ,b ,c 满足a >0,b >0,c >0,且abc =1. (1)证明:(1+a )(1+b )(1+c )≥8; (2)证明:a +b +c ≤1a +1b +1c.证明:(1)1+a ≥2a ,1+b ≥2b ,1+c ≥2c , 相乘得:(1+a )(1+b )(1+c )≥8abc =8. (2)1a +1b +1c =ab +bc +ac , ab +bc ≥2ab 2c =2b , ab +ac ≥2a 2bc =2a , bc +ac ≥2abc 2=2c , 相加得a +b +c ≤1a +1b +1c.反证法证明不等式[典例引领]设0<a ,b ,c <1,求证:(1-a )b ,(1-b )c ,(1-c )a 不可能同时大于14.【证明】 设(1-a )b >14,(1-b )c >14,(1-c )a >14,三式相乘得(1-a )b ·(1-b )c ·(1-c )a >164,①又因为0<a ,b ,c <1,所以0<(1-a )a ≤⎣⎡⎦⎤(1-a )+a 22=14. 同理:(1-b )b ≤14,(1-c )c ≤14,以上三式相乘得(1-a )a ·(1-b )b ·(1-c )c ≤164,与①矛盾.所以(1-a )b ,(1-b )c ,(1-c )a 不可能同时大于14.利用反证法证明问题的一般步骤(1)否定原结论;(2)从假设出发,导出矛盾; (3)证明原命题正确.已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a ,b ,c >0.证明:(1)设a <0,因为abc >0, 所以bc <0.又由a +b +c >0,则b +c >-a >0,所以ab +bc +ca =a (b +c )+bc <0,与题设矛盾. (2)若a =0,则与abc >0矛盾, 所以必有a >0. 同理可证:b >0,c >0. 综上可证a ,b ,c >0.放缩法证明不等式[典例引领]若a ,b ∈R ,求证:|a +b |1+|a +b |≤|a |1+|a |+|b |1+|b |.【证明】 当|a +b |=0时,不等式显然成立. 当|a +b |≠0时, 由0<|a +b |≤|a |+|b | ⇒1|a +b |≥1|a |+|b |, 所以|a +b |1+|a +b |=11|a +b |+1≤11+1|a |+|b |=|a |+|b |1+|a |+|b | =|a |1+|a |+|b |+|b |1+|a |+|b |≤|a |1+|a |+|b |1+|b |.综上,原不等式成立.“放”和“缩”的常用技巧在不等式的证明中,“放”和“缩”是常用的推证技巧.常见的放缩变换有:(1)变换分式的分子和分母,如1k 2<1k (k -1),1k 2>1k (k +1),1k <2k +k -1,1k >2k +k +1.上面不等式中k ∈N *,k >1; (2)利用函数的单调性;(3)真分数性质“若0<a <b ,m >0,则a b <a +mb +m”.[提醒] 在用放缩法证明不等式时,“放”和“缩”均需把握一个度.设n 是正整数,求证:12≤1n +1+1n +2+…+12n<1.证明:由2n ≥n +k >n (k =1,2,…,n ),得12n ≤1n +k <1n .当k =1时,12n ≤1n +1<1n ;当k =2时,12n ≤1n +2<1n ;…当k =n 时,12n ≤1n +n <1n,所以12=n 2n ≤1n +1+1n +2+…+12n <n n =1.所以原不等式成立.用数学归纳法证明不等式[典例引领]证明贝努利不等式:设x ∈R ,且x >-1,x ≠0,n ∈N ,n >1,则(1+x )n >1+nx . 【证明】 (1)当n =2时,因为x ≠0.所以(1+x )2=1+2x +x 2>1+2x ,不等式成立. (2)假设当n =k (k ≥2)时不等式成立, 即有(1+x )k >1+kx ,则当n =k +1时,由于x >-1,x ≠0. 所以(1+x )k +1=(1+x )(1+x )k >(1+x )(1+kx ) =1+x +kx +kx 2>1+(k +1)x , 所以当n =k +1时不等式成立.由(1)(2)可知,贝努利不等式成立.用数学归纳法证明与自然数有关的命题时应注意以下两个证题步骤:(1)证明当n=n0(满足命题的最小的自然数的值)时,命题正确.(2)在假设n=k(k≥n0)时命题正确的基础上,推证当n=k+1时,命题也正确.这两步合为一体才是数学归纳法,缺一不可.其中第一步是基础,第二步是递推的依据.证明:对于n∈N*,不等式|sin nθ|≤n|sin θ|恒成立.证明:(1)当n=1时,上式左边=|sin θ|=右边,不等式成立.(2)假设当n=k(k≥1,k∈N*)时不等式成立,即有|sin kθ|≤k|sin θ|.当n=k+1时,|sin(k+1)θ|=|sin kθcos θ+cos kθsin θ|≤|sin kθcos θ|+|cos kθsin θ|=|sin kθ|·|cos θ|+|cos kθ|·|sin θ|≤|sin kθ|+|sin θ|≤k|sin θ|+|sin θ|=(k+1)|sin θ|.所以当n=k+1时不等式也成立.由(1)(2)可知,不等式对一切正整数n均成立.证明不等式的常用方法与技巧(1)如果已知条件与待证明的结论直接联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出或否定性命题、唯一性命题,则考虑用反证法;如果待证不等式与自然数有关,则考虑用数学归纳法等.(2)在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法或证明,其简化的基本思路是去绝对值号,转化为常见的不等式(组)求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据.在使用基本不等式时,等号成立的条件是一直要注意的事情,特别是连续使用时,要分析每次使用时等号是否成立.1.(2018·安徽省两校阶段性测试)已知函数f (x )=|x -2|. (1)解不等式:f (x )+f (x +1)≤2; (2)若a <0,求证:f (ax )-af (x )≥f (2a ).解:(1)由题意,得f (x )+f (x +1)=|x -1|+|x -2|. 