2017-2018版高中数学第二章空间向量与立体几何2空间向量的运算(二)学案北师大版选修2_1
- 格式:doc
- 大小:269.53 KB
- 文档页数:10
必修一第一章1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法第二章2.1函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.1.5用计算机作函数图像(选学)2.2一次函数和二次函数2.2.1一次函数的性质与图像2.2.2二次函数的性质与图像2.3函数的应用(1)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法----二分法第三章基本初等函数(1)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(2)必修二第一章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱棱锥棱台的结构特征1.1.3圆柱圆锥圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱棱锥棱台和球的表面积1.1.7柱锥台和球的体积1.2点线面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系1.2.3空间中的垂直关系第二章平面解析几何初步2.1平面直角坐标系中的基本公式2.1.1数轴上的基本公式2.1.2平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的集中形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系2.4.1空间直角坐标系2.4.2空间两点距离公式必修三第一章算法初步1.1算法与程序框图1.1.1算法的概念1.1.2程序框图1.1.3算法的三种基本逻辑结构和框图表示1.2基本算法语句1.2.1赋值输入输出语句1.2.2条件语句1.2.3循环语句1.3中国古代数学中的算法案例第二章统计2.1随机抽样2.1.1简单的随机抽样2.1.2系统抽样2.1.3分层抽样2.1.4数据的收集2.2用样本估计总体2.2.1用样本的频率分布估计总体的分布2.2.2用样本的数字特征估计总体的数字特征2.3变量的相关性2.3.1变量间的相互关系2.3.2两个变量的线性相关第三章概率3.1事件与概率3.1.1随机现象3.1.2事件与基本事件空间3.1.3频率与概率3.1.4概率的加法公式3.2古典概型3.2.1古典概型3.2.2概率的一般加法公式(选学)3.3随机数的含义与应用3.3.1几何概型3.3.2随机数的含义与应用3.4概率的应用必修四第一章基本的初等函数(2)1.1任意角的概念与弧度制1.1.1角的概念的推广1.1.2弧度制和弧度制与角度制的换算1.2任意角的三角函数1.2.1三角函数的定义1.2.2单位圆与三角函数线1.2.3同角三角函数的基本关系式1.2.4诱导公式1.3三角函数的图像与性质1.3.1正弦函数的图像与性质1.3.2余弦函数正切函数的图像与性质1.3.3已知三角函数值求角第二章平面向量2.1向量的线性运算2.1.1向量的概念2.1.2向量的加法2.1.3向量的减法2.1.4数乘向量2.1.5向量共线的条件和轴上向量坐标运算2.2向量的分解和向量的坐标运算2.2.1平面向量基本定理2.2.2向量的正交分解与向量的直角坐标运算2.2.3用平面向量坐标表示向量共线条件2.3平面向量的数量积2.3.1向量数量积的物理背景与定义2.3.2向量数量积的运算律2.3.3向量数量积的坐标运算与度量公式2.4向量的应用2.4.1向量在几何中的应用2.4.2向量在物理中的应用第三章三角恒等变换3.1和角公式3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切3.2倍角公式和半角公式3.2.1倍角公式3.2.2半角的正弦余弦和正切3.3三角函数的积化和差与和差化积必修五第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理1.1.2余弦定理1.2应用举例第二章数列2.1数列2.1.1数列2.1.2数列的递推公式(选学)2.2等差数列2.2.1等差数列2.2.2等差数列的前n项和2.3等比数列2.3.1等比数列2.3.2等比数列的前n项和第三章不等式3.1不等关系与不等式3.1.1不等关系与不等式3.1.2不等式性质3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单的线性规划问题3.5.1二元一次不等式(组)所表示的平面区域3.5.2简单线性规划选修2-1第一章常用逻辑用语1.1命题与量词1.1.1命题1.1.2量词1.2基本逻辑联结词1.2.1且与或1.2.2非(否定)1.3充分