004.分式 B2013
- 格式:doc
- 大小:217.50 KB
- 文档页数:6
分式的意义和性质一、分式的概念1、用A、B表示两个整式,A÷B可以表示成的形式,其中A叫做分式的分子,B叫做分式的分母,如果除式B中含有字母,式子就叫做分式。
这就是分式的概念。
研究分式就从这里展开。
2、既然除式里含有字母的有理代数式叫做分式,那么,在分式里分母所包含的字母,就不一定可以取任意值。
分式的分子A可取任意数值,但分母B不能为零,因为用零做除数没有意义。
一般地说,在一个分式里,分子中的字母可取任意数值,但分母中的字母,只能取不使分母等于零的值。
3.(1)分式:,当B=0时,分式无意义。
(2)分式:,当B≠0时,分式有意义。
(3)分式:,当时,分式的值为零。
(4)分式:,当时,分式的值为1。
(5)分式:,当时,即或时,为正数。
(6)分式:,当时,即或时,为负数。
(7)分式:,当时或时,为非负数。
三、分式的基本性质:1、学习分式的基本性质应该与分数的基本性质类比。
不同点在于同乘以或同除以同一个不等于零的整式,这个整式可以是数也可以是字母,只要是不为零的整式。
2、这个性质可用式子表示为:(M为不等于零的整式)3、学习基本性质应注意几点:(1)分子与分母同乘或同除的整式的值不能为零;(2)易犯错误是只乘(或只除)分母或只乘(或只除)分子;(3)如果分子或分母是多项式时,必须乘以多项式的每一项。
4、分式变号法则的依据是分式的基本性质。
5、分式的分子,分母和分式的符号,改变其中任何两个,分式的值不变,如下列式子:,。
四、约分:1、约分是约去分子、分母中的公因式。
就是用分式中分子和分母的公因式去除分子和分母,使分式化简为最简分式,最简分式又叫既约分式。
2、约分的理论依据是分式的基本性质。
3、约分的方法:(1)如果分式的分子和分母都是几个因式乘积的形式,就约去分子和分母中相同因式的最低次幂,当分子和分母的系数是整数时,还要约去它们的最大公约数。
例1,请说出下列各式中哪些是整式,那些是分式?(1)(2)(3)(4)(5)a2-a(6)。
1.分式概念,能确定分式有意义或值为零的条件;2.利用分式的基本性质进行约分和通分;3.会进行简单的分式化简及加减乘除混合 运算.趣味小故事:《诗中存在的错误》 有个数学家读了英国诗人捷尼逊的一首诗中的一段“每分钟都有个人死亡,每分钟都有一个人诞生……”时,去信质疑,信上说:“尊敬的阁下,读罢您的诗,令人一快,但有几行不合逻辑,实难苟同。
据您的算法,世界人数是永恒不变的。
可世界人数是不停增长的,每分钟相应的有1.16749人诞生,这与您在诗中提供的数据出入甚多,为了符合实际,我建议您使用7/6这个分数,即改为:每分钟都有一个人死亡,每分钟都有一又六分之一的人在诞生…….”中考要求重难点课前预习分式的概念及运算模块一 分式的基本概念☞分式定义【例1】 下列各式:(1)2x y ,(2)223x y ,(3)38a +,(4) 4x y -,(5)214y x -,(6)3231()a a b b a-+,(7)44x x --中,整式有 ,分式有 .【巩固】下面的说法中正确的是( )A .有除法运算的式子就是分式B .有分母的式子就是分式C .若A 、B 为整式,式子A B 叫分式D .若A 、B 为整式且B 中含有字母,式子AB叫分式【巩固】下面的说法正确的是( )A .35是分式 B .22513x x -+是分式 C .2125x x -+是分式 D . 2132x +是分式☞分式有无意义 【例2】 使分式1(1)(1)x x +-有意义的x 的值是【巩固】当x = ,分式26x x --无意义.例题精讲【巩固】当x 取什么值时,分式234x x --有意义?【巩固】当x 取什么值时,分式332312x x +--有意义?☞分式值为零【例3】 (08丰台二模,4题)若分式2362x xx --的值为0,则x 的值为【巩固】当x = ,分式363x x--的值为零.【巩固】当x ,分式41x xx ++的值为零.模块二 分式的基本性质☞扩大与缩小【例4】 (09东城二模,4题)如果把分式2xx y+中的x 和y 都扩大原来的3倍,那么分式的值( ) A .扩大为原来的3倍 B .缩小为原来的3倍C .缩小为原来的6倍D .不变【巩固】若分式22(a ba b a b ++、为正数)中,字母a b 、的值分别扩大原来的2倍,则分式值( ) A .扩大为原来的2倍 B .