因此只要解不等式|x -1|+|x -2|≤2.当x ≤1时,原不等式等价于-2x +3≤2,即12≤x ≤1;当1<x ≤2时,原不等式等价于1≤2,即1<x ≤2; 当x >2时,原不等式等价于2x -3≤2,即2<x ≤52.综上,原不等式的解集为⎩⎨⎧x ⎪⎪⎭⎬⎫12≤x ≤52. (2)证明:由题意得f (ax )-af (x )=|ax -2|-a |x -2|=|ax -2|+|2a -ax |≥|ax -2+2a -ax |=|2a -2|=f (2a ),所以f (ax )-af (x )≥f (2a )成立. 2.求证:112+122+132+…+1n 2<2.证明:因为1n 2<1n (n -1)=1n -1-1n,所以112+122+132+…+1n 2<1+11×2+12×3+13×4+…+1(n -1)×n =1+⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1-1n =2-1n <2.3.已知函数f (x )=ax 2+bx +c (a ,b ,c ∈R ),当x ∈[-1,1]时,|f (x )|≤1. (1)求证:|b |≤1;(2)若f (0)=-1,f (1)=1,求实数a 的值.解:(1)证明:由题意知f (1)=a +b +c ,f (-1)=a -b +c , 所以b =12[f (1)-f (-1)].因为当x ∈[-1,1]时,|f (x )|≤1, 所以|f (1)|≤1,|f (-1)|≤1,所以|b |=12|f (1)-f (-1)|≤12[|f (1)|+|f (-1)|]≤1.(2)由f (0)=-1,f (1)=1可得c =-1,b =2-a , 所以f (x )=ax 2+(2-a )x -1.当a =0时,不满足题意,当a ≠0时,函数f (x )图象的对称轴为x =a -22a ,即x =12-1a. 因为x ∈[-1,1]时,|f (x )|≤1,即|f (-1)|≤1,所以|2a -3|≤1,解得1≤a ≤2. 所以-12≤12-1a ≤0,故|f ⎝⎛⎭⎫12-1a |= |a ⎝⎛⎭⎫12-1a 2+(2-a )⎝⎛⎭⎫12-1a -1|≤1. 整理得|(a -2)24a +1|≤1,所以-1≤(a -2)24a +1≤1,所以-2≤(a -2)24a ≤0,又a >0,所以(a -2)24a ≥0,所以(a -2)24a=0,所以a =2.4.设a ,b ,c ∈(0,+∞),且a +b +c =1. (1)求证:2ab +bc +ca +c 22≤12;(2)求证:a 2+c 2b +b 2+a 2c +c 2+b 2a≥2.证明:(1)要证2ab +bc +ca +c 22≤12,只需证1≥4ab +2bc +2ca +c 2,即证1-(4ab +2bc +2ca+c 2)≥0,而1-(4ab +2bc +2ca +c 2)=(a +b +c )2-(4ab +2bc +2ca +c 2)=a 2+b 2-2ab =(a -b )2≥0成立,所以2ab +bc +ca +c 22≤12.(2)因为a 2+c 2b ≥2ac b ,b 2+a 2c ≥2ab c ,c 2+b 2a ≥2bca,所以a 2+c 2b +b 2+a 2c +c 2+b 2a ≥⎝⎛⎭⎫ac b +ab c +⎝⎛⎭⎫ab c +bc a +⎝⎛⎭⎫ac b +bc a =a ⎝⎛⎭⎫c b +b c +b ⎝⎛⎭⎫a c +c a +c ⎝⎛⎭⎫a b +ba ≥2a +2b +2c =2(当且仅当a =b =c =13时,等号成立).5.已知函数f (x )=|x -1|. (1)解不等式f (x )+f (x +4)≥8;(2)若|a |<1,|b |<1,且a ≠0,求证:f (ab )>|a |f ⎝⎛⎭⎫b a .解:(1)f (x )+f (x +4)=|x -1|+|x +3|=⎩⎪⎨⎪⎧-2x -2,x <-3,4,-3≤x ≤12x +2,x >1.当x <-3时,由-2x -2≥8,解得x ≤-5;当-3≤x ≤1时,4≥8不成立;当x >1时,由2x +2≥8,解得x ≥3.所以不等式f (x )+f (x +4)≥8的解集为{x |x ≤-5或x ≥3}.(2)证明:f (ab )>|a |f ⎝⎛⎭⎫b a ,即|ab -1|>|a -b |.因为|a |<1,|b |<1,所以|ab -1|2-|a -b |2=(a 2b 2-2ab +1)-(a 2-2ab +b 2)=(a 2-1)(b 2-1)>0,所以|ab -1|>|a -b |.故所证不等式成立.1.(2018·武汉市武昌区调研考试)设函数f (x )=|x -2|+2x -3,记f (x )≤-1的解集为M .(1)求M ;(2)当x ∈M 时,证明:x [f (x )]2-x 2f (x )≤0.解:(1)由已知,得f (x )=⎩⎪⎨⎪⎧x -1,x ≤23x -5,x >2. 当x ≤2时,由f (x )=x -1≤-1,解得x ≤0,此时x ≤0;当x >2时,由f (x )=3x -5≤-1,解得x ≤43,显然不成立. 故f (x )≤-1的解集为M ={x |x ≤0}.(2)证明:当x ∈M 时,f (x )=x -1,于是x [f (x )]2-x 2f (x )=x (x -1)2-x 2(x -1)=-x 2+x =-⎝⎛⎭⎫x -122+14. 令g (x )=-⎝⎛⎭⎫x -122+14,则函数g (x )在(-∞,0]上是增函数, 所以g (x )≤g (0)=0.故x [f (x )]2-x 2f (x )≤0.2.(2018·沈阳模拟)设a ,b ,c >0,且ab +bc +ca =1.求证:(1)a +b +c ≥ 3.(2)a bc +b ac +c ab≥3(a +b +c ). 证明:(1)要证a +b +c ≥3,由于a ,b ,c >0,因此只需证明(a +b +c )2≥3.即证a 2+b 2+c 2+2(ab +bc +ca )≥3.而ab +bc +ca =1,故只需证明a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ),即证a 2+b 2+c 2≥ab +bc +ca .而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c 时等号成立)证得.