条件必要条件与命题的四种形式1.3.1推出与充分条件必要条件1.3.2命题的四种形式第二章圆锥曲线方程2.1曲线方程2.1.1曲线与方程的概念2.1.2由曲线求它的方程由方程研究曲线性质2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的集几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线第三章空间向量与几何体3.1空间向量及其运算3.1.1空间向量的线性运算3.1.2空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2空间向量在立体几何中的应用3.2.1直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离(选学)选修2-2第一章导数及其应用1.1导数1.1.1函数的平均变化率1.1.2瞬时速度与导数1.1.3导数的几何1.2导数的运算1.2.1常数函数与幂函数的导数1.2.2导数公式表及数学软件的应用1.2.3导数的四则运算法则1.3导数的应用1.3.1利用导数判断函数的单调性1.3.2利用导数研究函数的极值1.3.3导数的实际应用1.4定积分与微积分的基本定理1.4.1曲边梯形面积与定积分1.4.2微积分基本定理第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法2.3数学归纳法2.3.1数学归纳法2.3.2数学归纳法应用举例第三章数系的扩充与复数3.1数系的扩充与复数的概念3.1.1实数系3.1.2复数的概念3.1.3复数的几何意义3.2复数的运算3.2.1复数的加法与减法3.2.2复数的乘法3.2.3复数的除法选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与实践的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布第三章统计案例3.1独立性检验3.2回归分析选修4-4第一章坐标系1.1直角坐标系平面上的伸缩变换1.1.1直角坐标系1.1.2平面上的伸缩变换1.2极坐标系1.2.1平面上点的极坐标1.2.2极坐标与直角坐标的关系1.3曲线的极坐标方程1.4圆的极坐标方程1.4.1圆心在极轴上且过极点的圆1.4.2圆心在点(a,∏/2)处且过极点的圆1.5柱坐标系和球坐标系1.5.1柱坐标系1.5.2球坐标系第二章参数方程2.1曲线的参数方程2.1.1抛射体的运动2.1.2曲线的参数方程2.2直线与圆的参数方程2.2.1直线的参数方程2.2.2圆的参数方程2.3圆锥曲线的参数方程2.3.1椭圆的参数方程2.3.2双曲线的参数方程2.3.3抛物线的参数方程2.4一些常见曲线的参数方程2.4.1摆线的参数方程2.4.2圆的渐开线的参数方程。
2 空间向量的运算(一)学习目标 1.会用平行四边形法则、三角形法则作出向量的和与差.2.了解向量加法的交换律和结合律.知识点空间向量的加减运算及运算律思考1 下面给出了两个空间向量a、b,作出b+a,b-a.思考2 由上述的运算过程总结一下,如何求空间两个向量的和与差?下面两个图形中的运算分别运用了什么运算法则?梳理(1)类似于平面向量,可以定义空间向量的加法和减法运算.OB→=OA→+AB→=a+b,CA→=OA→-OC→=a-b(2)空间向量的加法交换律a+b=________,空间向量的加法结合律(a+b)+c=a+(b+c).类型一 向量式的化简例1 如图,已知长方体ABCD —A ′B ′C ′D ′,化简下列向量表达式,并在图中标出化简结果的向量.(1)AA ′→-CB →; (2)AA ′→+AB →+B ′C ′——→.引申探究利用例1题图,化简AA ′→+A ′B ′——→+B ′C ′——→+C ′A ——→.反思与感悟 (1)首尾顺次相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量,即A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n =A 1A n →.(2)首尾顺次相接的若干向量若构成一个封闭图形,则它们的和为0.如图,OB →+BC →+CD →+DE →+EF →+FG →+GH →+HO →=0.(3)空间向量的减法运算也可以看成是向量的加法运算,即a -b =a +(-b ). 跟踪训练1 在如图所示的平行六面体中,求证:AC →+AB ′→+AD ′→=2AC ′→.类型二 用已知向量表示未知向量例2 在平行六面体ABCD -A 1B 1C 1D 1中,已知AB →=a ,AD →=b ,AA 1→=c .用向量a ,b ,c 表示以下向量.(1)AC 1→;(2)BD 1→.反思与感悟 将一个向量表示成n 个向量的和或差,关键是根据向量的加减运算将向量进行拆分,一般可考虑从起点到终点构成封闭的回路进行运算.