西南大学19秋0346]《初等数论》
- 格式:docx
- 大小:22.24 KB
- 文档页数:1
问题一:数学教育专业分为专业基础课:高等代数,数学分析,空间解析几何以及专业课:实变函数论,点集拓扑,复变函数论,微分几何,概率与数理统计,数学建模,初等数论,数学教学论。
数学主要的学科首要产生于商业上计算的需要、了解数与数之间的关系、测量土地及预测天文事件。
这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的领域相关连著。
除了上述主要的关注之外,亦有用来探索由数学核心至其他领域上之间的连结的子领域:至逻辑、至集合论(基础)、至不同科学的经验上的数学(应用数学)、及较近代的至不确定性的严格学习。
一、李永乐:李永乐老师毕业于北京大学数学系,后来在清华大学数学系任教,他还是前二李全书的代数执笔者,李永乐全书和660题的主编,可以说是考研数学界的权威代表。
他的研究方向是线性代数。
二、汤家凤:汤老师是南京大学数学系博士,南京工业大学副教授。
他的研究方向为高等代数。
三、李林:李林老师毕业于北师大数学系,大连理工大学数学科学学院数学研究所教师,职称为讲师,研究方向为常微分方程。
四、武忠祥:西安交通大学数学系教授,从事高等数学教学和考研辅导23年,国家高等数学试题库骨干专家。
五、王式安:王式安本人毕业于复旦大学数学系,后来任教于北京理工大学。
王式安老师是前考研命题组的老师,主要是讲概率。
六、方复全:首都师范大学特聘教授,教育部长江学者特聘教授。
主要研究方向为微分几何、微分拓扑学。
七、曹一鸣:北京师范大学数学学科学院教授,博士生导师,贵州师范大学特聘教授。
主要从事数学课程与教学、数学史与数学教育研究。
八、戎小春:首都师范大学数学系硕士毕业,后留校任教。
现为美国Rutgers大学教授。
他的研究方向主要为微分几何理论。
九、王贵君:天津师范大学数学学院教授。
研究方向:模糊测度与积分,模糊神经网络,模糊系统逼近。
十、汪晓勤:中国科学院科学技术史博士专业,获哲学博士学位。
现任华东师范大学数学系教授,学科教育(数学)专业博士生导师。
1、理性思维的含义包括的四个方面是.独立思考,不迷信权威;尊重事实,不感情用事;思辨分析,不混淆是非;严谨推理,不违背逻辑。
.独立思考,不迷信权威;尊重事实,不感情用事;思辨分析,不混淆是非;合情推理,不需要逻辑推理。
.博采众长,不独断猜想;尊重群众,不采纳少数意见;思辨分析,不混淆是非;严谨推理,不违背逻辑。
.合作交流,不独自思考;尊重事实,不感情用事;思辨分析,不混淆是非;严谨推理,不违背逻辑。
2、数学史教育应该遵循的四个原则是. B. 科学性、实用性、趣味性、广泛性.普及性、实用性、趣味性、广泛性.科学性、实用性、趣味性、民族性.科学性、教育性、趣味性、广泛性3、《周易》对中国古代数学发展的影响主要表现在以下三个方面.第一,易数在各领域的广泛应用和发展;第二,《周易》对中国古代数学家知识结构的影响;第三,《周易》对中国古代数学思维方式的影响。
.第一,提出了勾股定理;第二,阐述了“割圆术”;第三,提出了“杨辉三角”.第一,易数在各领域的广泛应用和发展;第二,阐述了“割圆术”;第三,算命.第一,提出了勾股定理;第二,《周易》对中国古代数学家知识结构的影响;第三,《周易》对中国古代数学思维方式的影响。
4、中学数学教学中最重要的三种基本思想方法是. F. 函数思想、方程思想和数形结合思想.化归思想、方程思想和概率统计思想.函数思想、算法思想和概率统计思想.函数思想、方程思想和概率统计思想5、古希腊文明的数学标志性著作是.《高观点下的初等数学》.《几何原本》. 《九章算术》.《怎样解题》6、波利亚认为中学数学教育的根本任务是.教会学生解题. 教会学生思考. 教会学生应用.教会学生猜想7、 .在数学教学成为一门科学学科的历史发展过程中,有两门学科对其有过根本性的影响,它们是. C. 数学和心理学. 数学与物理学. 教育学与数学.