所以原不等式成立. (2)a bc +b ac +c ab =a +b +c abc. 在(1)中已证a +b +c ≥ 3.因此要证原不等式成立,只需证明1abc ≥a +b +c , 即证a bc +b ac +c ab ≤1,即证a bc +b ac +c ab ≤ab +bc +ca .而a bc =ab ·ac ≤ab +ac 2, b ac ≤ab +bc 2,c ab ≤bc +ac 2, 所以a bc +b ac +c ab ≤ab +bc +ca(当且仅当a =b =c =33时等号成立). 所以原不等式成立.3.已知a ,b ,c 均为正实数.求证:(1)(a +b )(ab +c 2)≥4abc ;(2)若a +b +c =3,则a +1+b +1+c +1≤3 2.证明:(1)要证(a +b )(ab +c 2)≥4abc ,可证a 2b +ac 2+ab 2+bc 2-4abc ≥0,需证b (a 2+c 2-2ac )+a (c 2+b 2-2bc )≥0,即证b (a -c )2+a (c -b )2≥0,当且仅当a =b =c 时,取等号,由已知,上式显然成立,故不等式(a +b )(ab +c 2)≥4abc 成立.(2)因为a ,b ,c 均为正实数,由不等式的性质知a +1·2≤a +1+22=a +32,当且仅当a +1=2时,取等号,b +1·2≤b +1+22=b +32,当且仅当b +1=2时,取等号, c +1·2≤c +1+22=c +32,当且仅当c +1=2时,取等号, 以上三式相加,得2(a +1+b +1+c +1)≤a +b +c +92=6, 所以a +1+b +1+c +1≤32,当且仅当a =b =c =1时,取等号.。
不等式的性质证明不等式是数学中常见的概念,它描述了两个数、两个算式或两个函数之间的大小关系。
在数学研究和实际问题中,不等式的性质具有重要的意义。
本文将深入探讨不等式的基本性质,并进行相应的证明。
一、不等式的基本性质1. 传递性:对于任意的实数a、b、c,若a < b,b < c,则有a < c。
即如果一个数小于另一个数,而另一个数又小于另一个数,那么第一个数一定小于第三个数。
证明:设a < b,b < c,用反证法。
假设a ≥ c,那么由于a < b,根据传递性得知b ≥ c,与b < c矛盾。
故假设不成立,得证。
2. 加法性:对于任意的实数a、b、c,若a < b,则有a + c < b + c。
即两个不等式的同侧同时加上一个相同的数,不等号的方向不变。
证明:设a < b,用反证法。
假设a + c ≥ b + c,那么由于a < b,根据传递性得知a + c < b + c,与假设矛盾。
故假设不成立,得证。
3. 乘法性:对于任意的实数a、b和正数c,若a < b且c > 0,则有ac < bc。
即两个不等式的同侧同时乘上一个正数,不等号的方向不变;若c < 0,则有ac > bc,即两个不等式的同侧同时乘上一个负数,不等号的方向反向。
证明:设a < b,用反证法。
假设ac ≥ bc,若c > 0,则由于a < b,根据乘法性得知ac < bc,与假设矛盾;若c < 0,则有ac > bc,同样与假设矛盾。
故假设不成立,得证。
二、不等式中的常见定理及证明1. 加法定理:对于任意的实数a,b和c,若a < b,则有a + c < b + c。
证明:设a < b,令d = b - a,根据传递性得知0 < d。
由于c > 0,根据乘法性可得0 < c × d。
第一讲 不等式的基本性质与证明一、 知识点分析不等式概念:我们把含有不等号的式子叫做不等式。
不等式的基本性质:(1)a b b a <⇔>(对称性) (2)c a c b b a >⇒>>,(传递性) (3)c b c a b a ±>±⇒>(4)d b c a d c b a +>+⇒>>,(同向相加性) (5)bc ac c b a >⇒>>0,.,bc ac c b a <⇒<>0,(6)bd ac d c b a >⇒>>>>0,0(同向相乘性) (7)a ﹥b ,ab ﹥0,a 1⇒﹤b1(倒数变向性) (8))1,(0>∈>⇒>>n Z n b a b a n n 且(平方法则),)1,(0>∈>⇒>>n Z n b a b a n n 且(开方法则)注:1、无同向相减性和同向相除性,且同向相乘性须正数2、性质(8)中,若n 为正奇数,则无须b a ,都大于零两个实数大小的比较:作差法 b a b a >⇔>-0;b a b a =⇔=-0;b a b a <⇔<-0作商法 若b a ,﹥0,则b a ﹥1a ⇔﹥b ;b a ﹤1a ⇔﹤b ;ba=1a ⇔=b不等式的证明方法: ①作差法②作商法③综合法:由因到果 ④分析法:执果索因 ⑤放缩法:常见类型有⑴nn n n n n n n n111)1(11)1(11112--=-<<+=+- (放缩程度较大);⑵)1111(2111122+--=-<n n n n (放缩程度较小);⑶1(212221--=-+<=n n n n nn⑥数学归纳法:常用于数列类的不等式 ⑦利用函数单调性法二、 例题精选例1.⑴比较a 与b 的大小:a =m 3-m 2n -3mn 2 与 b =2m 2n -6mn 2+n 3⑵设21x x <,比较1211x x -+与2221x x -+的大小⑶设0,0>>b a ,试比较a b b a b a b a 与的大小 例2.⑴已知y x x yx y x y x ---≤≤≤≤5,,2,51,322求的取值范围 ⑵已知y x y x y -≤-≤≤+≤2,51,3x 2求的取值范围例3. 判断下列命题A 是命题B 的什么条件 ⑴ A :x >3 B:x 1<31 ⑵ A :x <3 B :x 1>31 ⑶ A :x >y B :yx 11< ⑷ A :32>>y x 且 B:65>>+xy y x 且例4. 甲乙两人从A 地同时出发沿同一条路线步行到B 地,甲在前一半时间行走的速度为x ,后一半时间行走的速度为y ,乙用速度x 走完前半段路程,用速度y 走完后半段路程,若x ≠y ,试指出谁先到达B 地,并说明理由。
