空间向量和立体几何
- 格式:doc
- 大小:785.51 KB
- 文档页数:12
高中数学立体几何与空间向量知识点归纳总结立体几何与空间向量知识点归纳总结一、立体几何知识点1、柱、锥、台、球的结构特征1) 棱柱的定义:有两个面是对应边平行的全等多边形,其余各面都是四边形,且相邻四边形的公共边都平行,由这些面围成的几何体叫棱柱。
棱柱的侧面都是平行四边形,侧棱平行且长度相等。
若侧棱垂直于底面,则为直棱柱;若底面是正多边形,则为正棱柱。
2) 棱锥的定义:有一个面是多边形,其余各面都是三角形,由这些面围成的几何体叫棱锥。
平行于底面的截面与底面相似,其相似比等于顶点到截面的距离与高的比。
3) 棱台的定义:用平行于底面的平面截棱锥,截面与底面的部分叫棱台。
上下底面平行且是相似的多边形,侧面是梯形,侧棱交于原棱锥的顶点。
4) 圆柱的定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所围成的几何体叫圆柱。
底面是全等的圆,母线与轴平行,轴与底面圆的半径垂直,侧面展开图是一个矩形。
5) 圆锥的定义:以直角三角形的一条直角边为旋转轴,旋转一周所围成的几何体叫圆锥。
底面是一个圆,母线交于圆锥的顶点,侧面展开图是一个扇形。
6) 圆台的定义:以直角梯形的垂直于底边的腰为旋转轴,旋转一周所围成的几何体叫圆台。
上下底面是两个圆,侧面母线交于原圆锥的顶点,侧面展开图是一个扇环形。
7) 球体的定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形围成的几何体叫球。
球的截面是圆,球面上任意一点到球心的距离等于半径。
2、柱体、锥体、台体的表面积与体积1) 几何体的表面积为各个面的面积之和。
2) 特殊几何体表面积公式:直棱柱侧面积=底面周长×高圆锥侧面积=π×底面半径×母线正棱台侧面积=(上底+下底+侧棱)×高/2圆柱侧面积=2π×底面半径×高正棱锥侧面积=(底面周长1+底面周长2+侧棱)×高/2圆台侧面积=(上底半径+下底半径)×母线×π/2圆柱表面积=2π×底面半径×(底面半径+高)圆锥表面积=π×底面半径×(底面半径+母线)圆台表面积=π×(上底半径²+下底半径²+上底半径×下底半径×(上底半径-下底半径)/母线)3) 柱体、锥体、台体的体积公式:直棱柱体积=底面积×高圆柱体积=底面积×高=π×底面半径²×高圆锥体积=底面积×高/3=π×底面半径²×高/3圆台体积=底面积×高/3=(上底半径²+下底半径²+上底半径×下底半径)×高/3圆台的体积公式为V=(S+S'+√(SS'))h/3,其中S和S'分别为圆台的上下底面积,h为圆台的高。
空间向量与立体几何公式一、空间向量1、空间向量是一种简单的数学表达形式,表示一组相同类型数据成员之间的关系。
它可以描述空间中的每个点与另一个点之间的连接情况,而连接情况是由三个不同的坐标表示的。
换言之,空间向量就是描述空间中一个点到另一个点的方向及距离,作为一种数学实体而存在的。
2、空间向量可以用一个有向箭头来表示,并用数学记号标注出来。
通常来说,它的数学记号是表示坐标系中的另一个点在第一个点的坐标上的偏移量,如a→b表示b点在a点上的偏移量。
3、空间向量形式可以表示一条从原点到某个点的路径,通过它可以确定在x、y和z轴上的平移量,即偏移量,从而避免了我们有时在空间中运行物体时会误解运动方向的困难。
从更宏观的角度来说,空间向量可以用来表示以位置、速度和加速度等。
二、立体几何公式1、立体几何是几何学分支之一,它学习的内容是空间中的点、线、面和体的特性、关系及其变化规律,其中关于立体图形的内容被称为立体几何。
立体几何的定义是关于空间中的点、线、面和体的研究,以及它们之间的关系,其中主要考虑的就是位置、形状、大小以及一般的空间概念。
2、立体几何公式包括:立体几何定义、立体几何变换、立体几何性质、其他立体几何相关概念以及三角几何相关公式。
例如,立体几何定义涉及的公式有:空间中的点的位置关系(a-b=c),线的距离关系(L=1/2×Z1×Z2),面的面积关系(S=1/2×Z1×Z2×cosX),以及球体表面积(S=4×π×R2)等公式。
3、另外,立体几何公式还包括三角几何公式,它主要涉及到角度、正弦、余弦、正切、反正切等相关公式。
这些公式用来解决各种形状三角形以及其他更复杂的立体图形以及相关空间距离关系的问题。
立体几何与空间向量知识梳理
立体几何与空间向量是数学中的两个重要分支,它们都涉及到三维空间的计算和处理。
下面是它们的知识梳理:
一、立体几何
1. 立体几何基本概念:点、线、面、立体、平行、垂直、角度、投影等。
2. 立体图形的性质:体积、表面积、对称性、切割等。
3. 立体几何基本公式:立方体、长方体、正方体、圆柱、圆锥、球等的体积和表面积公式。
4. 立体几何运用:解决物体体积和表面积的计算问题,如容器的容积、房间的面积等。
二、空间向量