教育学与心理学8、决定数学教学目标的主要依据是. 学生的年龄特征. 学生的情感因素. 教师的教学能力.教材的难度9、波利亚在“怎样解题表”中,将解题过程分为. E. 了解问题、拟定计划、实现计划三大步骤. 了解问题、拟定计划、实现计划和回顾四大步骤. 读题、解题、反思三大步骤.读题、解题过程、作答三大步骤10、 中国古代数学的标志性著作是.《九章算术》.《几何原本》.《周髀算经》.《易经》11、《全日制义务教育数学课程标准(实验稿)》的基本理念给义务教育数学课程的定位是. A. 基础性、普及性与灵活性. D. 基础性、普及性与发展性.选择性、基础性与操作性.基础性、选择性与发展性12、中国古代数学教育的主要目的是.选拔人才.经世致用.普及算法.思维训练多项选择题13、数学命题的教学设计的重点是.结论的发现过程.推导的思考过程.熟记命题的方法.弄清命题的条件与结论14、中国数学双基教学的特征是.重复练习依赖变式获得提升.记忆通向理解直至形成直觉.运算速度赢得思维效率.重视逻辑演绎保持严谨准确15、“提高课堂效益的初中数学教改实验”的指导思想、原则和方法是.积极前进,循环上升.开门见山,适当集中.淡化形式,注重实质.先做后说,师生共作16、美籍匈牙利数学教育家波利亚关于解数学解题理论的代表作是.《数学的发现》.《中小学生数学能力心理学》.《数学与猜想》.《怎样解题》17、构建数学课堂文化最重要的因素是.创造.安静.合作.民主18、弗赖登塔尔关于现实数学教育中的数学化的两种形式是.将数学问题转化为实际应用问题.将数学概念还原成为现实生活实例.实际问题转化为数学问题的数学化,即发现实际问题中的数学成分,并对这些成分作符号化处理。
(0346)《初等数论》网上作业题及答案1:第一次作业2:第二次作业3:第三次作业4:第四次作业5:第五次作业1:[论述题]数论第一次作业参考答案:数论第一次作业答案2:[单选题]如果a|b,b|c,则()。
A:a=cB:a=-cC:a|cD:c|a参考答案:C马克思主义哲学是我们时代的思想智慧。
作为时代的思想智慧,马克思主义哲学主要具有反思功能、概括功能、批判功能和预测功能。
(1)“反思”是哲学思维的基本特征,是以思想的本身为内容,力求思想自觉其为思想。
通过不断的反思,揭示自己时代的本质和规律,达到对事物本质和规律性的认识。
(2)概括是马克思主义哲学的重要功能,是马克思主义哲学把握人与世界总体性关系的基本思维方式。
(3)马克思主义哲学的批判功能主要是指对现存世界的积极否定。
(4)马克思主义哲学的预测功能在于预见现存世界的发展趋势。
3:[单选题]360与200的最大公约数是()。
A:10B:20C:30D:40参考答案:D数论第一次作业答案4:[单选题]如果a|b,b|a ,则()。
A:a=bB:a=-bC:a=b或a=-bD:a,b的关系无法确定参考答案:C数论第一次作业答案5:[单选题]-4除-39的余数是()。
A:3B:2C:1D:0参考答案:C数论第一次作业答案6:[单选题]设n,m为整数,如果3整除n,3整除m,则9()mn。
A:整除B:不整除C:等于D:小于参考答案:A数论第一次作业答案7:[单选题]整数6的正约数的个数是()。
A:1B:2C:3D:4参考答案:D数论第一次作业答案8:[单选题]如果5|n ,7|n,则35()n 。
A:不整除B:等于C:不一定D:整除参考答案:D数论第一次作业答案1:[论述题]数论第二次作业参考答案:数论第二次作业答案2:[单选题]288与158的最大公约数是()。
A:2B:4C:6D:8参考答案:A数论第二次作业答案3:[单选题]-337被4除余数是()。
西南大学培训与继续教育学院课程考试试题卷学期:2020年秋季
课程名称【编号】:初等数论【0346】 A卷
考试类别:大作业满分:100分
1.解:整除的定义:
设a, b是任意两个整数,其中b不为零,若存在一个整数q使得a=bq,我们就说b 整除a,记为bla.这时b叫a的因数, a叫b的倍数.若这样的q不存在,则说b 不整除a.