缩小为原来的12C .缩小为原来的14D .不变☞系数化整与变号【例5】 不改变分式的值,是下列分式的分子、分母均不含“-”号,且系数为整数.(1)23b a --- (2)2(2)x y - (3)11314a b - (4)0.60.70.20.3x y x y -+【巩固】不改变分式的值,是下列分式的分子、分母均不含“-”号,且系数为整数.(1)35m n -- (2)237(2)m n ---- (3)0.213m n (4)0.20.30.010.1a ba b +-模块三分式计算☞分式乘除运算【例6】计算:22222)x xy y x y xy xxy x-+--÷⋅(【巩固】计算:22225434668 a a a aa a a a+++-÷+--+.【巩固】计算:22 2222322442221()2a x a ax xa x x a a ax x⎛⎫-++⎛⎫÷⋅⎪ ⎪+--+⎝⎭⎝⎭☞分式加减运算【例7】(09,大兴二模,13题)化简:311(1)(2)xx x x----+,并指出x的取值范围.【巩固】计算:221144424x x x x x -+-+-+.【巩固】计算:222299369x x x x x x x +-++++.☞分式混合运算【例8】 (08朝阳二模,14题)化简:221111a a a a a a -÷----【巩固】(2010红河州)计算:22453262a a a a a --÷-+++.【巩固】已知:2x =,求22211(1)22x x x x x-÷++-+的值.【例9】 计算:22214)244x x x x x x x x+---÷--+(.【巩固】计算:44()()xy xyx y x y x y x y-++--+.【巩固】计算:(1)(1)n m n mm m n m m n+-÷---+.☞分式化简求值【例10】 (08,东城二模,14题)先化简,然后请你选择一个合适的x 值代入求值:24433x x xx x --÷++【巩固】先化简,再求值:22222()a ab b a b a ba b a b a b++-+-÷-+-,其中1,2a b =-=.【巩固】化简求值:3222222232a b a b a abab a ab b a b+--÷++-,其中1,1a b ==.【例11】 (09,石景山二模,16题)已知2244(0)a b ab ab +=≠,求22225369a b a b b a b a ab b a b--÷-++++的值.【巩固】已知:11553,x xy yx y x xy y+--=---则的值为 .【巩固】已知x y 、是方程245x y x y +=⎧⎨-=-⎩的解,求332232212x x y x xy y x x y xy x y -⋅+-+++-的值.【例12】 (08,顺义一模,13题)请从下列三个代数式中任选两个构造一个分式,并将得到的分式化简,再求当4,2x y ==-时分式的值.2222,,x y xy y y xy --+【巩固】(2010,河南)已知212,,242xA B C x x x ===--+,将它们组合成()A B C -÷或A B C -÷的形式,请你从中任选一种进行计算,先化简,再求值.其中3x =【例13】 (2010,凉山州)已知:2441x x y -+-与互为相反数,则式子()()x yx y y x-÷+的值等于 .【巩固】(2010,襄樊)已知222[()()2()]41x y x y y x y y +--+-÷=,求224142x x y x y--+的值.【练习1】使分式121x x -+无意义的条件是课堂检测【练习2】(2010,延庆一模,14题)计算:21211x x ---【练习3】(2010,黄冈)1,2ab a b =-+=,则式子b aa b+= .【练习4】计算:23211(1)(1)211x x x x x ++-÷+--+-【练习5】化简求值:2223352x xy x xy y -+-,其中21,32x y =-=.【练习6】(2010,东城二模,15题)已知:2220,()2x y xyx y y x x xy y -=-⋅-+求的值.1.通过本堂课你学会了 .2.掌握的不太好的部分 .3.老师点评:① .② . ③ .1.(2010,淄博)下列运算正确的是( ) .1a b A a b b a -=-- .m n m n B a b a b --=- 11.b b C a a a +-= 2221.a b D a b a b a b +-=---2.(09,平谷二模,15题)化简:22142a a a +--.3.(08中考,17题)已知30x y -=,求222()2x y x y x xy y +⋅--+的值。