1. 空间向量定义及表示:三维空间中的有向线段,可以用起点坐标和终点坐标表示。
2. 空间向量的运算:加、减、数乘、点乘、叉乘等。
3. 空间向量的性质:模长、模长计算公式、向量方向,空间向量的平行性、垂直性等。
4. 空间向量的应用:用向量来表示物理量,如力、速度、加速
度等。
总结
立体几何和空间向量是数学中两个重要的分支,它们在三维空间中进行计算和处理。
在应用方面,立体几何可以解决物体的体积和表面积计算问题,而空间向量则可以用来表示和处理物理量。
在学习过程中,要注意掌握基本概念和公式,熟练掌握基本运算和性质,逐渐深入到应用层面。
空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a//。
(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a 共线的单位向量为aa ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
空间向量与立体几何空间向量及其线性运算知识点一空间向量的概念1.定义:在空间,具有大小和方向的量叫做空间向量.2.长度或模:向量的大小.3.表示方法:①几何表示法:空间向量用有向线段表示;②字母表示法:用字母a,b,c,…表示;若向量a的起点是A,终点是B,也可记作AB,其模记为|a|或|AB|.4.几类特殊的空间向量名称定义及表示零向量长度为0的向量叫做零向量,记为0单位向量模为1的向量称为单位向量相反向量与向量a长度相等而方向相反的向量,称为a的相反向量,记为 -a共线向量(平行向量)如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.规定:对于任意向量a,都有0∥a相等向量方向相同且模相等的向量称为相等向量注意:空间中的任意两个向量都可以平移到同一个平面内,成为同一平面内的两个向量.知识点二空间向量的线性运算空间向量的线性运算加法a+b=OA+AB=OB减法a-b=OA-OC=CA数乘当λ>0时,λa=λOA=PQ;当λ<0时,λa=λOA=MN;当λ=0时,λa=0运算律交换律:a+b=b+a;结合律:a+(b+c)=(a+b)+c,λ(μa)=(λμ)a;分配律:(λ+μ)a=λa+μa,λ(a+b)=λa+λb.共线向量与共面向量知识点一 共线向量1.空间两个向量共线的充要条件对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb . 2.直线的方向向量在直线l 上取非零向量a ,我们把与向量a 平行的非零向量称为直线l 的方向向量. 知识点二 共面向量 1.共面向量如图,如果表示向量a 的有向线段OA 所在的直线OA 与直线l 平行或重合,那么称向量a 平行于直线l .如果直线OA 平行于平面α或在平面α内,那么称向量a 平行于平面α.平行于同一个平面的向量,叫做共面向量.2.向量共面的充要条件如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .推论:1.已知空间任意一点O 和不共线的三点A ,B ,C ,存在有序实数对(x ,y ),满足关系AC y AB x OA OP ++=,则点P 与点A ,B ,C 共面。
第一章空间向量与立体几何(公式、定理、结论图表)1.空间向量基本概念空间向量:在空间,我们把具有大小和方向的量叫作空间向量.长度(模):空间向量的大小叫作空间向量的长度或模,记为a 或AB.零向量:长度为0的向量叫作零向量,记为0 .单位向量:模为1的向量叫作单位向量.相反向量:与向量a 长度相等而方向相反的向量,叫作a 的相反向量,记为a.共线向量(平行向量):如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫作共线向量或平行向量.规定:零向量与任意向量平行.相等向量:方向相同且模相等的向量叫作相等向量.2.空间向量的线性运算空间向量的线性运算包括加法、减法和数乘,其定义、画法、运算律等均与平面向量相同.3.共线、共面向量基本定理(1)直线l 的方向向量:在直线l 上取非零向量a ,与向量a平行的非零向量称为直线l 的方向向量.(2)共线向量基本定理:对任意两个空间向量=a b λ (0b ≠ ),//a b 的充要条件是存在实数λ,使=a b λ.(3)共面向量:如果表示向量a 的有向线段OA 所在的直线OA 与直线l 平行或重合,那么称向量a平行于直线l .如果直线OA 平行于平面α或在平面α内,那么称向量a平行于平面α.平行于同一个平面的向量,叫作共面向量.(4)共面向量基本定理:如果两个向量a ,b 不共线,那么向量p与向量a ,b 共面的充要条件是存在唯一的有序实数对(),x y ,使p xa yb =+ .4.空间向量的数量积(1)向量的夹角:已知两个非零向量a ,b ,在空间任取一点O ,作,OA a OB b ==,则AOB ∠叫作向量a ,b 的夹角,记作,a b <> .