数学2
- 格式:doc
- 大小:61.00 KB
- 文档页数:7
302数学二第一篇:数学二的学科知识简介302数学二是一门涉及高阶数学概念的学科。
它主要涵盖了微积分、概率与统计以及线性代数等内容。
本篇将为大家介绍这些知识领域的一些基本概念和应用。
微积分是数学二中的重要组成部分。
它主要包括导数和积分两个方面的内容。
导数是用来描述函数变化率的概念,可以用来求解函数在某一点的斜率和切线方程等问题。
积分则是导数的逆运算,主要用于求解曲线下的面积、求解定积分以及求解微分方程等。
掌握好微积分的基础知识对于理解和应用其他学科非常重要。
概率与统计是数学二中另一个重要的学科领域。
概率理论是研究随机现象的数学方法,主要用于描述和预测不确定性事件的发生概率。
统计学则是研究如何从样本中推断总体特征的学科,主要包括描述统计和推断统计两个方面。
在概率与统计的学习中,学生需要了解概率、随机变量、概率分布、参数估计等概念,并掌握一些常用的统计方法和技巧。
线性代数是数学二中的一门重要课程。
它主要研究由向量和矩阵构成的线性空间和线性变换。
线性代数广泛应用于各个学科领域,如物理学、工程学、计算机科学等。
学生需要了解向量的运算法则、矩阵的基本运算、线性变换的特征等,掌握基本的线性代数方法和技巧。
数学二的学习不仅要理解概念和方法,还需要进行大量的实际应用训练。
通过解决实际问题,将数学知识应用于实际情境中,才能够真正理解和掌握数学的本质。
总之,302数学二是一门基础而广泛的数学学科,涵盖了微积分、概率与统计以及线性代数等知识内容。
理解和掌握这些知识将为我们今后的学习和应用提供重要的基础。
第二篇:数学二的学习方法与应用技巧在学习302数学二时,我们需要掌握一些有效的学习方法和应用技巧,以帮助我们更好地理解和应用数学知识。
以下是一些常用的学习方法和应用技巧,供大家参考。
第一,理清基本概念。
在学习数学二的过程中,理解基本概念是非常重要的。
对于微积分、概率与统计以及线性代数等内容,我们要理解其中的基本概念和定义,掌握它们的意义和特点。
高等数学2
高等数学二是一门学习数学知识的必修课,它具有普适性和实用性,是人们理
解基础数学、深度发掘数学技能、掌握分析应用技巧以及为数学解决实际问题的基础课程。
高等数学二主要包括微积分学、线性代数学以及概率统计三个主要的学科内容。
其中微积分学包括:运算求导与积分、曲面分析等;线性代数学则主要研究矩阵论和线性空间;概率统计包括了概率论和统计推断等。
高等数学二不仅在理论学习上有重要的影响,在工程上也有着重要的意义,其
理解和运用能够有效提高计算能力,帮助学生更加熟练运用数学。
因此,数学在工程分析中的运用是极其重要的。
在高等数学二的学习过程中,学生要准备的不仅仅是学习的内容,还需要形成
独立的学习思维,解决问题的能力也是非常重要的。
另外,有些数学概念比较抽象,对于理解起来也需要培养出一定的精力和记忆力,才能够更加顺利地学习。
总而言之,学习高等数学二需要投入足够的精力和技术,只有深入的学习,才
能够更好地掌握数学知识,运用其理论拓展知识边界,在实际活动中发挥出更大的价值。
2023年全国硕士研究生统一入学考试数学(二)试题解析一、选择题:1-10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项是符合要求的请将所选项前的字母填在答题纸指定位置上.1.【答案】:B【解析】:1ln()11lim lim limln(11x x x x e y x k e x x x)11lim()lim[ln()]lim [ln()1]11x x x b y kx x e x x e x x 11lim ln[1]lim (1)(1)x x x x e x e x e所以斜渐近线方程为:1y x e2.【答案】:D 【解析】:当0x时1()ln(f x dx x C 当0x 时()(1)cos (1)sin sin f x dx x xdx x x xdx2(1)sin cos x x x C 原函数在(,) 内连续,则在0x处1122lim ln(,lim(1)sin cos 1x x x C C x x x C C所以121C C ,令2C C ,则11C C,故ln(1,0()(1)sin cos ,0x C x f x dx x x x C x结合选项,令0C ,则()f x的一个原函数为ln(1,0()()(1)sin cos ,0x x f x dx F x x x x x3.【答案】:B【解析】:在(0,2 中,2sin x x 故12sin n n nx x x112n n y y111112()()2444n nn n n n n n y yy y x x x xlim0nn ny x,故n y 是n x 的高阶无穷小4.