2006-2007第2学期《概率论与数理统计》期末考试试题B卷(公共课)参考答案及评分标准
- 格式:doc
- 大小:120.00 KB
- 文档页数:2
深圳大学期末考试试卷参考解答及评分标准开/闭卷闭卷A/B 卷 B课程编号 2219002801-2219002811课程名称 概率论与数理统计 学分 3命题人(签字) 审题人(签字) 年 月 日 6小题,每小题5分,满分30分。
在每小题给出的四个选项中,只有一(每道选择题选对满分,选0分)如果事件A 与事件B 满足A B =∅, 则 ( ) 事件A 与事件B 互不相容 (B) 事件A 与事件B 相互独立 事件A 与事件B 为相容事件 (D) 事件A 与事件B 互为对立事件 A ,由互不相容事件的定义可知。
假设事件A 与事件B 互为对立,则( ) P (A )P (B )=P (A B ) (B) A B =∅ P (A )+P (B )>1 (D) P (B )=1-P (A ) D ,由加法定理得。
已知随机变量X 1,X 2,X 3相互独立,且都服从标准正态分布,令1233X X X X ++=,则222123)()()X X X X X X -+-+-服从 ( ) 自由度为3的χ2分布 (B) 自由度为2的χ2分布 自由度为3的F 分布 (D) 自由度为2的F 分布 B ,由n 个相互独立服从标准正态分布的样本X 1, ,X n 满足221()~(1)ni i X X n χ=--∑已知随机变量X ~N (2,4),Y =2X -4, 则( ) Y ~N (2,8) (B) Y ~N (2,16) (C) Y ~N (0,8) (D) Y ~N (0,16) D ,因E (Y )=2E (X )-4=0, D (Y )=D (2X )=4D (X )=16。
样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( )X 1+X 2-X 3是μ的无偏估计 (B) 1232X X X ++是μ的无偏估计22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计A ,因E (X 1+X 2-X 3)=E (X 1)=E (X )。
概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
广东白云学院2007—2008学年第二学期期末考试《概率论与数理统计》B卷参考答案及评分标准适用专业及方向: 经济管理类各专业、土木工程层次: 本科年级: 07级限时: 120分钟考试形式: 闭卷考场要求: 笔试考试形式:闭卷考场要求:笔试.(×)2. 设、为两事件, 则.(×)3. 设, 则其一定是某连续型随机变量的密度函数.(√)4. 设随机变量~N(1, 9), 则.(√)5.设, , 与相互独立, 则.二、填空题(请将正确答案填写在括号内。
每空3分,共30分), 则( 0.6 ).7.设随机变量和都服从[0,2]上的均匀分布, 则( 2 ).8. 设为两个随机事件,且已知, , ,则条件概率(0.6).则常数c=(0.1),}5.15.0{<<-XP=(0.5).10. 已知~,函数值,则=(0.9772).11. 服从参数的泊松分布, 令, 则(13), (75).12. 设三次独立试验中, 事件出现的概率相等, 若已知至少出现一次的概率等1/3 ).,则下列关系成立的是( C )A. B.C. D.15.同时抛掷3枚均匀的硬币, 则恰好有两枚正面朝上的概率为( D )A. 0.5B. 0.125C. 0.25D. 0.37516. 10张奖券中含有3张中奖的奖券,每人购买一张,则第3个购买者中奖的概率为( B )A. B. 0.3 C. D.17. 设连续型随机变量服从参数为的指数分布,若方差,则数学期望( B )A. B. C. D.18. 如果离散型随机变量相互独立,且服从参数为的泊松分布,则当充分大时,离散型随机变量( D )近似服从标准正态分布.A. B. C. D.19. 设连续型随机变量的概率密度为,则( A )A. B. C.D.四、计算题(每小题8分,共32分)(1)若事件BA,互不相容,求α; (2)若事件BA,相互独立,求α.解 (1)因为BA,互不相容,所以φ=AB, (1分)所以)()()()(BPABPBPBAP=-= (2分)而)(1)()()()(APBAPBPAPBAP-=-+=(3分)所以α=0.3 (4分)(2)因为BA,相互独立,则A与B也相互独立, (5分))())(1)(()()()()()(BPBPAPBPAPBPAPBAP+-=-+=(7分)所以α=73(8分)21. 某产品主要由三个厂家供货.