如果,2a b π<>= ,那么向量,a b 互相垂直,记作a b ⊥ .(2)数量积定义:已知两个非零向量,a b ,则cos ,a b a b <> 叫作,a b的数量积,记作a b ⋅ .即a b ⋅= cos ,a b a b <> .(3)数量积的性质:0a b a b ⊥⇔⋅= 2cos ,a a a a a a a ⋅=⋅<>= .(4)空间向量的数量积满足如下的运算律:()()a b a bλλ⋅=⋅ a b b a⋅=⋅ (交换律):()a b c a c b c +⋅=⋅+⋅(分配律).推论:()2222a ba ab b +=+⋅+,()()22a b a b a b+⋅-=- .(5)向量的投影向量:向量a 在向量b 上的投影向量c :cos ,b c a a b b=<>向量a 在平面α内的投影向量与向量a 的夹角就是向量a所在直线与平面α所成的角.5.空间向量基本定理如果三个向量,,a b c 不共面,那么对空间任意一个空间向量p.存在唯一的有序实数组(),,x y z .使得p xa yb zc =++ .6.基底与正交分解(1)基底:如果三个向量,,a b c 不共面,那么我们把{},,a b c 叫作空间的一个基底,,,a b c都叫作基向量.(2)正交分解:如果空间的一个基底中的三个基向量两两垂直.且长度都为1.那么这个基底叫作单位正交基底,常用{},,i j k表示.把一个空间向量分解为三个两两垂直的向量,叫作把空间向量进行正交分解.7.空间直角坐标系在空间选定点O 和一个单位正交基底{},,i j k.以点O 为原点,分别以,,i j k的方向为正方向、以它们的长为单位长度建立三条数轴:x 轴.y 轴、z 轴,它们都叫作坐标轴.这时我们就建立了一个空间直角坐标系Oxyz ,O 叫作原点,,,i j k都叫作坐标向量,通过每两个坐标轴的平面叫作坐标平面.空间直角坐标系通常使用的都是右手直角坐标系.8.空间向量的坐标在空间直角坐标系Oxyz 中,,i j k为坐标向量.给定任一向量OA ,存在唯一的有序实数组(),,x y z ,使OA xa yb zc =++.有序实数组(),,x y z 叫作向量OA 在空间直角坐标系Oxyz 中的坐标.记作(),,OA x y z =.(),,x y z 也叫点A 在空间直角坐标系中的坐标.记作(),,A x y z .9.空间向量运算的坐标表示设()()111222,,,,,a x y z b x y z ==,则:(1)()121212,,a b x x y y z z +=+++,(2)()121212,,a b x x y y z z -=---,(3)()111,,a x y z λλλλ=.10.空间向量平行、垂直、模长、夹角的坐标表示(1)121212//,,a b a b x x y y z z λλλλ⇔=⇔===,(2)121212=0++0a b a b x x y y z z ⊥⇔⋅⇔=,(3)a == ,(4)cos ,a ba b a b ⋅== .11.空间两点间的距离公式设()()11112222,,,,,P x y z P xy z ,则12PP =.12.平面的法向量:直线l α⊥,取直线l 的方向向量a ,称a为平面的法向量.13.空间中直线、平面的平行(1)线线平行:若12,u u 分别为直线12,l l 的方向向量,则1212////,l l u u R λ⇔⇔∃∈ 使得12u u λ=.(2)线面平行:设u 直线l 的方向向量,n 是平面α的法向量,l α⊄,则//0l u n u n α⇔⊥⇔⋅=.法2:在平面α内取一个非零向量a ,若存在实数x ,使得u xa =,且l α⊄,则//l α.法3:在平面α内取两个不共线向量,a b ,若存在实数,x y ,使得u xa yb =+,且l α⊄,则//l α(3)面面平行:设12,n n 分别是平面,αβ的法向量,则12////n n R αβλ⇔⇔∃∈ ,使得12n n λ=.14.空间中直线、平面的垂直(1)线线垂直:若12,u u 分别为直线12,l l 的方向向量,则1212120l l u u u u ⊥⇔⊥⇔⋅=.(2)线面垂直:设u 直线l 的方向向量,n 是平面α的法向量,则//l u n R αλ⊥⇔⇔∃∈ ,使得u n λ=.法2:在平面α内取两个不共线向量,a b,若0a u b u ⋅=⋅= .则l α⊥.(3)面面垂直:设12,n n 分别是平面,αβ的法向量,则12120n n n n αβ⊥⇔⊥⇔⋅=.15.用空间向量研究距离、夹角问题(1)点到直线的距离:已知,A B 是直线l 上任意两点,P 是l 外一点,PQ l ⊥,则点P 到直线l 的距离为PQ =(2)求点到平面的距离已知平面α的法向量为n,A 是平面α内的任一点,P 是平面α外一点,过点P 作则平面α的垂线l ,交平面α于点Q ,则点P 到平面α的距离为AP nPQ n⋅= .