超临界流体萃取法原理
- 格式:docx
- 大小:36.68 KB
- 文档页数:2
超临界萃取原理超临界流体萃取是当前国际上最先进的物理分离技术。
常见的临界流体中,由于CO2化学性质稳定,无毒害和无腐蚀性,不易燃和不爆炸,临界状态容易实现,而且其临界温度(31.1℃)接近常温,在食品及医药中香气成分,生理活性物质、酶及蛋白质等热敏物质无破坏作用,因而常用CO2作为作为萃取剂进行超临界萃取。
一、超临界CO2纯CO2的临界压力是7.3MPa和31.1℃时,此状态CO2被称为超临界CO2。
在超临界状态下,CO2流体是一种可压缩的高密度流体,成为性质介于液体和气体之间的单一状态,兼有气液两相的双重特点:它的密度接近液体,粘度是液体的1%,自扩散系数是液体的100倍,因而它既具有与气体相当的高扩散系数和低粘度,又具有与液体相近的密度和对某些物质很强的溶解能力,可以说超临界CO2对某些物质有着特殊的渗透力和溶解能力。
二、超临界CO2萃取过程超临界CO2密度对对温度和压力变化十分敏感,所以调节正在使用的CO2的压力和密度,就可以通过调节CO2密度来调整该CO2对欲提取物质的溶解能力;对应各压力范围所得到的的萃取物不是单一的,可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,与被萃取物质完全或部分分开,从而达到分离提纯的目的。
三、超临界CO2溶解选择性超临界状态下的CO2具有选择性溶解,对低分子、弱极性、脂溶性、低沸点的成分如挥发油、烃、酯、内脂、醚、环氧化合物等表现出优异的溶解性,而对具有极性集团(-OH、-COOH等)的化合物,极性基团愈多,就愈难萃取,故多元醇、多元酸及多羟基的芳香物质均难溶于超临界CO2。
对于分子量大的化合物,分子量越大,越难萃取,分子量超过500的高分子化合物几乎不溶,因而对这类物质的萃取,就需加大萃取压力或者向有效成分和超临界CO2组成的二元体系中加入具有改变溶质溶解度的第三组成粉(即夹带剂),来改变原来有效成分的溶解度。
一般来说,具有很好性能的溶剂,也往往是很好的夹带剂,如甲醇、乙醇、丙酮、乙酸乙酯等。
超临界流体萃取的工作原理及应用高等生化分离技术112300003 林兵一、超临界流体萃取的概念超临界流体(SCF)是指状态超过气液共存时的最高压力和最高温度下物质特有的点—临界点后的流体。
超临界流体是一种介于气体和液体之间的流体,无相之境。
超临界流体萃取(SFE)是将超临界流体作为萃取溶剂的一种萃取技术,兼有蒸馏和液液萃取的特征。
二、超临界流体萃取的理论原理1.任何一种物质都存在三种相态:气相、液相、固相。
2.液、气两相成平衡状态的点叫临界点。
在临界点时的温度和压力分别称为临界温度Tc和临界压力Pc。
不同的物质其临界点所要求的压力和温度各不相同。
3.物质的临界状态是指其气态与液态共存的一种边缘状态。
在此状态中,液体的密度与其饱和蒸汽的密度相同,因此界面消失。
利用此原理诞生了超临界流体萃取技术。
三、超临界流体萃取的技术原理(CO2为例)利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。
在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。
当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以超临界CO2流体萃取过程是由萃取和分离过程组合而成的。
超临界CO2是指处于临界温度与临界压力(称为临界点)以上状态的一种可压缩的高密度流体,是通常所说的气、液、固三态以外的第四态,其分子间力很小,类似于气体,而密度却很大,接近于液体,因此具有介于气体和液体之间的气液两重性质,同时具有液体较高的溶解性和气体较高的流动性,比普通液体溶剂传质速率高,并且扩散系数介于液体和气体之间,具有较好的渗透性,而且没有相际效应,因此有助于提高萃取效率,并可以大幅度节能。