不等式的证明的方法介绍不等式的性质及常用的证明方法主要有:比较法、分析法、综合法、数学归纳法等. 要明确分析法、反证法、换元法、判别式法、放缩法证明不等式的步骤及应用范围. 若能够较灵活的运用常规方法(即通性通法)、运用数形结合、函数等基本数学思想,就能够证明不等式的有关问题.一、不等式的证明方法(1)比较法:作差比较:B A B A ≤⇔≤-0. 作差比较的步骤:①作差:对要比较大小的两个数(或式)作差.②变形:对差进行因式分解或配方成几个数(或式)的完全平方和.③判断差的符号:结合变形的结果及题设条件判断差的符号.注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小.(2)综合法:由因导果.(3)分析法:执果索因.基本步骤:要证……只需证……,只需证……①“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件.②“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可以利用分析法寻找证题的途径,然后用“综合法”进行表达.(4)反证法:正难则反.(5)放缩法:将不等式一侧适当的放大或缩小以达证题目的.放缩法的方法有: ①添加或舍去一些项,如:a a >+12;n n n >+)1(;②将分子或分母放大(或缩小); ③利用基本不等式,如:4lg 16lg 15lg )25lg 3lg (5lg 3log 2=<=+<⋅; 2)1()1(++<+n n n n ; ④利用常用结论:k k k k k 21111<++=-+;k k k k k 111)1(112--=-< ; 111)1(112+-=+>k k k k k(程度大) )1111(21)1)(1(111122+--=+-=-<k k k k k k ; (程度小) (6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元.如:已知222a y x =+,可设θθs i n ,c o s a y a x ==;已知122≤+y x ,可设θθs i n ,c o s r y r x ==(10≤≤r );已知12222=+by a x ,可设θθsin ,cos b y a x ==; 已知12222=-by a x ,可设θθtan ,sec b y a x ==; (7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.⑻数学归纳法法:数学归纳法法证明不等式在数学归纳法中专门研究.证明不等式不但用到不等式的性质,不等式证明的技能、技巧,还要注意到横向结合内容的方方面面.如与数列的结合,与“二次曲线”的结合,与“三角函数”的结合,与“一元二次方程,一元二次不等式、二次函数”这“三个二次”间的互相联系、互相渗透和互相制约,这些也是近年命题的重点.在不等式证明中还要注意数学方法,如比较法(包括比差和比商)、分析法、综合法、反证法、数学归纳法等,还要注意一些数学技巧,如数形结合、放缩、分类讨论等.比较法是证明不等式最常用最基本的方法.分析法是数学解题的两个重要策略原则的具体运用,两个重要策略原则是:正难则反原则,即若从正面考虑问题比较难入手时,则可考虑从相反方向去探索解决问题的方法,即我们常说的逆向思维,由结论向条件追溯;简单化原则,即寻求解题思路与途径,常把较复杂的问题转化为较简单的问题,在证明较复杂的不等式时,可以考虑将这个不等式不断地进行变换转化,得到一个较易证明的不等式.凡是“至少”、“唯一”或含有否定词的命题适宜用反证法.换元法(主要指三角代换法)多用于条件不等式的证明,此法若运用恰当,可沟通三角与代数的联系,将复杂的代数问题转化成简单的三角问题.含有两上字母的不等式,若可化成一边为零,而另一边是关于某字母的二次式时,这时可考虑判别式法,并注意根的取值范围和题目的限制条件.有些不等式若恰当地运用放缩法可以很快得证,放缩时要看准目标,做到有的放矢,注意放缩适度. 不等式证明知识概要不等式的证明问题,由于题型多变、方法多样、技巧性强,加上无固定的规律可循,往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。
不等式的推导和证明方法不等式是数学中不可或缺的一个概念,它用于表示数值之间的关系。
不等式的形式可以很简单,例如$x>2$,也可以非常复杂,例如 $\sqrt{x^2+y^2}>\frac{x+y}{2}$。
在解决各类数学问题时,推导和证明不等式的方法是非常重要的一步。
本文将介绍一些常见的不等式的推导和证明方法。
一、数学归纳法数学归纳法是一种证明数学命题的通用方法。
若要证明某个命题对于自然数 $n$ 成立,则需要证明该命题在 $n=1$ 时成立,并证明若该命题在 $n=k$ 时成立,则该命题在 $n=k+1$ 时也成立。
不等式的证明中,归纳法常常被用于证明柯西不等式、阿贝尔不等式等一些数列不等式。
例如,考虑柯西不等式:$(a_1^2+a_2^2+\cdots+a_n^2)(b_1^2+b_2^2+\cdots+b_n^2)\geq(a_1b _1+a_2b_2+\cdots+a_nb_n)^2$。
对于 $n=1$,该不等式显然成立。
假设对于 $n=k$ 时该不等式成立,即$$(a_1^2+a_2^2+\cdots+a_k^2)(b_1^2+b_2^2+\cdots+b_k^2)\geq(a_1b_1+a_2b_2+\cdots+a_kb_k)^2$$现在考虑 $n=k+1$ 时该不等式是否成立。
根据柯西不等式,有\begin{align*}&(a_1^2+a_2^2+\cdots+a_{k+1}^2)(b_1^2+b_2^2+\cdots+b_{k+1 }^2)\\=&[(a_1^2+a_2^2+\cdots+a_k^2)+a_{k+1}^2][(b_1^2+b_2^2+\cd ots+b_k^2)+b_{k+1}^2]\\\geq&(a_1b_1+a_2b_2+\cdots+a_kb_k+a_{k+1}b_{k+1})^2\end{align*}因此,该命题对于 $n=k+1$ 成立,由数学归纳法可知对于所有$n\in\mathbb{N}$,柯西不等式成立。