(3)直线与直线的夹角若12,n n 分别为直线12,l l 的方向向量,θ为直线12,l l 的夹角,则121212cos cos ,n n n n n n θ⋅=<>=.(4)直线与平面的夹角设1n 是直线l 的方向向量,2n是平面α的法向量,直线与平面的夹角为θ.则121212sin cos ,n n n n n n θ⋅=<>=.(5)平面与平面的夹角平面与平面的夹角:两个平面相交形成四个二面角,我们把这四个二面角中不大于90 的二面角称为这两个平面的夹角.若12,n n 分别为平面,αβ的法向量,θ为平面,αβ的夹角,则121212cos cos ,n n n n n n θ⋅=<>=.<解题方法与技巧>1.空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.2.利用数乘运算进行向量表示的技巧(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量.(2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质.3.在几何体中求空间向量的数量积的步骤1首先将各向量分解成已知模和夹角的向量的组合形式.2利用向量的运算律将数量积展开,转化成已知模和夹角的向量的数量积.3根据向量的方向,正确求出向量的夹角及向量的模.4代入公式a·b =|a ||b |cos〈a ,b 〉求解.4.利用空间向量证明或求解立体几何问题时,首先要选择基底或建立空间直角坐标系转化为其坐标运算,再借助于向量的有关性质求解(证).5.求点到平面的距离的四步骤6.用坐标法求异面直线所成角的一般步骤(1)建立空间直角坐标系;(2)分别求出两条异面直线的方向向量的坐标;(3)利用向量的夹角公式计算两条直线的方向向量的夹角;7.利用向量法求两平面夹角的步骤(1)建立空间直角坐标系;(2)分别求出二面角的两个半平面所在平面的法向量;(3)求两个法向量的夹角;(4)法向量夹角或其补角就是两平面的夹角(不大于90°的角)典例1:多选题(2023·全国·高三专题练习)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则()A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C.当12λ=时,有且仅有一个点P,使得1A P BP⊥D.当12μ=时,有且仅有一个点P,使得1A B⊥平面1AB P【详解】P在矩形11BCC B内部(含边界)典例2:如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为.(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.由(1)得2AE =,所以12AA AB ==,1A B =则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以AC 则()1,1,1BD = ,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z = ,则m BD m BA ⎧⋅⎨⋅⎩可取()1,0,1m =-,设平面BDC 的一个法向量(),,n a b c = ,则n BD n BC ⎧⋅⎨⋅⎩可取()0,1,1n =-r,则11cos ,222m n m n m n⋅===⨯⋅,所以二面角A BD C --的正弦值为213122⎛⎫-= ⎪⎝⎭.典例3:已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?【答案】(1)证明见解析;(2)112B D =【分析】(1)方法二:通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直;(2)方法一:建立空间直角坐标系,利用空间向量求出二面角的平面角的余弦值最大,进而可以确定出答案;【详解】(1)[方法一]:几何法因为1111,//BF AB AB AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,()()(0,0,0,2,0,0,0,2,0B A C ∴由题设(),0,2D a (02a ≤≤因为()(0,2,1,1BF DE ==- 所以()012BF DE a ⋅=⨯-+ [方法三]:因为1BF A B ⊥(1BF ED BF EB BB B ⋅=⋅++ 1122BF BA BC BF ⎛⎫=--+ ⎪⎝⎭1cos 2BF BC FBC =-⋅∠+作1BH F T ⊥,垂足为H ,因为面角的平面角.设1,B D t =[0,2],t ∈1B T =典例4:如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.。