超临界CO2的物理化学性质与在非临界状态的液体和气体有很大的不同。
超临界流体萃取技术技术原理超临界流体萃取分离过程的原理是超临界流体对脂肪酸、植物碱、醚类、酮类、甘油酯等具有特殊溶解作用,利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。
在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。
当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以超临界流体萃取过程是由萃取和分离组合而成的。
萃取装置超临界萃取装置可以分为两种类型,一是研究分析型,主要应用于小量物质的分析,或为生产提供数据。
二是制备生产型,主要是应用于批量或大量生产。
超临界萃取装置从功能上大体可分为八部分:萃取剂供应系统,低温系统、高压系统、萃取系统、分离系统、改性剂供应系统、循环系统和计算机控制系统。
具体包括二氧化碳注入泵、萃取器、分离器、压缩机、二氧化碳储罐、冷水机等设备。
由于萃取过程在高压下进行,所以对设备以及整个管路系统的耐压性能要求较高,生产过程实现微机自动监控,可以大大提高系统的安全可靠性,并降低运行成本。
超临界流体萃取的特点(1)可以在接近室温(35-40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。
因此,在萃取物中保持着药用植物的全部成分,而且能把高沸点,低挥发度、易热解的物质在其沸点温度以下萃取出来;(2)使用SFE是最干净的提取方法,由于全过程不用有机溶剂,因此萃取物绝无残留溶媒,同时也防止了提取过程对人体的毒害和对环境的污染,是100%的纯天然;(3)萃取和分离合二为一,当饱含溶解物的CO2-SCF流经分离器时,由于压力下降使得CO2与萃取物迅速成为两相(气液分离)而立即分开,不仅萃取效率高而且能耗较少,节约成本;(4)CO2是一种不活泼的气体,萃取过程不发生化学反应,且属于不燃性气体,无味、无臭、无毒,故安全性好;(5)CO2价格便宜,纯度高,容易取得,且在生产过程中循环使用,从而降低成本;(6)压力和温度都可以成为调节萃取过程的参数。
超临界萃取详解超临界流体萃取:作为一种分离过程,是基于一种溶剂对固体或液体的萃取能力和选择性,在超临界状态下较之在常温常压下可得到极大的提高。
原理:利用超临界流体作为萃取剂,从固体或液体中萃取出某种高沸点和热敏性成分,以达到分离和纯化目的的一种分离技术。
超临界流体:即温度和压力略超过或靠近超临界温度(Tc)和临界压力(Pc),介于气体和液体之间的流体。
超临界流体萃取过程:介于蒸馏和液-液萃取过程之间,是利用超临界状态的流体,依靠被萃取物质在不同蒸气压力下所具有的不同化学亲和力和溶解能力进行分离、纯化的单元操作。
超临界流体与待分离混合物中的溶质具有异常相平衡行为和传递性能,且它对溶质的溶解能力随着压力和温度的改变而在相当宽的范围内发生变动,因此利用超临界流体作为溶剂可从多种液态或固态混合物中萃取出待分离的组分超临界流体:指在临界温度和临界压力以上的流体。
临界温度:指高于此温度时,该物质处于无论多高压力下均不能被液化时的温度。
临界压力:临界区附近压力和温度的变化,对密度的影响?非挥发性溶质在超临界流体中的溶解度与流体密度的关系?在临界区附近压力和温度的微小变化,可引起流体密度的大幅度变化。
溶质在超临界流体中的溶解度大致和流体的密度成正比。
b.超临界流体的传递性质:超临界流体的密度近似于液相,溶解能力也基本上相同,而黏度却接近普通气体,自扩散能力比液体大约100倍。
此外,传递性质值的范围,在气体和液体之间。
超临界流体是一种低黏度、高扩散系数、易流动的相;扩散传递更加容易并能减少泵送所需的能量。
降低了与之相平衡的液相黏度和表面张力,提高了平衡液相的扩散系数,有利于传质。
在临界点附近,压力和温度的微小变化可对溶剂的密度、扩散系数、表面张力、黏度、溶解度、介电常数等带来明显的变化。