跟踪训练2 在例2中,若已知A 1C 1与B 1D 1的交点为M .请用a ,b ,c 表示BM →.1.下列命题中,假命题是( )A.同平面向量一样,任意两个空间向量都不能比较大小B.两个相等的向量,若起点相同,则终点也相同C.只有零向量的模等于0D.空间中任意两个单位向量必相等2.在平行六面体ABCD -A 1B 1C 1D 1中,与向量AD →相等的向量共有( ) A.1个 B.2个 C.3个 D.4个3.向量a ,b 互为相反向量,已知|b |=3,则下列结论正确的是( )A.a =bB.a +b 为实数0C.a 与b 方向相同D.|a |=34.在正方体ABCD —A 1B 1C 1D 1中,已知下列各式:①(AB →+BC →)+CC 1→;②(AA 1→+A 1D 1→)+D 1C 1→;③(AB →+BB 1→)+B 1C 1;④(AA 1→+A 1B 1→)+B 1C 1→.其中运算的结果为AC 1→的有________个.5.化简:2AB →+2BC →+3CD →+3DA →+AC →=________.空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果. 提醒:完成作业 第二章 §2(一)答案精析问题导学 知识点思考1 如图,空间中的两个向量a ,b 相加时,我们可以先把向量a ,b 平移到同一个平面α内,以任意点O 为起点作OA →=a ,OB →=b ,则OC →=OA →+OB →=a +b ,AB →=OB →-OA →=b -a .思考2 先将两个向量平移到同一个平面,然后运用平面向量的运算法则(三角形法则、平行四边形法则)运算即可;图1是三角形法则,图2是平行四边形法则. 梳理 (2)b +a 题型探究例1 解 (1)AA ′→-CB →=AA ′→-DA →=AA ′→+AD →=AD ′→.(2)AA ′→+AB →+B ′C ′→=(AA ′→+AB →)+B ′C ′→=AB ′→+B ′C ′→=AC ′→. 向量AD ′→、AC ′→如图所示.引申探究解 AA ′→+A ′B ′——→=AB ′→,AB ′→+B ′C ′——→ =AC ′→,AC ′→+C ′A ——→=0.故AA ′→+A ′B ′——→+B ′C ′——→+C ′A ——→=0.跟踪训练1 证明 ∵平行六面体的六个面均为平行四边形, ∴AC →=AB →+AD →,AB ′→=AB →+AA ′→,AD ′→=AD →+AA ′→, ∴AC →+AB ′→+AD ′→=(AB →+AD →)+(AB →+AA ′→)+(AD →+AA ′→) =2(AB →+AD →+AA ′→). 又∵AA ′→=CC ′→,AD →=BC →,∴AB →+AD →+AA ′→=AB →+BC →+CC ′→ =AC →+CC ′→=AC ′→. ∴AC →+AB ′→+AD ′→=2AC ′→. 例2 解 (1)AC 1→=AB →+BC →+CC 1→=AB →+AD →+AA 1→ =a +b +c . (2)BD 1→=BA →+AD →+DD 1→ =-AB →+AD →+AA 1→ =-a +b +c .跟踪训练2 解 ∵B 1D 1→=BD →=AD →-AB →=b -a . 又∵B 1M →=12B 1D 1→,∴B 1M →=12B 1D 1→=12b -12a ,∴BM →=BB 1→+B 1M →=c +(12b -12a )=-12a +12b +c .当堂训练1.D2.C3.D4.45.0。
2 空间向量的运算(二)学习目标 1.掌握空间向量数乘运算的定义及数乘运算的运算律.2.了解平行(共线)向量、共面向量的意义,掌握它们的表示方法.3.理解共线向量的充要条件和共面向量的充要条件及其推论,并能应用其证明空间向量的共线、共面问题.知识点一空间向量的数乘运算思考实数λ和空间向量a的乘积λa的意义是什么?向量的数乘运算满足哪些运算律?梳理(1)实数与向量的积与平面向量一样,实数λ与空间向量a的乘积λa仍然是一个向量,称为向量的数乘运算,记作λa,其长度和方向规定如下:①|λa|=__________.②当λ>0时,λa与向量a方向相同;当λ<0时,λa与向量a方向______;当λ=0时,λa=0.(2)空间向量数乘运算满足以下运算律:①λ(μa)=______________;②λ(a+b)=____________;③(λ1+λ2)a=__________(拓展).知识点二共线向量与共面向量思考1 回顾平面向量中关于向量共线的知识,给出空间中共线向量的定义.思考2 空间中任何两个向量都是共面向量,这个结论是否正确?梳理 (1)平行(共线)向量(2)共面向量平行于同一个______的向量类型一 向量共线问题例1 如图所示,在正方体ABCD —B 1C 1D 1中,E 在A 1D 1上,且A 1E →=2ED 1→,F 在对角线A 1C 上,且A 1F →=23FC →.