以下是部分空间向量与立体几何的公式:1. 向量的模:向量的长,可参考点点距离求模。
2. 向量的加法:三角形法则或平行四边形法则。
3. 向量的减法:三角形法则。
4. 向量的数乘:m*(x,y,z)=(mx,my,mz)。
5. 向量的积:向量m*向量n=m模*n模*cos<m,n>。
6. 向量的数乘:a=(x1,y1,z1),b=(x2,y2,z2) a+b=(x1+x2,y1+y2,z1+z2) a-b=(x1-x2,y1-y2,z1-z2) λa=(λx1,λy1,λz1) a·b=x1x2+y1y2+z1z2 a∥b:x1=λx2,y1=λy2,z1=λz2 a⊥b:x1x2+y1y2+z1z2=0。
7. 法向量与方向向量解答如下关系:线线平行:线L1方向向量为m,线L2方向向量为n,m=y*n;线面平行:法向量与方向向量垂直;面面平行:法向量平行;线线垂直:线L1方向向量为m,线L2方向向量为n,m*n=0;线面垂直:法向量与方向向量平行;面面垂直:法向量垂直;线线夹角:方向向量乘积公式求角;线面夹角:方向向量与法向量乘积公式求角;面面夹角:法向量乘积求角。
8. 点点距离:向量模长公式;点面距离:设点为o,取平面内点p,向量op*法向量n;线线距离:直线a,b,E、F为线a,b上点;直线ab距离d为=向量EF*公垂线方向向量n/向量n模;直线方向向量求法:(1)直线l:ax+by+c=0,则直线l的方向向量为=(-b,a)或(b,-a)。
(2)若直线l的斜率为k,则l的一个方向向量为=(1,k)。
(3)若A(x1,y1),B(x2,y2),则AB所在直线的一个方向向量为=(x2-x1,y2-y1)。
9. 法向量求法:法向量(a,b,c)与面内向量乘积为零,带入求解方程。
如需更多公式和信息,建议查阅数学书籍或相关网站获取。
高中数学知识点总结空间向量与立体几何一、考点概要:1、空间向量及其运算〔1〕空间向量的根本知识:①定义:空间向量的定义和平面向量一样,那些具有大小和方向的量叫做向量,并且仍用有向线段表示空间向量,且方向相同、长度相等的有向线段表示相同向量或相等的向量。
②空间向量根本定理:ⅰ定理:如果三个向量不共面,那么对于空间任一向量,存在唯一的有序实数组x、y、z,使。
且把叫做空间的一个基底,都叫基向量。
ⅱ正交基底:如果空间一个基底的三个基向量是两两相互垂直,那么这个基底叫正交基底。
ⅲ单位正交基底:当一个正交基底的三个基向量都是单位向量时,称为单位正交基底,通常用表示。
ⅳ空间四点共面:设O、A、B、C是不共面的四点,那么对空间中任意一点P,都存在唯一的有序实数组x、y、z,使。
③共线向量〔平行向量〕:ⅰ定义:如果表示空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量,记作。
ⅱ规定:零向量与任意向量共线;ⅲ共线向量定理:对空间任意两个向量平行的充要条件是:存在实数λ,使。
④共面向量:ⅰ定义:一般地,能平移到同一平面内的向量叫做共面向量;空间的任意两个向量都是共面向量。
ⅱ向量与平面平行:如果直线OA平行于平面或在α内,那么说向量平行于平面α,记作。
平行于同一平面的向量,也是共面向量。
ⅲ共面向量定理:如果两个向量、不共线,那么向量与向量、共面的充要条件是:存在实数对x、y,使。
ⅳ空间的三个向量共面的条件:当、、都是非零向量时,共面向量定理实际上也是、、所在的三条直线共面的充要条件,但用于判定时,还需要证明其中一条直线上有一点在另两条直线所确定的平面内。
ⅴ共面向量定理的推论:空间一点P在平面MAB内的充要条件是:存在有序实数对x、y,使得,或对于空间任意一定点O,有。
⑤空间两向量的夹角:两个非零向量、,在空间任取一点O,作,〔两个向量的起点一定要相同〕,那么叫做向量与的夹角,记作,且。
⑥两个向量的数量积:ⅰ定义:空间两个非零向量、,那么叫做向量、的数量积,记作,即:。
空间向量与立体几何第一章:空间向量基础1.1 向量的定义与表示了解向量的概念,掌握向量的几何表示和代数表示。
学习向量的长度和方向,掌握向量的模和单位向量。
1.2 向量的运算学习向量的加法、减法和数乘运算。
掌握向量加法和减法的几何意义,理解数乘向量的意义。
1.3 向量的坐标表示学习空间直角坐标系,了解向量的坐标表示方法。
掌握向量坐标的加法和数乘运算,理解向量坐标的几何意义。
第二章:立体几何基础2.1 平面立体几何学习平面的基本性质,掌握平面方程和点到平面的距离公式。
学习直线与平面的位置关系,了解线面平行、线面相交和线面垂直的判定条件。
2.2 空间立体几何学习空间几何体的基本性质,包括点、线、面的位置关系。
掌握空间几何体的体积和表面积计算公式,了解空间几何体的对称性。
第三章:空间向量在立体几何中的应用3.1 空间向量与直线的位置关系学习利用空间向量判断直线与直线、直线与平面的位置关系。