c.超临界流体的选择性有效地分离产物或除去杂质的关键是用作萃取剂的超临界流体应具有很好的选择性按相似相容的原则超临界流体与被萃取物质的化学性质越相按操作角度来看操作温度越接近临界温度,溶解能力越大基本原则超临界流体的化学性质和待分离的物质化学性质相近;操作温度和超临界流体的临界温度相近。
超临界流体萃取原理
超临界流体萃取是一种利用超临界流体的溶解能力进行物质分离和提纯的技术方法。
超临界流体是指在超过临界点温度和压力下的流体状态,具有介于气体和液体之间的特性。
超临界流体萃取的原理是利用超临界流体对目标物质的高溶解能力。
在超临界流体中,由于其密度较大和扩散系数较高,可以有效溶解和扩散目标物质。
当超临界流体与原料混合后形成均匀的相态,目标物质会从原料中溶解到超临界流体中,实现分离和提取。
随着溶液中溶解物质的增加,超临界流体的溶解能力也会增强,进一步提高了物质的分离效率。
此外,超临界流体萃取还具有可调控性。
通过调整超临界流体的温度和压力,可以改变其溶解性能和扩散能力,实现对不同物质的选择性萃取。
这种可调控性使得超临界流体萃取在分离和提纯复杂混合体系中有广泛的应用前景。
超临界流体萃取技术具有很多优点。
首先,超临界流体相较于传统有机溶剂,在操作温度和压力上更为温和,有利于保持萃取物质的活性和稳定性。
此外,超临界流体通常是可再生的,在环境友好性上也有优势。
最重要的是,由于超临界流体萃取过程无需使用有机溶剂,能够减少产生废液的量,有利于节约资源和降低处理成本。
总之,超临界流体萃取是一种高效、环保的分离和提纯技术。
它基于超临界流体对物质的高溶解能力和可调控性,可广泛应用于食品、医药、化工等领域,具有很大的发展潜力。
所谓超临界流体,是指物体处于其临界温度和临界压力以上时的状态。
这种流体兼有液体和气体的优点,密度大,粘稠度低,表面张力小,有极高的溶解能力,能深入到提取材料的基质中,发挥非常有效的萃取功能。
而且这种溶解能力随着压力的升高而急剧增大。
这些特性使得超临界流体成为一种好的萃取剂。
而超临界流体萃取,就是利用超临界流体的这一强溶解能力特性,从动、植物中提取各种有效成份,再通过减压将其释放出来的过程。
超临界流体萃取法是一种物理分离和纯化方法,它是以CO2为萃取剂,在超临界状态下,加压后使其溶解度增大。
将物质溶解出来,然后通过减压又将其释放出来。
该过程中CO2循环使用。
在压力为8--40MPa时的超临界CO2足以溶解任何非极性、中极性化合物,在加入改性剂后则可溶解极化物。
一、超临界萃取的技术原理利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。
在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。
当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以超临界CO2流体萃取过程是由萃取和分离过程组合而成的。
超临界CO2是指处于临界温度与临界压力(称为临界点)以上状态的一种可压缩的高密度流体,是通常所说的气、液、固三态以外的第四态,其分子间力很小,类似于气体,而密度却很大,接近于液体,因此具有介于气体和液体之间的气液两重性质,同时具有液体较高的溶解性和气体较高的流动性,比普通液体溶剂传质速率高,并且扩散系数介于液体和气体之间,具有较好的渗透性,而且没有相际效应,因此有助于提高萃取效率,并可大幅度节能。
超临界CO2的物理化学性质与在非临界状态的液体和气体有很大的不同。
由于密度是溶解能力、粘度是流体阻力、扩散系数是传质速率高低的主要参数,因此超临界CO2的特殊性质决定了超临界CO2萃取技术具有一系列的重要特点。
超临界流体萃取的原理超临界流体萃取是一种高效、环保的分离技术,通常与传统的有机溶剂萃取相比,具有更高的选择性和更广泛的应用范围。
本文将介绍超临界流体萃取的原理,包括超临界流体的定义、超临界流体萃取的机理、超临界流体萃取的优势和应用以及超临界流体萃取技术的进展。