不等式的证明(一)教学目标(1)理解证明不等式的三种方法:比较法、综合法和分析法的意义;(2)掌握用比较法、综合法和分析法来证简单的不等式;(3)能灵活根据题目选择适当地证明方法来证不等式;(4)能用不等式证明的方法解决一些实际问题,培养学生分析问题、解决问题的能力;(6)通过不等式证明,培养学生逻辑推理论证的能力和抽象思维能力;(7)通过组织学生对不等式证明方法的意义和应用的参与,培养学生勤于思考、善于思考的良好学习习惯.教学建议(一)教材分析1.知识结构2.重点、难点分析重点:不等式证明的主要方法的意义和应用;难点:①理解分析法与综合法在推理方向上是相反的;②综合性问题选择适当的证明方法.(1)不等式证明的意义不等式的证明是要证明对于满足条件的所有数都成立(或都不成立),而并非是带入具体的数值去验证式子是否成立.(2)比较法证明不等式的分析①在证明不等式的各种方法中,比较法是最基本、最重要的方法.②证明不等式的比较法,有求差比较法和求商比较法两种途径.由于,因此,证明,可转化为证明与之等价的.这种证法就是求差比较法.由于当时,,因此,证明可以转化为证明与之等价的.这种证法就是求商比较法,使用求商比较法证明不等式时,一定要注意的前提条件.③求差比较法的基本步骤是:“作差——变形——断号”.其中,作差是依据,变形是手段,判断符号才是目的.变形的目的全在于判断差的符号,而不必考虑差值是多少.变形的方法一般有配方法、通分的方法和因式分解的方法等,为此,有时把差变形为一个常数,或者变形为一个常数与一个或几个数的平方和的形式.或者变形为一个分式,或者变形为几个因式的积的形式等. 总之.能够判断出差的符号是正或负即可.④作商比较法的基本步骤是:“作商——变形——判断商式与1的大小关系”,需要注意的是,作商比较法一般用于不等号两侧的式子同号的不等式的证明.(3)综合法证明不等式的分析①利用某些已经证明过的不等式和不等式的性质推倒出所要证明的不等式成立,这种证明方法通常叫做综合法.②综合法的思路是“由因导果”:从已知的不等式出发,通过一系列的推出变换,推倒出求证的不等式.③综合法证明不等式的逻辑关系是:….(已知)(逐步推演不等式成立的必要条件)(结论)④利用综合法由因导果证明不等式,就要揭示出条件与结论之间的因果关系,为此要着力分析已知与求证之间的差异和联系、不等式左右两端的差异和联系,在分析所证不等式左右两端的差异后,合理应用已知条件,进行有效的变换是证明不等式的关键.(4)分析法证明不等式的分析①从求证的不等式出发,逐步寻求使不等式成立的充分条件,直至所需条件被确认成立,就断定求证的不等式成立,这种证明方法就是分析法.有时,我们也可以首先假定所要证明的不等式成立,逐步推出一个已知成立的不等式,只要这个推出过程中的每一步都是可以逆推的,那么就可以断定所给的不等式成立.这也是用分析法,注意应强调“以上每一步都可逆”,并说出可逆的根据.②分析法的思路是“执果导因”:从求证的不等式出发,探索使结论成立的充分条件直至已成立的不等式.它与综合法是对立统一的两种方法.③用分析法证明不等式的逻辑关系是:….(已知)(逐步推演不等式成立的必要条件)(结论)④分析法是教学中的一个难点,一是难在初学时不易理解它的本质是从结论分析出使结论成立的“充分”条件,二是不易正确使用连接有关(分析推理)步骤的关键词.如“为了证明”“只需证明”“即”以及“假定……成立”等.⑤分析法是证明不等式时一种常用的基本方法.当证明不知从何入手时,有时可以运用分析法而获得解决.特别对于条件简单而结论复杂的题目往往更是行之有效.(5)关于分析法与综合法①分析法与综合法是思维方向相反的两种思考方法.②在数学解题中,分析法是从数学题的待证结论或需求问题出发,一步一步地探索下去,最后达到题设的已知条件.即推理方向是:结论已知.综合法则是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题.即:已知结论.③分析法的特点是:从“结论”探求“需知”,逐步靠拢“已知”,其逐步推理实际上是要寻找结论的充分条件.综合法的特点是:从“已知”推出“可知”,逐步推向“未知”,其逐步推理实际上是要寻找已知的必要条件.④各有其优缺点:从寻求解题思路来看:分析法是执果索因,利于思考,方向明确,思路自然,有希望成功;综合法由因导果,往往枝节横生,不容易达到所要证明的结论.从书写表达过程而论:分析法叙述繁锁,文辞冗长;综合法形式简洁,条理清晰.也就是说,分析法利于思考,综合法宜于表达.⑤一般来说,对于较复杂的不等式,直接运用综合法往往不易入手,用分析法来书写又比较麻烦.因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法经常是结合在一起使用的.(二)教法建议①选择例题和习题要注意层次性.不等式证明的三种方法主要是通过例题来说明的.教师在教学中要注意例题安排要由易到难,由简单到综合,层层深入,启发学生理解各种证法的意义和逻辑关系.教师选择的训练题也要与所讲解的例题的难易程度的层次相当.要坚持精讲精练的原则.通过一题多法和多变挖掘各种方法的内在联系,对知识进行拓展、延伸,使学生沟通知识,有效地提高解题能力.②在教学过程中,应通过精心设置的一个个问题,激发学生的求知欲,调动学生在课堂活动中积极参与.通过学生参与教学活动,理解不等式证明方法的实质和几种证明方法的意义,通过训练积累经验,能够总结出比较法的实质是把实数的大小顺序通过实数运算变成一个数与0(或1)比较大小;复杂的习题能够利用综合法发展条件向结论方向转化,利用分析法能够把结论向条件靠拢,最终达到结合点,从而解决问题.③学生素质较好的,教师可在教学中适当增加反证法和用函数单调性来证明不等式的内容,但内容不易过多过难.第一课时教学目标1.掌握证明不等式的方法——比较法;2.熟悉并掌握比较法证明不等式的意义及基本步骤.教学重点比较法的意义和基本步骤.教学难点常见的变形技巧.教学方法启发引导式.教学过程(-)导入新课(教师活动)教师提问:根据前一节学过的知识,我们如何用实数运算来比较两个实数与的大小?.(学生活动)学生思考问题,找学生甲口答问题.(学生甲回答:,,,)[点评](待学生回答问题后)要比较两个实数与的大小,只要考察与的差值的符号就可以了,这种证明不等式的方法称为比较法.现在我们就来学习:用比较法证明不等式.(板书课题)设计意图:通过教师设置问题,引导学生回忆所学的知识,引出用比较法证明不等式,导入本节课学习的知识.(二)新课讲授【尝试探索,建立新知】(教师活动)教师板书问题(证明不等式),写出一道例题的题目[问题] 求证教师引导学生分析、思考,研究不等式的证明.(学生活动)学生研究证明不等式,尝试完成问题.(得出证明过程后)[点评]①通过确定差的符号,证明不等式的成立.这一方法,在前面比较两个实数的大小、比较式子的大小、证明不等式性质就已经用过.②通过求差将不等问题转化为恒等问题,将两个一般式子大小比较转化为一个一般式子与0的大小比较,使问题简化.