6整除24.
8不整除42.
3.解:欧拉函数()a
ϕ是定义在正整数上的函数,它在正整数a上的值等于序列0,1,2,…,a-1中与a互质的数的个数。
(5)
ϕ=4
(6)
ϕ=2.
4.解:220=2²×5×11。
6.解如下图
8.解:素数除了1和自己就没有其他约数了.4m-1或4m+1,其中4m-1看成4m+3,即一切奇素数都可以表示成4m+3或4m+1的形式.因为,一切奇素数不可以写成4m的形式(约数4),但也不能写成4m+2(约数2).所以一切奇素数都可以表示成4m-1或4m+1的形式,即41
m±.
- 1 -。
第一节 整数的p 进位制及其应用正整数有无穷多个,为了用有限个数字符号表示出无限多个正整数,人们发明了进位制,这是一种位值记数法。
进位制的创立体现了有限与无限的对立统一关系,近几年来,国内与国际竞赛中关于“整数的进位制”有较多的体现,比如处理数字问题、处理整除问题及处理数列问题等等。
在本节,我们着重介绍进位制及其广泛的应用。
基础知识给定一个m 位的正整数A ,其各位上的数字分别记为021,,,a a a m m,则此数可以简记为:021a a a A m m (其中01 m a )。
由于我们所研究的整数通常是十进制的,因此A可以表示成10的1m 次多项式,即012211101010a a a a A m m m m ,其中1,,2,1},9,,2,1,0{ m i a i 且01 m a ,像这种10的多项式表示的数常常简记为10021)(a a a A m m 。
在我们的日常生活中,通常将下标10省略不写,并且连括号也不用,记作021a a a A m m ,以后我们所讲述的数字,若没有指明记数式的基,我们都认为它是十进制的数字。
但是随着计算机的普及,整数的表示除了用十进制外,还常常用二进制、八进制甚至十六进制来表示。
特别是现代社会人们越来越显示出对二进制的兴趣,究其原因,主要是二进制只使用0与1这两种数学符号,可以分别表示两种对立状态、或对立的性质、或对立的判断,所以二进制除了是一种记数方法以外,它还是一种十分有效的数学工具,可以用来解决许多数学问题。
为了具备一般性,我们给出正整数A 的p 进制表示:012211a p a p a p a A m m m m ,其中1,,2,1},1,,2,1,0{ m i p a i 且01 m a 。
而m 仍然为十进制数字,简记为p m m a a a A )(021 。
典例分析例1.将一个十进制数字2004(若没有指明,我们也认为是十进制的数字)转化成二进制与八进制,并将其表示成多项式形式。
(0346)《初等数论》复习思考题1. 一个不等于1的自然数,分别去除967,1000,2001得到相同的余数。
试求这个自然数。
2. 求证:不可能存在两个质数p 1,p 2,使得p 1 + p 2 = 111…1(20位数)。
3. 如果p 和p + 2都是大于3的质数,求证6 | p + 1。
4. 设m , n 为整数,求证m +n , m -n 与mn 中一定有一个是3的倍数。
5. 证明:两个奇数的平方差是8的倍数。
6.已知p 为偶数,q 为奇数。
方程组⎩⎨⎧=+=-q y x p y x 39918的解是整数,那么( )。
A. x 是奇数,y 是偶数 B. x 是偶数,y 是奇数C. x 是偶数,y 是偶数D. x 是奇数,y 是奇数7. 求1980的标准分解式。
8. 求792与594的最大公因数。
9. 求2001!中末尾0的个数。
10.求不定方程10x -7y =17的一切整数解。
11.求不定方程15x +10y +6z =61的一切整数解。
12.袋子里有三种球,分别标有数字2,3和5,小明从中摸出12个球,它们的数字之和是 43,问:小明最多摸出标有数字2的球多少个?13.下列结论是否成立。
A. 若a 2≡b 2(mod m ),则a ≡b (mod m )。
B. 若a 2≡b 2(mod m ),则a ≡b (mod m )或a ≡-b (mod m )至少有一个成立。
C. 若a ≡b (mod m ),则a 2≡b 2(mod m )。
D. 若a ≡b (mod 2),则a 2≡b 2(mod 22)。
E. 若ac ≡bc (mod m ),c 关于模m 不同余于0,则a ≡b (mod m )。
F. 若a ≡b (mod 3),k ≥2,则a k ≡b k (mod 3)。
14.若n 为为然数,求证9n +1≡8n +9(mod 64)。