1. 超临界流体的定义超临界流体是指在临界点以上(即临界温度和临界压力的组合)的温压条件下,液体和气体进入一种状态,成为具有超临界特性的流体。
超临界流体具有较高的扩散性、低粘度、大的溶解能力和稳定性等特点,适用于高效、环保地萃取、分离和提纯天然产物中的活性成分,也可用于化学反应和催化反应等领域。
超临界流体萃取的机理是基于超临界流体溶解性质的变化。
超临界流体溶解能力的改变是由于在临界点以上,流体密度的变化和物理化学性质的变化引起的。
在这种超临界条件下,超临界流体具有比传统的有机溶剂更高的溶解能力和选择性。
萃取时,样品与超临界流体接触,部分或全部目标物溶解于超临界流体中,形成溶液。
随着温度、压力等条件的变化,目标物从溶液中被释放,从而实现了分离和提纯。
(1)高效性:超临界流体有较高的溶解能力和扩散性,可以实现快速、高效的萃取。
(2)环保性:超临界流体无毒、无味、无污染,分离过程不会产生二次污染。
(3)低能耗:萃取过程只需温度和压力,能耗较低。
(4)可控性:温度、压力等条件可调控,有利于提高选择性。
(5)广泛应用:适用于天然产物中的多种目标物质,如植物精油、色素、药物、生物活性物质等。
超临界流体萃取已应用于多个领域,如食品、医药、化工、石油等行业,以及环境保护、新材料等科技领域。
随着科技不断发展,超临界流体萃取技术也在不断进步。
最受关注的是超临界流体萃取与其他技术结合的研究,如超临界流体萃取-色谱联用、超临界流体萃取-液相色谱/气相色谱联用等,这些结合技术能够进一步提高选择性和灵敏度,有望应用于更多的领域。
研究人员还在探索新型的超临界流体,以提高其溶解能力和选择性,为超临界流体萃取技术的进一步发展提供支持。
超临界流体萃取的原理
超临界流体萃取是一种利用超临界流体作为萃取剂的技术,其原理基于超临界流体具有较高的溶解能力、较低的粘度和表面张力。
超临界流体是指在一定的温度和压力下,达到临界点以上的流体状态。
常用的超临界流体包括二氧化碳、乙烷和丙烷等。
超临界流体的密度、粘度和溶解能力与温度和压力有关,可以通过调节温度和压力来调控其性质。
在超临界流体萃取中,将待提取物质与超临界流体接触,利用超临界流体的高溶解能力将目标物质从原料中萃取出来。
超临界流体具有和液体相似的扩散性能,但由于其粘度较低,能够更好地渗透到原料中,提高了提取效率。
超临界流体萃取的原理是基于溶解度的变化。
当超临界流体的密度较低时,溶解度较低,随着压力的增加,密度和溶解度增加。
另一方面,当超临界流体的密度较高时,溶解度较高,随着温度的升高,密度和溶解度减小。
因此,通过调节温度和压力,可以控制超临界流体的溶解度,实现对目标物质的选择性提取。
超临界流体萃取在食品、医药、化工等领域具有广泛应用。
与传统的溶剂萃取相比,超临界流体萃取具有环境友好、高效节能、溶剂回收利用等优点。
由于超临界流体的可调性和选择性,超临界流体萃取也可以用于提取不同性质的物质,如挥发性物
质、非极性物质和热敏性物质等。
因此,超临界流体萃取技术在工业生产中具有广阔的应用前景。
超临界萃取名词解释
超临界萃取,又称超临界流体抽提,是一种分离或提取方法,它使用特殊的溶剂,其临界点高于室温,从而抽取某种物质。
这一方法常被用来从天然物质中提取有价值的成分,并且在提取过程中避免直接接触溶液,能够确保所提取成分的洁净度。
超临界萃取的基本原理是利用溶剂的临界状态,以及溶剂和成分之间的相互作用产生的冷却效果,来将某种物质从大量的混合物中分离出来。
当溶剂的温度升高到临界点时,溶剂的密度和体积会降低,溶质的浓度也会降低,这种相变的外观常常表现为溶剂的状态转变,也就是液体转变为气体,也可能是气体转变为固体。
而且,超临界萃取还受到温度控制,可以控制出比例,也可以控制纯度。
在超临界萃取过程中,溶剂和物质之间的相互作用是很重要的,溶剂和物质之间的作用取决于溶剂的特性,物质的特性和温度。
超临界萃取的抽提过程可以通过调整溶剂的压力来控制,以便达到较高的抽提效率和效果。