③理论依据是:④由,,知:要证明只要证;要证明这种证明不等式的方法通常叫做比较法.设计意图:帮助学生构建用比较法证明不等式的知识体系,培养学生化归的数学思想.【例题示范,学会应用】(教师活动)教师板书例题,引导学生研究问题,构思证题方法,学会解题过程中的一些常用技巧,并点评.例1 求证(学生活动)学生在教师引导下,研究问题.与教师一道完成问题的论证.[分析]由比较法证题的方法,先将不等式两边作差,得,将此式看作关于的二次函数,由配方法易知函数的最小值大干零,从而使问题获证.证明:∵==,∴.[点评]①作差后是通过配方法对差式进行恒等变形,确定差的符号.②作差后,式于符号不易确定,配方后变形为一个完全平方式子与一个常数和的形式,使差式的符号易于确定.③不等式两边的差的符号是正是负,一般需要利用不等式的性质经过变形后,才能判断.变形的目的全在于判断差的符号,而不必考虑差的值是多少.至于怎样变形,要灵活处理,例1介绍了变形的一种常用方法——配方法.例2 已知都是正数,并且,求证:[分析]这是分式不等式的证明题,依比较法证题将其作差,确定差的符号,应通分,由分子、分母的值的符号推出差值的符合,从而得证.证明:==.因为都是正数,且,所以.∴ .即:[点评]①作差后是通过通分法对差式进行恒等变形,由分子、分母的值的符号推出差的符号.②本例题介绍了对差变形,确定差值的符号的一种常用方法——通分法.③例2的结论反映了分式的一个性质(若都是正数.1.当时,2.当时,.以后要记住.设计意图:巩固用比较法证明不等式的知识,学会在用比较法证明不等式中,对差式变形的常用方法——配方法、通分法.【课堂练习】(教师活动)打出字幕(练习),要求学生独立思考.完成练习;请甲、乙两学生板演;巡视学生的解题情况,对正确的证法给予肯定和鼓励,对偏差点拨和纠正;点评练习中存在的问题.[字幕]练习:1.求证2.已知,,,d都是正数,且,求证(学生活动)在笔记本上完成练习,甲、乙两位同学板演.设计意图,掌握用比较法证明不等式,并会灵活运用配方法和通分法变形差式,确定差式符号.反馈课堂教学效果,调节课堂教学.【分析归纳、小结解法】(教学活动)分析归纳例题和练习的解题过程,小结用比较法证明不等式的解题方法.(学生活动)与教师一道分析归纳,小结解题方法,并记录笔记.比较法是证明不等式的一种最基本、重要的方法.用比较法证明不等式的步骤是:作差、变形、判断符号.要灵活掌握配方法和通分法对差式进行恒等变形.设计意图:培养学生分析归纳问题的能力,掌握用比较法证明不等式的方法.(三)小结(教师活动)教师小结本节课所学的知识.(学生活动)与教师一道小结,并记录笔记.本节课学习了用比较法证明不等式,用比较法证明不等式的步骤中,作差是依据,变形是手段,判断符号才是目的.掌握求差后对差式变形的常用方法:配方法和通分法.并在下节课继续学习对差式变形的常用方法.设计意图:培养学生对所学知识进行概括归纳的能力,巩固所学知识.(四)布置作业1.课本作业:P16.1,2,3.2.思考题:已知,求证:3.研究性题:设,,都是正数,且,求证:设计意图,课本作业供学生巩固基础知识;思考题供学有余力的学生完成,培养其灵活掌握用比较法证明不等式的能力;研究性题是为培养学生创新意识.(五)课后点评1.本节课是用比较法证明不等式的第一节课,在导入新课时,教师提出问题,让学生回忆所学知识中,是如何比较两个实数大小的,从而引入用比较法证明不等式.这样处理合情合理,顺理成章.2.在建立新知过程中,教师引导学生分析研究证明不等式,使学生在尝试探索过程中形成用比较法证明不等式的感性认识.3.例1,例2两道题主要目的在于让学生归纲、总结,求差后对差式变形、并判断符号的方法,以及求差比较法的步骤.在这里如何对差式变形是难点,应着重解决.首先让学生明确变形目的,减少变形的盲目性;其次是总结变形时常用方法,有利于难点的突破.4.本节课采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,学生获取知识必须通过学生自己一系列思维活动完成.教师通过启发诱导学生深入思考问题,培养学生思维灵活、严谨、深刻等良好思维品质.作业答实思考题:,又,获证.研究性题:.所以,。
不等式的证明和应用知识定位不等式是数学竞赛的热点之一。
由于不等式的证明难度大,灵活性强,要求很高的技巧,常常使它成为各类数学竞赛中的“高档”试题。
而且,不论是几何、数论、函数或组合数学中的许多问题,都可能与不等式有关,这就使得不等式的问题(特别是有关不等式的证明)在数学竞赛中显得尤为重要。
证明不等式同大多数高难度的数学竞赛问题一样,没有固定的模式,证法因题而异,灵活多变,技巧性强。
但它也有一些基本的常用方法,要熟练掌握不等式的证明技巧,必须从学习这些基本的常用方法开始。
知识梳理1. 不等式三个基本性质:① 不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
② 不等式两边都乘(或除以)同一个正数,不等号的方向不变。
③ 不等式两边都乘(或除以)同一个负数,不等号的方向改变。
2. 一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做由它们所组成的一元一次不等式组的解集。
设a>b,不等式组⎩⎨⎧>>b x ax 的解集是x>a ⎩⎨⎧<<b x ax 的解集是x<b ⎩⎨⎧<>ax bx 的解集是 b<x<a ⎩⎨⎧<>bx ax 的解集是空集 3.不等式证明的基本方法:(1)比较法比较法可分为差值比较法和商值比较法。
差值比较法:原理 A - B >0A >B .商值比较法:原理 若>1,且B>0,则A>B 。
3.不等式的应用:(1)几何中证明线段或角的不等关系常用以下定理①三角形任意边两边的和大于第三边,任意两边的差小于第三边。
②三角形的一个外角等于和它不相邻的两个内角和。
③在一个三角形中,大边对大角,大角对大边。
直角三角形中,斜边大于任一直角边。
④有两组边对应相等的两个三角形中如果这两边的夹角大,那么第三边也大;如果第三边大,那么它所对的角也大。