15.写出模9的一个完全剩余系。
16.写出模8的一个简化剩余系。
第一章 整数的可除性§1 整除的概念·带余除法 1.证明定理3定理3 若12n a a a ,,,都是m 得倍数,12n q q q ,,,是任意n 个整数,则1122n n q a q a q a +++是m 得倍数.证明:12,,n a a a 都是m 的倍数。
∴ 存在n 个整数12,,n p p p 使 1122,,,n n a p m a p m a p m ===又12,,,n q q q 是任意n 个整数1122n nq a q a q a ∴+++1122n n q p m q p m q p m =+++1122()n n p q q p q p m =+++即1122n n q a q a q a +++是m 的整数2.证明 3|(1)(21)n n n ++ 证明(1)(21)(1)(21)n n n n n n n ++=+++-(1)(2)(1)(1)n n n n n n =+++-+ 又(1)(2)n n n ++,(1)(2)n n n -+是连续的三个整数故3|(1)(2),3|(1)(1)n n n n n n ++-+3|(1)(2)(1)(1)n n n n n n ∴+++-+从而可知3|(1)(21)n n n ++3.若00ax by +是形如ax by +(x ,y 是任意整数,a ,b 是两不全为零的整数)的数中最小整数,则00()|()ax by ax by ++.证:,a b 不全为0∴在整数集合{}|,S ax by x y Z =+∈中存在正整数,因而有形如ax by +的最小整数00ax by +,x y Z ∀∈,由带余除法有0000(),0ax by ax by q r r ax by +=++≤<+则00()()r x x q a y y q b S =-+-∈,由00ax by +是S 中的最小整数知0r =00|ax by ax by ∴++00|ax by ax by ++ (,x y 为任意整数) 0000|,|ax by a ax by b ∴++ 00|(,).ax by a b ∴+ 又有(,)|a b a ,(,)|a b b 00(,)|a b ax by ∴+ 故00(,)ax by a b +=4.若a ,b 是任意二整数,且0b ≠,证明:存在两个整数s ,t 使得||,||2b a bs t t =+≤成立,并且当b 是奇数时,s ,t 是唯一存在的.当b 是偶数时结果如何? 证:作序列33,,,,0,,,,2222b b b bb b ---则a 必在此序列的某两项之间即存在一个整数q ,使122q q b a b +≤<成立 ()i 当q 为偶数时,若0.b >则令,22q qs t a bs a b ==-=-,则有 02222b q q qa bs t ab a b b t ≤-==-=-<∴<若0b < 则令,22q qs t a bs a b =-=-=+,则同样有2b t <()ii 当q 为奇数时,若0b >则令11,22q q s t a bs a b ++==-=-,则有 1102222b b q q t a bs a b a b t ++-≤=-=-=-<∴≤ 若 0b <,则令11,22q q s t a bs a b ++=-=-=+,则同样有2b t ≤,综上所述,存在性得证.下证唯一性当b 为奇数时,设11a bs t bs t =+=+则11()t t b s s b -=-> 而111,22b bt t t t t t b ≤≤∴-≤+≤ 矛盾 故11,s s t t == 当b 为偶数时,,s t 不唯一,举例如下:此时2b为整数 11312(),,22222b b b b b b b t t ⋅=⋅+=⋅+-=≤§2 最大公因数与辗转相除法 1.证明推论4.1推论4.1 a ,b 的公因数与(a ,b )的因数相同. 证:设d '是a ,b 的任一公因数,∴d '|a ,d '|b 由带余除法111222111111,,,,,0n n n n n n n n n n a bq r b r q r r r q r r r q r r r r b---++-=+=+=+==≤<<<<∴(,)n a b r =∴d '|1a bq -1r =, d '|122b r q r -=,┄, d '|21(,)n n n n r r q r a b --=+=,即d '是(,)a b 的因数。