分式概念及意义分式的意义和性质一、分式的概念1、用A、B表示两个整式,A÷B可以表示成的形式,其中A叫做分式的分子,B叫做分式的分母,如果除式B中含有字母,式子就叫做分式。
这就是分式的概念。
研究分式就从这里展开。
2、既然除式里含有字母的有理代数式叫做分式,那么,在分式里分母所包含的字母,就不一定可以取任意值。
分式的分子A可取任意数值,但分母B不能为零,因为用零做除数没有意义。
一般地说,在一个分式里,分子中的字母可取任意数值,但分母中的字母,只能取不使分母等于零的值。
3.(1)分式:,当B=0时,分式无意义。
(2)分式:,当B≠0时,分式有意义。
(3)分式:,当时,分式的值为零。
(4)分式:,当时,分式的值为1。
(5)分式:,当时,即或时,为正数。
(6)分式:,当时,即或时,为负数。
(7)分式:,当时或时,为非负数。
三、分式的基本性质:1、学习分式的基本性质应该与分数的基本性质类比。
不同点在于同乘以或同除以同一个不等于零的整式,这个整式可以是数也可以是字母,只要是不为零的整式。
2、这个性质可用式子表示为:(M为不等于零的整式)3、学习基本性质应注意几点:(1)分子与分母同乘或同除的整式的值不能为零;(2)易犯错误是只乘(或只除)分母或只乘(或只除)分子;(3)如果分子或分母是多项式时,必须乘以多项式的每一项。
4、分式变号法则的依据是分式的基本性质。
5、分式的分子,分母和分式的符号,改变其中任何两个,分式的值不变,如下列式子:,。
四、约分:1、约分是约去分子、分母中的公因式。
就是用分式中分子和分母的公因式去除分子和分母,使分式化简为最简分式,最简分式又叫既约分式。
2、约分的理论依据是分式的基本性质。
3、约分的方法:(1)如果分式的分子和分母都是几个因式乘积的形式,就约去分子和分母中相同因式的最低次幂,当分子和分母的系数是整数时,还要约去它们的最大公约数。
例1,请说出下列各式中哪些是整式,那些是分式?(1)(2)(3)(4)(5)a2-a(6)。
2013年中考数学专题复习第五讲:分式【基础知识回顾】一、分式的概念若A,B表示两个整式,且B中含有那么式子就叫做公式【赵老师提醒:①:若则分式AB无意义②:若分式AB=0,则应且】二、分式的基本性质分式的分子分母都乘以(或除以)同一个的整式,分式的值不变。
1、a ma m⋅⋅=a mb m÷÷= (m≠0)2、分式的变号法则ba-=b3、约分:根据把一个分式分子和分母的约去叫做分式的约分。
约分的关键是确保分式的分子和分母中的约分的结果必须是分式4、通分:根据把几个异分母的分式化为分母分式的过程叫做分式的通分通分的关键是确定各分母的【赵老师提醒:①最简分式是指②约分时确定公因式的方法:当分子、分母是多项式时,公因式应取系数的应用字母的当分母、分母是多项式时应先再进行约分③通分时确定最简公分母的方法,取各分母系数的相同字母分母中有多项式时仍然要先通分中有整式的应将整式看成是分母为的式子④约分通分时一定注意“都”和“同时”避免漏乘和漏除项】三、分式的运算:1、分式的乘除①分式的乘法:ba.dc=②分式的除法:ba÷dc= =2、分式的加减①用分母分式相加减:ba±ca=②异分母分式相加减:ba±dc= =【赵老师提醒:①分式乘除运算时一般都化为法来做,其实质是的过程②异分母分式加减过程的关键是】3、分式的乘方:应把分子分母各自乘方:即(ba)m =1、分式的混合运算:应先算再算最后算有括号的先算括号里面的。
2、分式求值:①先化简,再求值。
②由值的形式直接化成所求整式的值③式中字母表示的数隐含在方程的题目条件中【赵老师提醒:①实数的各种运算律也符合公式②分式运算的结果,一定要化成③分式求值不管哪种情况必须先此类题目解决过程中要注意整体代入】【重点考点例析】考点一:分式有意义的条件例1 (2012•宜昌)若分式21a+有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠-1 D.a≠0思路分析:根据分母不等于0列式即可得解.解:∵分式有意义,∴a+1≠0,∴a≠-1.故选C.点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.对应训练1.(2012•湖州)要使分式1x有意义,x的取值范围满足()A.x=0 B.x≠0 C.x>0 D.x<0 1.B考点二:分式的基本性质运用例2 (2012•杭州)化简216312mm--得;当m=-1时,原式的值为.思路分析:先把分式的分子和分母分解因式得出(4)(4)3(4)m mm+--,约分后得出43m+,把m=-1代入上式即可求出答案.解:216 312 mm--=(4)(4)3(4)m m m +-- =43m +。