求证:E ,F ,B 三点共线.反思与感悟 判定向量a ,b (b ≠0)共线,只需利用已知条件找到x ,使a =x b 即可.证明点共线,只需证明对应的向量共线.跟踪训练1 如图所示,在空间四边形ABCD 中,点E ,F 分别是AB ,CD 的中点,请判断向量EF →与AD →+BC →是否共线?类型二 空间向量的数乘运算及应用例2 如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)A 1N →;(3)MP →+NC 1→. 引申探究若把本例中“P 是C 1D 1的中点”改为“P 在线段C 1D 1上,且C 1P PD 1=12”,其他条件不变,如何表示AP →?反思与感悟 利用数乘运算进行向量表示的技巧(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量.(2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质.跟踪训练2 如图,在空间四边形OABC 中,M ,N 分别是对边OA ,BC 的中点,点G 在MN 上,且MG =2GN ,如图所示,记OA →=a ,OB →=b ,OC →=c ,试用向量a ,b ,c 表示向量OG →.类型三 空间向量共面问题例3 如图所示,已知平行四边形ABCD ,过平面AC 外一点O 作射线OA ,OB ,OC ,OD ,在四条射线上分别取点E ,F ,G ,H ,并且使OE OA =OF OB =OG OC =OHOD=k ,求证:E ,F ,G ,H 四点共面.反思与感悟 (1)利用四点共面求参数向量共面的充要条件的实质是共面的四点中所形成的两个不共线的向量一定可以表示其他向量,对于向量共面的充要条件,不仅会正用,也要能够逆用它求参数的值. (2)证明空间向量共面或四点共面的方法①向量表示:设法证明其中一个向量可以表示成另两个向量的线性组合,即若p =x a +y b ,则向量p ,a ,b 共面.②若存在有序实数组(x ,y ,z )使得对于空间任一点O ,有OP →=xOA →+yOB →+zOC →,且x +y +z =1成立,则P ,A ,B ,C 四点共面.③用平面:寻找一个平面,设法证明这些向量与该平面平行.跟踪训练3 (1)已知A ,B ,C 三点不共线,平面ABC 外一点M ,满足OM →=13OA →+13OB →+13OC →,判断MA →,MB →,MC →三个向量是否共面.(2)如图,已知O 、A 、B 、C 、D 、E 、F 、G 、H 为空间的9个点,且OE →=kOA →,OF →=kOB →,OH →=kOD →,AC →=AD →+mAB →,EG →=EH →+mEF →.求证:①A 、B 、C 、D 四点共面,E 、F 、G 、H 四点共面; ②AC →∥EG →; ③OG →=kOC →.1.对于空间的任意三个向量a ,b,2a -b ,它们一定是( ) A.共面向量 .共线向量C.不共面向量.既不共线也不共面的向量2.已知空间四边形ABCD ,点E 、F 分别是AB 与AD 边上的点,M 、N 分别是BC 与CD 边上的点,若AE →=λAB →,AF →=λAD →,CM →=μCB →,CN →=μCD →,则向量EF →与MN →满足的关系为( ) A.EF →=MN → .EF →∥MN → C.|EF →|=|MN →|.|EF →|≠|MN →|3.设e 1,e 2是平面内不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,若A ,B ,D 三点共线,则k =________.4.以下命题:①两个共线向量是指在同一直线上的两个向量; ②共线的两个向量互相平行;③共面的三个向量是指在同一平面内的三个向量; ④共面的三个向量是指平行于同一平面的三个向量. 其中正确命题的序号是________.5.已知A ,B ,M 三点不共线,对于平面ABM 外的任意一点O ,判断在下列各条件下的点P 与点A ,B ,M 是否共面. (1)OB →+OM →=3OP →-OA →; (2)OP →=4OA →-OB →-OM →.1.四点P ,A ,B ,C 共面⇔对空间任意一点O ,都有OP →=xOA →+yOB →+zOC →,且x +y +z =1. 2.OP →=OA →+xAB →+yAC →称为空间平面ABC 的向量表达式.由此可知空间中任意平面由空间一点及两个不共线向量唯一确定.3.证明(或判断)三点A 、B 、C 共线时,只需证明存在实数λ,使AB →=λBC →(或AB →=λAC →)即可,也可用“对空间任意一点O ,有OC →=tOA →+(1-t )OB →”来证明三点A 、B 、C 共线.4.空间上一点P 位于平面MAB 内的充要条件是存在有序实数对(x ,y ),使MP →=xMA →+yMB →,满足这个关系式的点都在平面MAB 内;反之,平面MAB 内的任一点都满足这个关系式.