超临界萃取的一个优点是,可以在抽提过程中更精确地控制物质的提取效率,因为超临界萃取可以更精确地控制物质在液体和气体状态之间的转换,从而更有效地抽取物质。
此外,一个明显的优点是,超临界抽取不会影响物质的性质,因为它是在低温和低压的状态下完成的,而且可以确保抽取的成分的洁净度。
总之,超临界萃取是一种十分有效的分离抽提方法。
它不仅可以有效地从天然物质中抽取有价值的成分,还可以有效地控制物质的抽
提效率,确保所抽出成分的洁净度,同时不会改变物质的性质,因此得到了越来越多应用在食品、药物和农药中的广泛应用。
一、超临界萃取的技术原理利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。
在超临界状态下,将超临界流体与待别离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。
当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最正确比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而到达别离提纯的目的,所以超临界CO2流体萃取过程是由萃取和别离过程组合而成的。
超临界CO2是指处于临界温度与临界压力〔称为临界点〕以上状态的一种可压缩的高密度流体,是通常所说的气、液、固三态以外的第四态,其分子间力很小,类似于气体,而密度却很大,接近于液体,因此具有介于气体和液体之间的气液两重性质,同时具有液体较高的溶解性和气体较高的流动性,比普通液体溶剂传质速率高,并且扩散系数介于液体和气体之间,具有较好的渗透性,而且没有相际效应,因此有助于提高萃取效率,并可大幅度节能。
超临界CO2的物理化学性质与在非临界状态的液体和气体有很大的不同。
由于密度是溶解能力、粘度是流体阻力、扩散系数是传质速率高低的主要参数,因此超临界CO2的特殊性质决定了超临界CO2萃取技术具有一系列的重要特点。
超临界CO2的粘度是液体的百分之一,自扩散系数是液体的100倍,因而具有良好的传质特性,可大大缩短相平衡所需时间,是高效传质的理想介质;具有比液体快得多的溶解溶质的速率,有比气体大得多的对固体物质的溶解和携带能力;具有不同寻常的巨大压缩性,在临界点附件,压力和温度的微小变化会引起CO2的密度发生很大的变化,所以可通过简单的变化体系的温度或压力来调节CO2的溶解能力,提高萃取的选择性;通过降低体系的压力来别离CO2和所溶解的产品,省去消除溶剂的工序。
在传统的别离方法中,溶剂萃取是利用溶剂和各溶质间的亲和性〔表现在溶解度〕的差异来实现别离的;蒸馏是利用溶液中各组分的挥发度〔蒸汽压〕的不同来实现别离的。
超临界流体萃取的基本原理(一)超临界流体涵义任何一种物质随着温度和压力的变幻都会以二种状态存在,也就是我们常说的三种相态:气相、液相、固相。
气相、液相、固相之间是紧密相关的,同时三者之间也是可以互相转化的,在一个特定的温度和压力条件下,气相、液相、固相见达成平衡,这个三相共存的特定状态点,通常就叫三相点;而液、气两相达成平衡状态的点称为临界点,在临界点时的温度和压力就称为临界温度和临界压力。
不同的化学物质其本身的特性也千差万别,因此其临界点所要求的压力和温度会有很大的差异。
图7-1 相图图7-1中的阴影区所处的状态其温度和压力均高于临界点时所处的温度和压力,与常说的气、液、固三相不同,因此将这种高于临界温度和临界压力而临近临界点的状态称为超临界状态。
处于超临界状态时,气液两相性质十分相近,以至难以分离,因此将处于超临界状态的物质称之为超临界流体。
目前讨论较多的超临界流体是超临界,流体在超临界状态下兼有气液两相的双重特点,既具有与气体相当的高蔓延系数和低黏度,又具有与液体相近的密度和良好的溶解能力,且其溶解能力也可通过控制温度和压力来举行调整。
同时它还具有无毒、不燃烧、与大部分物质不发生化学反应、价格低廉等优点,因此应用最广泛。
(二)超临界流体萃取的基本原理超临界流体萃取本质仁就是调控压力和温度对超临界流体溶解能力的影响而达到萃取分别的目的。