分式的定义:一般地,用A、B表示两个整式,A÷B就可以表示成的形式,如果B中含有字母,式子就叫做分式。
其中,A叫做分式的分子,B叫做分式的分母。
分式和整式通称为有理式。
注:(1)分式的分母中必须含有字母;(2)分母的值不能为零,如果分母的值为零,那么分式无意义。
分式的定义:一般地,用A、B表示两个整式,A÷B就可以表示成的形式,如果B中含有字母,式子就叫做分式。
其中,A叫做分式的分子,B叫做分式的分母。
分式和整式通称为有理式。
注:(1)分式的分母中必须含有字母;(2)分母的值不能为零,如果分母的值为零,那么分式无意义。
分式的概念包括3个方面:①分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的作用;②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;③在任何情况下,分式的分母的值都不可以为0,否则分式无意义。
这里,分母是指除式而言。
而不是只就分母中某一个字母来说的。
也就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。
分式有意义的条件:(1)分式有意义条件:分母不为0;(2)分式无意义条件:分母为0;(3)分式值为0条件:分子为0且分母不为0;(4)分式值为正(负)数条件:分子分母同号时,分式值为正;分子分母异号时,分式值为负。
分式的区别概念:分式与分数的区别与联系:a.分式与分数在形式上是一致的,都有一条分数线,相当于除法的“÷”,都有分子和分母,都可以表示成(B≠0)的形式;b.分式中含有字母,由于字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况。
整式和分式统称为有理式。
带有根号且根号下含有字母的式子叫做无理式。
无限不循环小数也是无理式无理式和有理式统称代数式分式的基本性质是什么分式的基本性质是分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变。
分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母。
分式知识点及典型例题一、分式的定义如果 A、B 表示两个整式,并且 B 中含有字母,那么式子 A/B 就叫做分式。
其中 A 叫做分子,B 叫做分母。
需要注意的是,分式的分母不能为 0,因为分母为 0 时,分式没有意义。
例如:\(\frac{x}{y}\),\(\frac{a + b}{c}\)都是分式,而\(\frac{3}{5}\)(分母不含有字母)就不是分式。
二、分式有意义的条件分式有意义的条件是分母不为 0。
即:对于分式\(\frac{A}{B}\),当\(B ≠ 0\)时,分式有意义。
例如:对于分式\(\frac{x + 1}{x 2}\),要使其有意义,则\(x 2 ≠ 0\),即\(x ≠ 2\)。
三、分式的值为 0 的条件分式的值为 0 时,要同时满足两个条件:1、分子为 0,即\(A = 0\);2、分母不为 0,即\(B ≠ 0\)。
例如:若分式\(\frac{x 3}{x + 5}\)的值为 0,则\(x 3 = 0\)且\(x +5 ≠ 0\),解得\(x = 3\)。
四、分式的基本性质分式的分子与分母同时乘以(或除以)同一个不为 0 的整式,分式的值不变。
用式子表示为:\(\frac{A}{B} =\frac{A×C}{B×C}\),\(\frac{A}{B} =\frac{A÷C}{B÷C}\)(\(C ≠ 0\))例如:\(\frac{2}{3} =\frac{2×2}{3×2} =\frac{4}{6}\),\(\frac{6}{9} =\frac{6÷3}{9÷3} =\frac{2}{3}\)五、约分把一个分式的分子与分母的公因式约去,叫做分式的约分。