甲、乙、丙三个厂家的产品分别占总数的15%,80%,5%,其次品率分别为0.02,0.01,0.03,试计算(1)从这批产品中任取一件是不合格品的概率;(2)已知从这批产品中随机地取出的一件是不合格品,问这件产品由哪个厂家生产的可能性最大?解记=A{所取一件产品是不合格品},321,,BBB分别表示”产品来自甲、乙、丙厂” (1分) 依题意有:15.0)(1=BP, 80.0)(2=BP,05.0)(3=BP02.0)(1=BAP,01.0)(2=BAP,03.0)(3=BAP (2分) (1)由全概率公式0125.0)()()(31==∑=iiiBPBAPAP (5分) (2)由贝叶斯公式24.00125.002.015.0)()()()(111=⨯==APBAPBPABP, (6分)64.00125.001.080.0)()()()(222=⨯==APBAPBPABP, (7分)12.00125.003.005.0)()()()(333=⨯==A PB A P B P A B P (8分) 22.设连续型随机变量X 的密度函数⎩⎨⎧<<=其他020)(2x Ax x ϕ,求(1)常数A ;(2))(),(X D X E .解 因为138)(202===⎰⎰∞+∞-A dx Ax dx x ϕ (2分) 所以 83=A (3分)所以 ⎪⎩⎪⎨⎧<<=其他2083)(2x xx ϕ2383)()(203===⎰⎰∞+∞-dx x dx x x X E ϕ (5分) 51283)()(20422===⎰⎰∞+∞-dx x dx x x X E ϕ (7分) 20323512)]([)()(222=⎪⎭⎫ ⎝⎛-=-=X E X E X D (8分) 23. 已知电站供电网有10000盏电灯, 夜晚每一盏灯开灯的概率都是0.7, 而假定开、关时间彼此独立, 试用切贝谢夫不等式估计夜晚同时开着的灯数在6800与7200之间的概率。
《概率分析与数理统计》期末考试试题及
解答(DOC)
概率分析与数理统计期末考试试题及解答
选择题
1. 以下哪个选项不是概率的性质?
- A. 非负性
- B. 有界性
- C. 可加性
- D. 全备性
答案:B. 有界性
2. 离散随机变量的概率分布可以通过哪个方法来表示?
- A. 概率分布函数
- B. 累积分布函数
- C. 概率密度函数
- D. 方差公式
答案:B. 累积分布函数
计算题
3. 一批产品有10% 的不合格品。
从该批产品中随机抽查5个,计算至少有一个不合格品的概率。
解答:
设事件 A 为至少有一个不合格品的概率,事件 A 的对立事件
为没有不合格品的概率。
不合格品的概率为 0.1,合格品的概率为 0.9。
则没有不合格品的概率为 (0.9)^5。
至少有一个不合格品的概率为 1 - (0.9)^5,约为 0.409。
4. 一个骰子投掷两次,计算至少一次出现的点数大于3的概率。
解答:
设事件 A 为至少一次出现的点数大于3的概率,事件 A 的对立事件为两次投掷点数都小于等于3的概率。
一个骰子点数大于3的概率为 3/6 = 1/2。
两次投掷点数都小于等于3的概率为 (1/2)^2 = 1/4。
至少一次出现的点数大于3的概率为 1 - 1/4,约为 0.75。
以上是《概率分析与数理统计》期末考试的部分试题及解答。
希望对你有帮助!。
《概率论与数理统计》考试题一、填空题(每小题2分,共计60分)1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)A (p ==,则a )、若B A ,互斥,则=)B -A (p 0.5 ;b )若B A ,独立,则=)B A (p 0.65 ;c )、若2.0)(=⋅B A p ,则=)B A (p 3/7 . 2、袋子中有大小相同的红球7只,黑球3只,(1)从中不放回地任取2只,则第一、二次取到球颜色不同的概率为: 7/15 。
(2)若有放回地任取2只,则第一、二次取到球颜色不同的概率为: 21/50 。
(3)若第一次取一只球后再追加一只与其颜色相同的球一并放入袋中再取第二只球,则第一、二次取到球颜色不同的概率为: 21/55 . 3、设随机变量X 服从泊松分布}8{}7{),(===X P X p λπ,则{}=X E 8 .4、设随机变量X 服从B (2,0. 8)的二项分布,则{}==2X p 0.64 , Y 服从B (8,0. 8)的二项分布, 且X 与Y 相互独立,则}1{≥+Y X P =1- 0.210,=+)(Y X E 8 。
5 设某学校外语统考学生成绩X 服从正态分布N (75,25),则该学校学生的及格率为 0.9987 ,成绩超过85分的学生占比}85{≥X P 为 0.0228 。