【答案】:C【解析】:微分方程"'0y ay by 的特征方程为20a b ,当240a b 时,特征方程有2个不同的实数根12, ,则12, 至少有一个不等于零,若12,C C 都不为零,则微分方程的解1212xx y C eC e 在(,) 无界当240a b ,特征方程有2个相等的实根,1,22a若20C ,则微分方程的解212()ax y C C x e 在(,) 无界当240a b时,特征方程的根为1,222a i则通解为:212(cos sin )22ax y e C C 5.【答案】:C【解析】1)当0t 时,3sin cos ,sin 3x t dy t t ty t t dx;当0t 时,,sin sin sin x t dyt t t y t t dx;当0t 时,因为'00()(0)sin (0)lim lim 03x t f x f t tf x t'00()(0)sin (0)lim lim 0x t f x f t tf x t所以'(0)0f 2)0sin cos lim '()lim 0'(0)3x t t t t f x f;'00sin cos lim '()lim 0(0);3x t t t t f x f所以0lim '()'(0)0x f x f ,所以'()f x 在0x 处连续3)当0t 时,因为"00'()'(0)sin cos 2(0)lim lim 339x t f x f t t t f xt"00'()'(0)sin cos (0)lim lim 2x t f x f t t tf x t所以"(0)f 不存在6.【答案】:A【解析】当0 时,21211111()|(ln )(ln )(ln 2)f dx x x x所以211ln(ln 2)1111'()(ln ln 2)0(ln 2)(ln 2)(ln 2)f ,即01ln(ln 2)7.【答案】:C 【解析】方法一:已知 f x 没有极值点,等价于 '0fx 至多一个解, '220x f x x x a e 至多一个解即是:220x x a 至多一个解,那么判别式:4401a a ,另外曲线 y f x 有拐点,则等价于 ''2420x f x x x a e 有解,即是:164802a a ,则a 的取值范围是:12a 8.【答案】:D【解析】110000A E A E A E A E A B B B B B,另外:1234000X X A E E X X B E,解出111121340X X A A B X X B,则:0A E B****0B A A B A B9.【答案】:B【解析】:令:11221333y x x y x x y x ,22222212312121274,,4333y f x x x y y y y y y,可见规范形为2212y y 10.【答案】:D 【解析】根据题意,即是存在1234,,,k k k k ,使得11223344k k k k ,等价于求解12123434(,,,)0k k k k ,得到通解:12343111k k k k k,代入34,k k k k ,得到:15,8k k R二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上.11.【解析】:注意到22220ln 1ln 11limlim1cos 11cos x x x x ax bx x x x bx x a e xe x,首先得到:1a ,另外根据等价无穷小替换, 2222001ln 12lim lim 1311cos 2x x x b x x x bx x e x,得到:2b ,则2ab 12.【解析】:根据230t x ,则弧长计算为:s,进行换元:2sin t ,原积分为: 23344cos 3s d13.【解析】:两边同时对想求导两次得式子222220zz z z z z z e e x x x x x x 将x=1,y=1,z=0带入,223=-2|z x 1,114.【解析】两边分别对x 求导,可得'911y ,所以'911y,所以法线斜率为11915.【解析】32323112122121111u+2u+21=++2=++x =2f x dx f x dx f x dx f x dx f d f x dx f x dx f x dx f x dx dx 16.【解析】:由已知(A)(A,b)34r r ,故A,b 0,即14440111101110A,b 1(1)122(1)11012001202a a a a a a a a baa b所以111280a a a b三、解答题:17~22小题,共70分.