⑤任意多边形的每一边都小于其他各边的和(2)不等式(组)的应用主要表现在:作差或作商比较数的大小;求代数式的取值范围;求代数式的最值,列不等式(组)解应用题.其中,不等式(组)解应用题与列方程解应用题的步骤相仿,一般步骤是:(1)弄清题意和题中的数量关系,用字母表示未知数;(2)找出能够表示题目全部含义的一个或几个不等关系;(3)列出不等式(组);(4)解这个不等式(组),求出解集并作答.例题精讲【试题来源】【题目】已知x<0,-1<y<0,将x,xy,xy2按由小到大的顺序排列.【答案】x<xy2<xy.【解析】分析用作差法比较大小,即若a-b>0,则a>b;若a-b<0,则a<b.解因为x-xy=x(1-y),并且x<0,-1<y<0,所以x(1-y)<0,则x<xy.因为xy2-xy=xy(y-1)<0,所以xy2<xy.因为x-xy2=x(1+y)(1-y)<0,所以x<xy2.综上有x<xy2<xy.【知识点】不等式的证明和应用【适用场合】当堂例题【难度系数】2【试题来源】【题目】若试比较A,B的大小.【答案】A>B【解析】显然,2x>y,y>0,所以2x-y>0,所以A-B>0,A>B.【知识点】不等式的证明和应用【适用场合】当堂练习题【难度系数】3【试题来源】【题目】若正数a,b,c满足不等式组试确定a,b,c的大小关系.【答案】b<c<a【解析】解①+c得②+a得③+b得由④,⑤得所以c<a.同理,由④,⑥得b<c.所以a,b,c的大小关系为b<c<a.【知识点】不等式的证明和应用【适用场合】当堂例题【难度系数】3【试题来源】【题目】当k取何值时,关于x的方程3(x+1)=5-kx分别有(1)正数解;(2)负数解;(3)不大于1的解.【答案】k≥-1或k<-3.【解析】解将原方程变形为(3+k)x=2.(1)当 3+k>0,即k>-3时,方程有正数解.(2)当3+k<0,即k<-3时,方程有负数解.(3)当方程解不大于1时,有所以1+k,3+k应同号,即得解为k≥-1或k<-3.注意由于不等式是大于或等于零,所以分子1+k可以等于零,而分母是不能等于零的。
浅谈不等式的证明方法与技巧也是高中数学的重要组成部分,在高考和竞赛中都有举足轻重的地位。
不等式的证明变化大,技巧性强,它不但能够检验学生数学基础知识的掌握水准,而且是衡量学生数学水平的一个重要标志,本文将着重介绍以下几种不等式的初等证明方法和部分方法的例题以便理解。
一、不等式的初等证明方法1.综合法:由因导果。
2.分析法:执果索因。
基本步骤:要证..只需证..,只需证..(1)“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件。
(2)“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可利用分析法寻找证题的途径,然后用“综合法”实行表达。
3.反证法:正难则反。
4.放缩法:将不等式一侧适当的放大或缩小以达证题目的。
放缩法的方法有:(1)添加或舍去一些项,如:(2)利用基本不等式,如:(3)将分子或分母放大(或缩小):5.换元法:换元的目的就是减少不等式中变量,以使问题化难为易、化繁为简,常用的换元有三角换元和代数换元。
6.构造法:通过构造函数、方程、数列、向量或不等式来证明不等式。
证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法。
7.数学归纳法:数学归纳法证明不等式在数学归纳法中专门研究。
8.几何法:用数形结合来研究问题是数学中常用的方法,若求证的不等式是几何不等式或有较明显的几何意义时,能够考虑构造相关几何图形来完成,若使用得好,有时则有神奇的功效。
9.函数法:引入一个适当的函数,利用函数的性质达到证明不等式的目的。
10.判别式法:利用二次函数的判别式的特点来证明一些不等式的方法。
当a>0时,f(x)=ax2+bx+c>0(或<0).△<0(或>0)。
当a<0时,f(x)>0(或<0).△>0(或<0)。
二、部分方法的例题1.换元法换元法是数学中应用最广泛的解题方法之一。
有些不等式通过变量替换能够改变问题的结构,便于实行比较、分析,从而起到化难为易、化繁为简、化隐蔽为外显的积极效果。
浅谈不等式的证明
不等式问题是高中数学的重要内容之一,考察学生对不等式理论熟练掌握的程度也是衡量学生数学水平的重要方面,同时,不等式也是高中数学的基础,因此,在每年的数学高考题中,有关不等式的相关题目占有一定的比例,命题主要涉及解不等式、不等式的证明、不等式的应用这三方面,现将不等式的证明进行研究。
证明不等式有利于提高学生的分析与综合能力,证明不等式没有固定的程序,一个不等式的证法往往不止一种,证明过程往往是几种方法的综合运用,但无论是哪种方法,都离不开不等式的基本性质,另外在教材中提到了平均值不等式、排序不等式、三角不等式,如果能熟记并能运用的话,在证明不等式的过程中会有很大的帮助。
下面将详细列举证明不等式的方法。
一、比较法
比较法是证明不等式的一种最基本也是最重要的方法,主要有作差比较和作商比较两种形式。
(1)作差比较法的步骤一般为:①作差式②差式变形③判断差式的正负④下结论;在这些步骤中,最难的就是差式变形,常用到的有配方法、通分法、因式分解法等等。
(2)作商比较法的步骤为:①作商式②商式变形③判断商式的值是大于1、小于1还是等于1④下结论。
(3)当不等式两边为多项式、分式或对数形式时,往往选择作差法;当不等式两边为指数时,常采用作商法。
下面将列举例子进行
分析,以进一步加深对比较法的认识。
例1 若40πβα<
<<,则ββααcos sin cos sin +<+
证明 β
βααβαβαβαβαβαβαπβαβαππβαβαβαβαβαβαβαβαβαβαβ
βααcos sin cos sin 02
sin 2cos 2sin 22
sin 222cos ,02sin 420,02840)2
sin 2(cos 2sin 22
cos 2sin 22sin 2cos 2)
cos (cos )sin (sin cos sin cos sin +<+<+-+-+>>+<-<+<<-<-<<<+-+-=-+--+=-+-=+-+即)(所以得于是有,所以因为
二、放缩法
放缩法是证明不等式所特有的方法,把要证的不等式中的一部分量进行放大或缩小,形成新的不等式,而这个新的不等式必须是比原不等式更容易证明的,同时,由新的不等式成立可以推出原不等式成立。
另外,放缩目标必须明确,从实际出发,从原不等式过渡到新的不等式是证明的关键。
下面就实际例子进行分析。
例2 若,求证:且3,0,,≥++>zx yz xy z y x
3333
13132)1()3(),2()1(3227
722772277222222222222222277227722772222772222772233522522773