掌握向量夹角的概念,学习利用向量夹角判断直线与直线的夹角。
3.2 空间向量与平面的位置关系学习利用空间向量判断平面与平面的位置关系。
掌握平面法向量的概念,学习利用平面法向量求解平面方程。
3.3 空间向量与空间几何体的位置关系学习利用空间向量判断空间几何体与空间几何体的位置关系。
掌握空间几何体的体积和表面积计算方法,学习利用空间向量求解空间几何体的体积和表面积。
第四章:空间向量的线性运算与立体几何4.1 空间向量的线性组合学习空间向量的线性组合,掌握线性组合的运算规律。
理解线性组合在立体几何中的应用,包括线性组合与空间几何体的关系。
4.2 空间向量的线性相关与线性无关学习空间向量的线性相关和线性无关的概念。
掌握判断空间向量线性相关和线性无关的方法,理解线性相关和线性无关在立体几何中的应用。
4.3 空间向量的基底与坐标表示学习空间向量的基底概念,掌握基底的选取方法。
学习空间向量的坐标表示方法,理解坐标表示在立体几何中的应用。
知识清单:1,空间向量及运算:空间向量和平面向量的加、减、数乘一样。
1.1 空间向量的定义:空间中既有大小又有方向的向量叫做空间向量,用有向线段表示空间向量的定义AB 或a ,是自由向量,不讲究起点,空间向量的大小叫做空间向量的长度或者模。
记AB 或者a 。
1.2 空间向量的夹角:过空间一点O 作OA a =,OB b =,则AOB ∠叫做a 与b 的夹角,记作,a b ,0,a b π≤≤,当,a b 2π=时,a 与b 垂直,记a b ⊥。
当,a b 0=或π时,//a b 。
1.3 特殊空间向量:当a 0=时,称a 为零向量,记a 0=,与任意向量平行和垂直。
当a 1=,称a 为单位向量,对任意非零向量a ,a a叫做a 的单位向量。
当a =-b 时,称a 与b 互为相反向量。
1.4 方向向量与法向量:当a 与l 平行时,称a (0)≠是l 的方向向量,一直线的方向向量有无数个。
当a 与平面α垂直时,称a (0)≠是平面α的法向量,一平面的法向量有无数个。
1.5 向量的线性运算:1.5.1 向量的加法符合平行四边形法则,减法符合三角形法则,又满足规律:()()a b c a b c ++=++,a b b a +=+,若n 个向量相加且首尾相接,则其和向量以开始起点为起点,以最终的终点为终点一样,即01122103n n n A A A A A A A A A A -+++⋅⋅⋅+=。
1.5.2向量的数乘:a λ与平面向量意义相同。
a λa λ=,0λ>时,a λ与a 同向;0λ<时,a λ与a 反向;满足a a λλ=;()a b a b λλλ+=+;()a a a μλμλ+=+;()()a a λμλμ=1.5.3 向量的共线定理:b 0≠时,//a b a b λ⇔=1.6 空间向量的数量积:cos ,a b a b a b ⋅=⋅ 是一个实数。
满足规律:a b b a ⋅=⋅()a b c a b a c ⋅+=⋅+⋅ ()()a b a b λλ⋅=⋅ 不满足结合律,即:()()a b c a b c ⋅⋅≠⋅⋅ 应用: 2a a =0a b a b ⊥⇔⋅= cos (0,0)a b a b a b a b⋅⋅=≠≠⋅2,空间向量基本定理及坐标运算:2.1 空间向量基本定理:若向量123,,e e e 是空间三个不共面向量,a 是空间任意向量,那么存在唯一一组实数123,,λλλ使得112233a e e e λλλ=++,其中空间中不共面的向量123,,e e e 叫做这空间的一组基底。
2.2 单位正交基:当一组基底,,i j k 两两垂直,且1i j k ===,则,,i j k 叫做单位正交基底,对于任一向量a ,有a xi y j zk =++,其中x a i =⋅,y a j =⋅,z a k =⋅叫做a 在,,x y z 轴上的投影。
2.3 空间向量坐标运算: 111(,,)a x y z = 222(,,)b x y z =121212(,,)a b x x y y z z +=+++ 121212(,,)a b x x y y z z -=---111(,,)a x y z λλλλ=121212(,,)a b x x y y z z ⋅= 2.4 向量坐标的应用: 111(,,)a x y z = 222(,,)b x y z =若0b ≠,则//a b =121212x x y y z z λλλ⎧=⎪=⎨⎪=⎩ R λ∈21a x =+1212120a b x x y y z z ⊥⇔++=121212cos ,x x y y z z a b ++=(0,0)a b ≠≠2.5 待定系数法求平面法向量步骤:(1)设平面法向量为(,,)n x y z =(2)找出平面内两不共线向量坐标 111(,,)a x y z = 222(,,)b x y z = (3)法向量n 与,a b 都垂直00n a n b ⎧⋅=⎪⇒⎨⋅=⎪⎩(4)解方程组,取其中一个解,就为法向量的坐标。