当气体处于超临界状态时,其性质介于液体和蔼体之间,既其有和液体相近的密度,也具有很好的蔓延能力,其黏度高于气体但显然低于液体,因此对基质有较好的渗透性和较强的溶解能力,可以将基质中某些分析物与基质分别而转移至流体中从而将其萃取出来。
按照口标分析物的物理化学性质,通过调整合适的温度和压力来调整超临界流体的溶解性能,便可以有挑选性地依次把目标分析物萃取出来。
固然,所得到的萃取物可能不是单一的,但可以通过控制合适的试验条件得到最佳比例的混合物,然后再借助减压等方式,将被萃取的分析物举行分别,从而达到分别纯化的目的,将第1页共3页。
超临界流体萃取法的原理超临界流体萃取法,听起来是不是有点高大上?没那么复杂,咱们一块儿来聊聊这玩意儿的原理,顺便搞搞笑,轻松一下。
想象一下,超临界流体就像个变魔术的小精灵,游走在液体和气体之间,随心所欲。
你可以把它看作是个调皮的小家伙,既有液体的温柔,又有气体的灵活,真是个百变小天才。
什么是超临界流体呢?它就是当你把某种气体加热到高温、高压时,突然变得既不像气体,也不像液体,简直就是一个新物种。
它在超临界状态下,可以轻松穿透物质,就像水渗进泥土一样,轻而易举。
想象一下,开水往土里浇,那种效果。
超临界流体在萃取时,就像在筛选最珍贵的宝贝,轻松捞出想要的成分,简直就是个万事通。
说到萃取,咱们生活中常见的茶叶泡水就可以理解为一种萃取。
茶叶里的香味和营养物质在水里慢慢释放出来。
而超临界流体萃取法,就是在“泡”得更彻底,效率更高。
它不光能提取茶叶的香气,甚至连植物里的精油、咖啡豆的风味,都能轻松搞定。
可见,超临界流体萃取法的威力可不是盖的。
再说说这个过程,咱们用二氧化碳做超临界流体,这家伙可是环保的好帮手。
相比那些化学溶剂,二氧化碳无色无味,抽出来的产品也更安全、干净。
想想看,用二氧化碳萃取的咖啡,不仅味道好,还不用担心有啥化学残留,这不就是消费者心目中的“白衣骑士”吗?这种方法效率高得惊人!传统萃取可能要几个小时,但超临界流体萃取法几分钟就能搞定。
朋友们,想象一下,你正在等一杯香浓的咖啡,居然几分钟就能搞定,简直像坐上了快车,轻松得飞起来。
用超临界流体萃取,像是在做一场迅猛的比赛,一切都在瞬息之间。
不仅如此,超临界流体的“调皮”特性还让人们能精准控制提取的成分。
想要浓郁的香气,调高温度和压力;想要清新的口感,那就调低点。
这种自由度,简直让科学家们欢喜得像小孩子一样,心中有数,想要什么,来什么!就像调音一样,音乐声中的每个细节都能把握得妥妥的。
不过,超临界流体萃取法也有它的“软肋”,设备成本可不低,想要普及还得经过一番波折。
超临界流体萃取法原理
超临界流体萃取 (Supercritical Fluid Extraction, SFE) 是一种分离提取化合物的方法,它利用超临界流体的特性可以同时具有气相和液相的特性,可以有效地溶解物质,并实现快速、高效的提取过程。
超临界流体是指在临界点以上的温度和压力条件下处于气-液两相临界状态的流体。
超临界流体具有高扩散性、低黏度、低表面张力等特点,可与溶质发生快速的质量传递,提高提取速度和效率。
超临界流体萃取法的原理是利用超临界流体在超临界状态下的溶解度随温度和压力的变化而变化的特性。
首先,选择适当的溶剂作为超临界流体,常用的超临界流体有二氧化碳和丙烷。
溶解度的调控可以通过控制温度和压力来实现。
在超临界流体萃取过程中,溶液中的溶质被溶解在超临界流体中,形成溶液。
然后,通过改变温度和压力,使超临界流体发生相变,转化为气相,从而实现溶质的分离提取。
提取后的溶质可以通过降温和减压将其回收。
超临界流体萃取法广泛应用于天然产物、食品、药物、环境等领域的提取分离过程中。
其优点包括操作简便、提取速度快、无需使用有机溶剂、对萃取物的损伤小等。
此外,超临界流体的可调节性使得可以根据不同物质的特性来进行选择性提取,提高提取效果。
总而言之,超临界流体萃取法利用超临界流体的特性进行溶解和分离,是一种高效、环保的提取方法,具有较广泛的应用前景。