其中标准正态分布函数值9987.0)3(,9772.0)2(,8413.0)1(=Φ=Φ=Φ. 6、设二维随机向量),(Y X 的分布律是有 则=a _0.1_,X的数学期望=)(X E ___0.4___,Y X 与的相关系数=xy ρ___-0.25______。
7、设161,...,X X 及81,...,Y Y 分别是总体)16,8(N 的容量为16,8的两个独立样本,Y X ,分别为样本均值,2221,S S 分别为样本方差。
则:~X N(8,1) ,~Y X - N(0,1.5) ,{}5.12>-Y X p = 0.0456 ,~161521S )15(2χ,~2221S S F(15,7) 。
概率论与数理统计期末考题(附解析)-中国科技大学-01中国科学技术大学2006—2007学年第二学期考试试卷考试科目:概率论与数理统计 得 分: 学生所在系: 姓 名 学 号:(考期:2007年7月13日,闭卷,可用计算器) 一、(18分)(1) 举例说明:一般而言,1)|)|(=+A B P A B P (和1)|)|(=+A B P A B P (不成立;(2) 举例说明:随机变量X 与Y 不独立,但2X 和2Y 独立; (3) 设4321,A ,A ,A A 相互独立,且)4,3,2,1(,)(31==i A P i 则==)(41 i i A P ( );(4)设随机变量X 与Y 独立,且1)()(,0)()(====Y Var X Var Y E X E 。
若命Y X W -=,则Y 与W 的相关系数是( ); (5)判断正误:设X 与Y 都是正态随机变量,则X 与Y 的联合分布由X与Y 的边缘分布唯一确定( );(6)判断正误:在假设检验中,我们要检验两个正态总体均值差δμμ=-21是否为零,则δ--Y X 是统计量( )。
二、(10分)有100个零件,其中90个为一等品,10个为二等品。
从中随机取出2个,安装在一台设备上。
若2个零件中恰有k 个二等品)2,1,0(=k ,则该设备的使用寿命服从参数为1+=k λ的指数分布。
若已知该设备寿命超过1,试求安装的2个零件均为一等品的概率。
三、(20分)设~..X v r )10(),1(6)(≤≤-=x x x x f (1)验证)(x f 是概率密度函数并画出其图形; (2)求出X 的概率分布函数;(3)确定满足)2/3()(b X P b X P >=<的数b ,(10<<b ); (4)计算}|{323121<<≤X X P 。
四、(7分)设),(Y X 服从}10,11|),{(≤≤≤≤-=y x y x D 上的均匀分布,试求X YZ 3=的概率密度函数)(z f Z 。
2《概率论与数理统计》期末考试_[B]答案华中农业大学本科课程期末考试试卷B 卷答案考试课程:概率论与数理统计学年学期:考试日期:一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其字母代号写在该题【】内。
答案错选或未选者,该题不得分。
每小题2分,共10分。
) 1. 设A 和B 是任意两个概率不为0的互不相容事件,则下列结论中肯定正确的是【(d)】.(a) A 与B 不相容; (b) A 与B 相容; (c) P(AB)=P(A)P(B); (d) P(A -B)=P(A). 2. 设随机变量序列X 服从N(μ,16), Y 服从N(μ,25),记p 1=P{X<μ-4},p 2=P{X>μ+5},则下列结论正确的是【(a) 】 .(a)对任何实数μ,都有p 1= p 2; (b) 对任何实数μ,都有p 1< p 2; (c) 对个别实数μ,才有p 1= p 2; (d) 对任何实数μ,都有p 1> p 2. 3. 设总体X 服从正态分布),(N 2σμ,其中μ未知,2σ已知,321X ,X ,X 是总体X 的一个简单随机样本,则下列表达式中不是统计量的是【(d )】.(a )321X X X ++;(b ))X ,X ,X m in(321;(c )∑=σ31i 22i X ;(d )μ+2X .4.在线性回归分析中,以下命题中,错误的是【(d )】 .(a )SSR 越大,SSE 越小;(b )SSE 越小,回归效果越好;(c )r 越大,回归效果越好;(d )r 越小,SSR 越大.5.设随机变量X~F(n,m),欲使P{λ1<x<=""></xλ1的值可为【(a )】 .(a )),(2m n F α; (b )),(2n m F α; (c )12),(-αm n F ;(d )12),(-αn m F ;………………………………… 装……………………………… 订……………………………… 线…………………………………二、填空题(将答案写在该题横线上。