3,用向量解决平行和垂直问题:直线1l 的方向向量设为1s ,直线2l 的方向向量设为2s ,平面α的法向量设为1n ,平面β的法向量设为2n ,则:1212////l l s s ⇔ ,1212l l s s ⊥⇔⊥,111//l s n α⇔⊥111//l s n α⊥⇔,12////n n αβ⇔,12n n αβ⊥⇔⊥4,用向量求夹角:4.1 直线间夹角: 当1l ,2l 共面时,把两直线夹角中范围在[0,]2π内的角叫做1l ,2l 间的夹角。
当1l ,2l 互为异面直线时,在1l 上任取一点A 作//AB 2l ,把1l 和AB 间的夹角叫做异面直线1l 和2l 的夹角。
向量与夹角间的关系:已知直线1l 和2l 的方向向量为1s ,2s 当120,2s s π≤≤时,直线1l 和2l 的夹角等于12,s s ;当12,2s s ππ<≤时,直线1l 和2l 的夹角等于12,s s π-。
4.2 平面间夹角:两平面所成的二面角中,范围在0,2π⎡⎤⎢⎥⎣⎦内叫做两平面间的夹角。
向量与夹角的关系:平面1π与2π法向量为1n 和2n ,θ为两平面所称二面角的平面角由12,n n 确定:当120,2n n π≤≤时,θ=12,n n ; 当12,2n n ππ<≤时,θ=π-12,n n4.3 直线与平面的夹角:平面外一条直线与它在平面内投影的夹角叫做直线与平面的夹角,范围在0,2π⎡⎤⎢⎥⎣⎦。
设直线l 方向向量为a ,平面法向量为n ,直线与平面所成的角为θ,则:sin cos ,a n a n a nθ⋅==⋅当,2a n π>时,θ=,2a n π-,sin cos ,a n θ=-当,2a n π<时,θ=,2a n π-5,用向量求距离:一个图形中任一点与另一个图形中任一点间距离的最小值叫做图形与图形之间的距离。
5.1 点到直线距离:因为直线和直线外一点确定一个平面,所以空间一点到直线距离实际上就是空间中某一平面内点到直线的距离。
l 是过点p 平行于向量s 的直线,A 是直线l 外一定点,点A 到l 的距离为220d PA PA s =-⋅(0s 为向量s 方向上的单位向量)5.2 点到平面的距离:π是过点p 的垂直向量n 的平面,A 是π外一定点,点A 到平面π的距离0d PA n =⋅(0n 为向量n 方向上的单位向量)。
5.3 线面距离和面面距离:5.3.1 直线到它平行平面间的距离:一直线与一平面平行,这直线上任一点到面间的距离称为线面距离,一般将线面距离转化为点面距或面面距来求。
5.3.2 两个平行平面间的距离:和两个平行平面同时垂直的直线叫做这两平面的公垂线,公垂线夹在两平面之间的部分叫做这两个平面的公垂线段,公垂线段的长度称为面面距,一般将面面距转化为点面距来求。
基础题:1,在空间四边形ABCD 中,若AB a =,BD b =,AC c =,则CD 等于 ( )A .()a b c --B .()c b a --C .a b c --D .()b c a --2. 在以下命题中,正确命题的个数为 ( ) ①若,a b 共线,则a 与b 所在直线平行;②若,a b 所在直线是异面直线,则a 与b 一定不共面; ③若,,a b c 三向量两两共面,则,,a b c 三向量共面;④若,,a b c 三向量共面,则由,a b 所在直线所确定的平面与由,b c 所在直线确定的平面是同一个平面A .0B .1C .2D .33,(广东省高明一中2009届高三上学期第四次月考)若a 、b 、c 为任意向量,m ∈R ,下列等式不一定成立的是( )A. (a+ b) +c=a+ (b+ c)B. (a+ b) ·c=a·c+ b·cC. m(a+ b)=ma+ mbD. (a·b)c=a(b·c)4,(陕西省西安铁一中2009届高三12月月考) 与向量(-3,-4,5)共线的单位向量是 ( ) (A )(32222,,1052-)和(32222,,1052--); (B )(32222,,1052-); (C )(32222,,1052)和(32222,,1052---); (D )(32222,,1052--); 5,在平行六面体1111ABCD A B C D -中,化简1()AB AD DD BC ++-的结果为______________;6,若空间三点A (1,5,-2),B (2,4,1),C (p,3,q+2)共线,则p=______,q=______。