约分的关键是确定分子与分母的公因式。
例如:对分式\(\frac{6x}{9x^2}\)进行约分,分子分母的公因式为\(3x\),约分后为\(\frac{2}{3x}\)六、通分把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
分式知识点总结1.分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。
2.分式有意义、无意义的条件:分式有意义的条件:分式的分母不等于0;分式无意义的条件:分式的分母等于0。
3.分式值为零的条件:当分式的分子等于0且分母不等于0时,分式的值为0。
(分式的值是在分式有意义的前提下才可以考虑的,所以使分式为0的条件是A=0,且B≠0.)(分式的值为0的条件是:分子等于0,分母不等于0,二者缺一不可。
首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0.当分母的值不为0时,就是所要求的字母的值。
)4.分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。
用式子表示为(),其中A、B、C是整式注意:(1)“C是一个不等于0的整式”是分式基本性质的一个制约条件;(2)应用分式的基本性质时,要深刻理解“同”的含义,避免犯只乘分子(或分母)的错误;(3)若分式的分子或分母是多项式,运用分式的基本性质时,要先用括号把分子或分母括上,再乘或除以同一整式C;(4)分式的基本性质是分式进行约分、通分和符号变化的依据。
5.分式的通分:和分数类似,利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是确定几个式子的最简公分母。
几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。
求最简公分母时应注意以下几点:(1)“各分母所有因式的最高次幂”是指凡出现的字母(或含字母的式子)为底数的幂选取指数最大的;(2)如果各分母的系数都是整数时,通常取它们系数的最小公倍数作为最简公分母的系数;(3)如果分母是多项式,一般应先分解因式。
6.分式的约分:和分数一样,根据分式的基本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
分式概念总汇1、分式的概念一般地,如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。
其中A叫做分子,B叫做分母。
说明:(1)分式表示两个整式相除,其中分子为被除式,分母为除式,分数线起除号和括号的作用。
例如可以表示(a-b)÷(a+b);(2)分式的分子可以含有字母,也可以不含有字母,但分式的分母一定含有字母。
(3)分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当时,分式才有意义;(4)判断一个代数式是否是分式,不能把原式变形(如约分等)后再看,而只能根据它的本来面目进行判断。
例如:对于来说,,我们不能因为是整式,就判断也是整式,事实上是分式。
2、分式有意义、无意义,分式的值为零的条件(1)分式有意义的条件是分式的分母不为0;(2)分式无意义的条件是分式的分母为零;(3)分式的值为零的条件是分式的分子为零,且分母不为零。
说明:(1)分母不为零是分式概念必不可少的组成部分,无论是分数还是分式,分母为零都没有意义。
(2)分式分母的值不为0,是指整个分母的值不为0。
如果分母中的字母的值为0,但整个分母的值不为0,则分式是有意义的。
(3)分式的值为0,是在分式有意义的条件下,再满足分子的值为零。
(4)如果没有特别说明,所遇到的分式都是有意义的。
例如在分式中隐含着,即,这一条件,也就是说分式中分母的值不为零。
3、分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:(其中)。
说明:(1)运用分式的基本性质时,千万不能忽略“”这一条件. 如,变形时,必须满足2x+1≠0。
(2)分式的基本性质要求“同乘(或除以)一个不等于0的整式”即分式的分子、分母要做相同的变形,要防止只乘(或除以)分子(或分母)的错误;同时分子、分母都乘(或除)以的整式必须相同。