这个充要条件常用于证明四点共面. 提醒:完成作业 第二章 §2(二)答案精析问题导学 知识点一思考 当λ>0时,λa 和a 方向相同;当λ<0时,当λa 和a 方向相反;λa 的长度是a 的长度的|λ|倍.空间向量的数乘运算满足分配律及结合律: ①分配律:λ(a +b )=λa +λb , ②结合律:λ(μa )=(λμ)a . 梳理 (1)①|λ||a | ②相反(2)①(λμ)a ②λa +λb ③λ1a +λ2a 知识点二思考1 如果表示空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫作共线向量或平行向量.思考2 正确.根据向量相等的定义,可以把向量进行平移,空间任意两个向量都可以平移到同一平面内,成为共面向量. 梳理 (1)平行或重合 a =λb OP →=OA →+t a AB →方向向量 (2)平面 唯一 p =x a +y bxAB →+yAC → xAB →+yAC →题型探究例1 证明 设AB →=a ,AD →=b ,AA 1→=c . ∵A 1E →=2ED 1→,A 1F →=23FC →,∴A 1E →=23A 1D 1→,A 1F →=25A 1C →.∴A 1E →=23AD →=23b ,A 1F →=25(AC →-AA 1→)=25(AB →+AD →-AA 1→)=25a +25b -25c . ∴EF →=A 1F →-A 1E →=25a -415b -25c=25⎝ ⎛⎭⎪⎫a -23b -c . 又EB →=EA 1→+A 1A →+AB → =-23b -c +a =a -23b -c ,∴EF →=25EB →.∴E ,F ,B 三点共线.跟踪训练1 解 设AC 中点为G ,连接EG ,FG . ∴GF →=12AD →,EG →=12BC →.又∵GF →,EG →,EF →共面,∴EF →=EG →+GF →=12BC →+12AD →=12(AD →+BC →),∴EF →与 AD →+BC →共线. 例2 解 (1)AP →=AD 1→+D 1P →=(AA 1→+AD →)+12AB →=a +c +12b .(2)A 1N →=A 1A →+AN → =-AA 1→+AB →+12AD →=-a +b +12c .(3)MP →+NC 1→=(MA 1→+A 1D 1→+D 1P →)+(NC →+CC 1→) =12AA 1→+AD →+12AB →+12AD →+AA 1→ =32AA 1→+32AD →+12AB → =32a +12b +32c . 引申探究解 AP →=AD 1→+D 1P →=AA 1→+AD →+ 23AB →=a +c +23b . 跟踪训练2 解 OG →=OM →+MG →=OM →+23MN →=12OA →+23(MO →+OC →+CN →)=12a +23[-12a +c +12(b -c )]=16a +13b +13c . 例3 证明 因为OE OA =OF OB =OG OC =OHOD=k ,所以OE →=kOA →,OF →=kOB →,OG →=kOC →,OH →=kOD →. 由于四边形ABCD 是平行四边形, 所以AC →=AB →+AD →.因此EG →=OG →-OE →=kOC →-kOA →=kAC →=k (AB →+AD →)=k (OB →-OA →+OD →-OA →) =OF →-OE →+OH →-OE →=EF →+EH →.由向量共面的充要条件知E ,F ,G ,H 四点共面. 跟踪训练3 (1)解 MA →,MB →,MC →三个向量共面. 因为OM →=13OA →+13OB →+13OC →,所以3OM →=OA →+OB →+OC →,化简,得(OA →-OM →)+(OB →-OM →)+(OC →-OM →)=0, 即MA →+MB →+MC →=0, 即MA →=-MB →-MC →, 故MA →,MB →,MC →共面.(2)证明 ①∵AC →=AD →+mAB →, ∴A 、B 、C 、D 四点共面.∵EG →=EH →+mEF →,∴E 、F 、G 、H 四点共面. ②∵EG →=EH →+mEF →=OH →-OE →+m (OF →-OE →) =k (OD →-OA →)+km (OB →-OA →) =kAD →+kmAB →=k (AD →+mAB →) =kAC →,∴AC →∥EG →.③OG →=OE →+EG →=kOA →+kAC →=k (OA →+AC →)=kOC →. 当堂训练1.A2.B3.-84.②④5.解 (1)原式可变形为OB →=3OP →-OA →-OM →. ∵3+(-1)+(-1)=1, ∴点B 与点P ,A ,M 共面, 即点P 与点A ,B ,M 共面. (2)原式为OP →=4OA →-OB →-OM →. ∵4+(-1)+(-1)=2≠1, ∴点P 与点A ,B ,M 不共面.。