7,(湖南省衡阳市八中2009届高三第三次月考试题)已知123F i j k =++,223F i j k =-+-,3345F i j k =-+,若123,,F F F 共同作用于一物体上,使物体从点M (1,-2,1)移动到N (3,1,2),则合力所作的功是 .8,(广东省北江中学2009届高三上学期12月月考)在正三棱柱ABC —A1B1C1中,若AB=BB1,则AB1与C1B 所成角的大小为( )A.60°B.90°C.105°D.75°9,设向量()()3,5,4,2,1,832,,a b a b a b =-=-⋅,计算并确定,λμ的关系,使a b z λμ+与轴垂直10,如图,E 是正方体ABCD —A1B1C1D1的棱C1D1的中点,试求向量与所成角的余弦值.巩固题:1,在△ABC 中,AB=AC=5,BC=6,PA ⊥平面ABC ,PA=8,则P 到BC 的距离是…( ) A.B.4C.3D.22,在平面直角坐标系中, (2,3),(3,2)A B --,沿x 轴把平面直角坐标系折成120︒的二面角后则线段AB 的长度为( )A .2B .211C .32D .423,若向量a=(1,λ,2),b=(2,-1,2),a 、b 夹角的余弦值为,则λ等于( )A.2B.-2C.-2或255 D.2或255- 4,( 湖南省衡阳市八中2009届高三第三次月考试题)已知,a b 均为单位向量,它们的夹角为60︒,那么3a b +等于( )A .7B .10C .13D .4 5,设a=(x,4,3),b=(3,2,z),且a ∥b,则xz 等于( )A.-4B.9C.-9D. 6496,如图,平面PAC ⊥平面ABC ,ABC ∆是以AC 为斜边的等腰直角三角形,,,E F O 分别为PA ,PB ,AC 的中点,16AC =,10PA PC ==.设G 是OC 的中点, 证明://FG 平面BOE ;7,(山西大学附中2008届二月月考)正三棱柱111ABC A B C -所有棱长都是2,D 是棱AC 的中点,E 是棱1CC 的中点,AE 交1A D 于点.H (1)求证:1AE A BD ⊥平面;(2)求二面角1D BA A --的大小(用反三角函数表示); (3)求点1B 到平面1A BD 的距离.8,(09山东理) 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD ,AB=4, BC=CD=2, AA 1=2, E 、E 1分别是棱AD 、AA 1的中点.(1) 设F 是棱AB 的中点,证明:直线EE 1//平面FCC 1; (2) 证明:平面D 1AC ⊥平面BB 1C 1C. 提高题:1,(09山东理)设P 是△ABC 所在平面内的一点,2BC BA BP +=,则( ) A.0PA PB += B. 0PB PC += C. 0PC PA += D.0PA PB PC ++= 2,(09山东理)已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“αβ⊥”是“m β⊥”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3,(2010文科)直三棱柱111ABC A B C -中,若90BAC ︒∠=,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于( )EABCFE 1A 1B 1C 1D 1DA, 30︒ B, 45︒ C, 60︒ D, 90︒4,(2010文科9)正方体1111ABCD A B C D -中,1BB 与平面1ACD 所成的角的余弦值为( )A,23 B, 33 C, 23D, 63 5,(2011全国理)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是( )A .14,P PB .13,P PC .23,P PD .24,P P 6,(2011浙江理)下列命题中错误..的是( )A .如果平面αβ⊥平面,那么平面α内一定存在直线平行于平面βB .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC .如果平面αγ⊥平面,平面βγ⊥平面,=l αβ⋂,那么l γ⊥平面D .如果平面αβ⊥平面,那么平面α内所有直线都垂直于平面β7,(2011全国文)若直线l 不平行于平面a ,且l a ∉,则( ) A .a 内的所有直线与异面 B .a 内不存在与l 平行的直线C .a 内存在唯一的直线与l 平行D .a 内的直线与l 都相交8,(2011全国文)(本题满分14分)如图,在三棱锥P ABC -中,AB AC =,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上. (Ⅰ)证明:AP ⊥BC ;(Ⅱ)已知8BC =,4PO =,3AO =,2OD =.求二面角B AP C --的大小.9,(2011全国理)(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为平行四 边形,∠DAB=60°,AB=2AD,PD ⊥底面ABCD.(Ⅰ)证明:PA ⊥BD ;(Ⅱ)若PD=AD ,求二面角A-PB-C 的余弦值。