(3)在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化。
模块一 分式方程的概念【例1】 下列式子,是分式方程的是( )A .4152323x x x -++- B .4523a a π+= C .56432x x -+= D .431121x x -=++【巩固】下列关于x 的方程中,是分式方程的是( )A .23356x x ++-= B .137x x a -=-+ C .x a b xa b a b-=- D .()2111x x -=-【巩固】下列方程是关于x 的分式方程的是()A .211x x m ++=B .2223x x =-C .821732x x -=- D .()73212x x -=-模块二 分式方程的解法☞可化为一元一次方程的分式方程 【例2】 求x 为何值时,代数式291233x x x x+--+-的值等于2.例题精讲中考要求分式方程【巩固】解方程:48755986 x x x xx x x x----+=+----【巩固】解方程28541763 x x x xx x x x+++++=+++++【例3】解方程:5968419221 19968 x x x xx x x x----+=+----【巩固】解方程222232411221 x x x xx x x x +-+++=+-++【巩固】解方程2232 39724310 111x x x x x xx x x+++-++--= +--【巩固】解方程18272938 x x x xx x x x+++++=+++++☞可化为一元二次方程的分式方程 【例4】 解方程:32322323x x x x --+=+--【巩固】解方程:221232023x x x x-++=-【巩固】解方程22113()40x x x x+-++=☞含有字母的分式方程【例5】 解关于x 的方程()()0mx n m n -+=【巩固】若()9222162n =,解关于x 的方程42nx+=【巩固】解关于x 的方程:122a xb x b x a x +++=++模块三 分式方程的增根☞已知增根求参数值【总结】解含有字母的分式方程时,若未给出方程的根,则将字母视为常数进行计算,当给出方程根求题中字母时,则应先把根代入,然后转换成关于该字母的分式方程.【易错】若分式方程中所含字母较多,学生最常犯的错误就是将所求与已知弄混,所以在做题时一定要仔细认真,看清所求量与已知量;【例6】 已知关于x 的方程2221511m m x x x x x --+=-+-有增根1,求m 的值.【巩固】关于x 的两个方程220x x --=与122x x a=-+有一个解相同,则a = .☞未知增根求参数值【总结】解分式方程增根问题,应先将分式方程转化为整式方程,若已知增根,则直接将已知的增根代入整式方程,求出未知字母的值;若未给出增根,则应将所有增根均代入整式方程,进而求出未知字母所有的值.【易错】很多同学不清楚解决此类问题的步骤,总是先将增根代入,发现分母为零,就进行不下去了。
分式
一、选择题
1. (2013四川成都,3,3分)要使分式
5
x -1
有意义,则x 的取值范围是( ) A .x ≠1 B .x >1
C .x <1
D .x ≠-1
答案:A
2. (2013天津,9,3分)若x=-1,y=2,则
2221
648x x y x y
-
--的值等于 A .117-
B .117
C .116
D .115
【答案】D .
3. (2013山东淄博,2,4分)下列运算错误的是( )
A.22)()(a b b a --=1
B.b a b a +--=-1
C.b a b a b a b a 321053.02.05.0-+=-+
D.a
b a b b a b a +-=+- 【答案】D .
4. (2013杭州,2,3分)下列计算正确的是( )
A. 523m m m =+
B. 6
23m m m =⋅ C. 1)1)(1(2
-=+-m m m D. 1
2
)1(24-=--m m
【答案】D .
5. (2013浙江杭州,6,3分)如图,设乙图中阴影部分面积
甲图中阴影部分面积
=
k (0>>b a ),则有
A. 2>k
B. 21<<k
C.
121<<k D. 2
10<<k 【答案】B .
6.(2013江苏南京,2,2分)计算a 3·2
1⎪⎭
⎫
⎝⎛a 的结果是
A.a
B.a 5
C. a 6
D. a 9
【答案】A .