322522577227
722772277≥++++++++=•≥++≥++++≥++++++++≥++≥++=++≥+++≤++≥++≤+•+•≤+≥++++++++++z
x x z x z yz z y z y xy y x y x zx yz xy x z z y y x x z z y y x z
x x z x z yz z y z y xy y x y x x z z
x x z x z z y yz z y z y y x y
x y x y x xy y x y x y x xy y x y x y x y x y x y x y x y y x x y x y x z
x x z x z yz z y z y xy y x y x 所以)(和右边分别相加,得)三个不等式式子左边)、(、(同理所以及证明:由于即的公式,
,也可运用排序不等式运用不等式的基本性质但根本方法是的方法是多种多样的,分析:对一个式子放缩β
αβααββαβ
αβααββα
三、数形结合法
中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合,或形数结合,作为一种数学思想方法,数形结合的应用大致又可分为两种情形:1、借助于数的精确性来阐明形的某些属性,2、借助形的几何直观性来阐明数之间某种关系。
解决不等式的证明问题,可以运用数形结合的思想方法, 构造一些几何图形,这种解法别有新意。
例3:求证222)2
(2b a b a +≥+ 2
222
2222222222
222)()(2)(|)||(|,|)||(|)(2,)2()
()(22,22,
,,
,0
,0)1(b a b a b a b a b a b a b a b a b a b a b a CD BE b a c BE b a c AE AB b
DE CA a AD BC BCDE b a b a b a +≥++≥++≥++≥++≥+≥+==+=======+≥≥所以而同法可证
不全大于或等于零,则若所以原不等式成立
所以而则其中,为高的直角梯形为上、下底,
如图,作以证明:
四、综合法
从不等式的一边出发,借助有关性质和有关定理,经过逐步的逻辑推理,最后达到待证结论,证明不等式成立,其特点和思路是“由因导果”,利用综合法证明不等式时,要利用已经证明过的不等式作基础,运用不等式的性质,逐步推出所要证明的不等式。
c b a b ca a bc c ab c b a ++>++证:
为不全相等的正数,求:设例,,4
分析:证明这个不等式时,要从不等式的左端出发,利用基本不等式
c
b a c
ab b ca b ca a bc a bc c ab c
ab b ca b ca a bc a bc c ab b
ca a bc c ab b a
bc c ab xy y x ++=•+•+•>+++++=++=•≥+]222[21)]()()[(21,2证明:由基本不等式得
不等式很快就推导出所要证的,这样一步步推导,推导出
的公式
五、分析法
由已知条件推导出结论时,采用综合法为宜,但当证明不知如何下手时,往往采用分析法,分析法是从求证的不等式出发,寻求其成立的充分条件,直至与题设相同为止,从而断定所要证明的不等式成立。
其特点是“执果索因” |1|||1|1|1|1|1|1|,1||,1||5ab b a ab
b a ab
b a ab
b a b a +<+⇔<++<++<++<<证明:则变成多项式的比较
去绝对值符号,去分母,两边平方,除分析:先对求证:已知例0)1)(1(0
1)1()(2222222
2<--⇔<--+⇔+<+⇔b a b a b a ab b a
成立,于是不等式获证
所以
所以因为0)1)(1(,01,01,1||,1||2222<-->-<-<<b a b a b a
六、反证法
反证法是一种间接证法,首先从假设结论不成立开始,推出矛盾,从而判定假设不成立,最后判定结论成立,当我们所要证明的不等式具有特点:1、直接证明比较困难;2、结论的反面比结论本身更具明确性。
这时我们可考虑使用反证法。
用反证法明比较困难,可考虑使分析:本题如果直接证求证:设例2
,2633≤+=+q p q p
成立
所以原结论成立,即因此假设不成立
,这个不等式不成立,即即所以得因为于是有即证明:设20)1(,
012,261282
,6128,6128)2(,2,2222332333233≤+<-<+-<+-=++->+-+-=->->>+q p q q q q q q p q q q p q q q q p q p q p
七、数学归纳法
这是数学上证明与自然数N 有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明不等式成立。
(1)证明当n 取第一个值0n 时不等式成立。
(2)假设当)(0为自然数n k k n ≥=时不等式成立(成为归纳假设),证明当1+=k n 时不等式也成立。
n
x x x x x x x x n i x n n i ≥++++==>....1...),,...,3,2,1(07321321求证
且:设例
成立
数得,不等式对任何自然、综合时,不等式也成立
即于是知由归纳假设则令,不妨设有一个小于,大于时,则其中至少有一个不全为当显然成立
时,当且当时有
时不等式成立,即当、假设时,不等式显然成立
、当证明:
n k n k x x k x x x x k x x x x x x x y x x x x x k x x x y k
x x x x x x y x x y x x x x x x k x x x x x x x x x x x x x x x x x k
x x x x x x x x k n n k k k k k k k k k k k k k k k k n k k k k k n 211.
1)1)(1()1(1
1)...(...,
......,1,...,,,
,1,1111,,...,,)2(1...1...)1(1
...,0,,...,,...1 (2111111111)
1113211
321321321211111112113213211321121321321+=+>--++=--+++≥-++++++=+++++≥++++≥++++==<>+≥++++==>≥++++===++++++++++++。