7. (2013湖南郴州,5,3分)化简111a a a
+--的结果为( ) A .-1 B.1 C.11a a +- D. 1
1a a
+-
【答案】B .
8. 9. 10. 11. 12.
13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50.
二、填空题
1. (2013湖南益阳,10,4分)化简:1
11
x x x -
--= . 【答案】1
2. (2013江苏南京,9,2分)使式子1+1
1
-x 有意义的x 的取值范围是________. 【答案】x ≠1.
3. (2013浙江衢州,12,4分)化简:
224442
x x x
x x ++-=-- . 【答案】
2
2
x - 4. (2013广东梅州,9,3分)化简:23a b ab ÷= . 【答案】3a
5. (2013山西,15,3分)一组按规律排列的式子:a2
,43a ,65a ,87a ,….则第n 个式子是________ 【答案】221n
a n -(n 为正整数)
6.(2013广西钦州,14,3分)当x =____▲____时,分式3
2
x -无意义. 【答案】2. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36.
37. 38. 39.
三、解答题
1. (2013四川成都,16,6分) (本小题满分6分) 化简:(a 2
-a )÷a 2-2a +1
a -1
.
答案:解:原式=a (a -1)÷(a -1)2
a -1
······4分 =a (a -1)·a -1
(a -1)2
······5分
=a .
2. (2013湘潭,18,6分)先化简,再求值:x
x x x x +÷++--2
24
)1111(,其中x=-2. 【答案】解:原式=[
)1)(1(1-+-x x x +11+x ]·4)4(+x x =12+x ·4)4(+x x =2
x
=-1
3. (2013湖北十堰,17,6分)化简:222
21
12
x x x x x x x x +-+÷++-+ 【答案】解:原式= (1)(1)1
(1)(2)(1)2x x x x x x x x x +-++++-+
= 11
22
x x x ++
++ = 1
4. (2013江苏南京,17,6分)化简b a a b a b b a +÷⎪⎭
⎫
⎝⎛---2
21
. 【答案】解:b
a a
b a b b a +÷⎪⎭⎫
⎝⎛---2
21
=
()a
b
a b a b a b
b a +∙
-+-+))((
=
a
b
a b a b a a +∙-+))((
=
b
a -1
.……………………………………………………6分 5. (2013江苏徐州,19,10分)
(1)计算:|-2|-9+(-2013)0
;
(2)计算:1
)111(2-÷-+
x x x 【答案】解:(1)原式=2-3+1………………………3分 =0……………………………5分
(2)原式=
)
1)(1(111-+÷-+-x x x
x x ……………………………7分
=
x
x x x x )
1(11-+⨯
-)(…………………………………9分 =x+1………………………………………………………10分 6.(5分)(2013•巴中)先化简,然后a 在﹣1、1、2三个数中任选一个合适的数
代入求值. ×
+
=
7. (2013广东汕头,18,5分)从三个代数式:①222b ab a +-,②b a 33-,③22b a -中任意选两个代数式构
造分式,然后进行化简,并求出当6=a ,3=b 时该分式的值.
【答案】解:选取①、②得3)(3)(332222b a b a b a b a b ab a -=--=-+-,当6=a ,3=b 时,原式=13
3
6=-(答案不唯一).
8.(2013贵州省六盘水,19(2),8分)(2)先化简,再求值:x
x x x x x x 23)21448(2
2-+÷--+-+,其中042
=-x . (2) x 2
-4=0,
∴x=±
2 但x -2≠0,故2-=x , ∴原式=(
2)2(8-+x x +21-x )∙3)2(+-x x x =(2
)
2(8
-+x x 3)2(+-∙x x x x =122)2(222-=---⨯=-x x , x x x x x x x 23)21448(
22-+÷--+-+=3)2(21)
2(8
2
+-⋅⎥⎦⎤⎢⎣⎡-+-+x x x x x x =3)2()2()3(22+-⋅-+x x x x x =22-x x , 当x=-2时,原式=2
2)
2(2---⨯=1-.
9. 10. 11. 12. 13. 14. 15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.。