请将解答写在答题纸指定位置上,解答应写出文字说明、证明过程或演算步骤.17.【解析】:(1)曲线L 在点 x,y P 处的切线方程为'y=y (X -x)Y ,令X=0,切线在y 轴上的截距为'Y y xy ,即'11y y x,解得 ln y x x c x ,由经过点 2,0e ,所以c=2,2ln y x x x 设曲线L 在点x,x(2lnx) 处的切线与坐标所围面积最小,此时切线方程为2ln =1-lnx (X -x)Y x x ,故切线与两坐标所围三角形面积为22ln 1x s x x令 3'20,s x x e ,由单调性知,最小值在32x e处取得,332s e e18.【解析】'cos 1'cos (,)0(((,)sin 0yx yy f x y e x x e x e k k f x y x ye y k y k 为奇数),为偶数),则''''cos ''cos 2(,)1(,)sin (,)(cos sin )xx y xy y yyf x y f x y yef x y xe y y ,代入1(,)e k 得2210,0A B AC B C e 故1(,)e k 不是极值点,代入(,)e k 得2210,0A B AC B C e且0A 故极小值为2(,)2e f e k ,其中k 为偶数.19.【解析】(1)由题设条件可知面积2111S (1)D x21112ln 1x t)(2)2222211111111arctan 11(14V dx dx dx x x x x x x20.【解析】332222002333222220011ln 33cos sin 11ln 2ln 21ln 2cos 3cos sin 223cos sin 23tan Ddxdy d r x y d dd3 21.【证明】(1)22111''()''()()(0)'(0)'(0),022f f f x f f x x f x x 介于与之间,则222''()()'(0),(0,)2f f a f a a a ,233''()()'(0),,0)2f f a f a a a (-,则223()()''()''()2a f a f a f f ,由()f x 在 ,a a 上具有2阶连续导数,故()f x 在 32, 上具有2阶连续导数,所以()f x 在 32, 上必存在最大值M 和最小值m ,使得 231''()''()2m f f M 由介值定理存在存在 32,(,)a a ,使得 23211''()''()''()()()2f f f f a f a a,得证.(2)设()f x 在x x 点处取得极值,则0'()0f x ,221100000010''()''()()()'()())()(),22f f f x f x f x x x x x f x x x x x介于与之间,220020''()()()(),,2f f a f x a x a x (),230030''()()()(),,2f f a f x a x a x (),222232003020''()''()1|()()||()()||''()|()|''()|()222f f f a f a a x a x f a x f a x 32(,),''()max{|''()|,|''()|}a a f f f ,故223020222001|()()||''()|()|''()|()2|''()|[()()]2|''()|2f a f a f a x f a x f a x a x a f命题得证。
数学2考试大纲主要包括以下内容:一、考试性质数学2考试是普通高等学校招生全国统一考试的重要组成部分,旨在考查考生对数学基础知识的掌握程度和运用数学知识解决问题的能力。
二、考试内容数学2考试内容主要包括以下部分:1. 函数、极限、连续考试内容:函数的概念及表示法、函数的有界性、单调性、周期性和奇偶性、复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数、函数关系的建立、数列极限与函数极限的定义及其性质、函数的左极限与右极限、无穷小量和无穷大量的概念及其关系、无穷小量的性质及无穷小量的比较、极限的四则运算、极限存在的两个准则:单调有界准则和夹逼准则、两个重要极限:性质、函数连续的概念、函数间断点的类型、初等函数的连续性、闭区间上连续函数的性质。
考试要求:理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系。
理解函数的有界性、单调性、周期性和奇偶性。
会运用基本初等函数的性质及其图形解决有关问题。
理解数列极限与函数极限的概念及其性质,掌握数列极限与函数极限的运算法则。
理解无穷小量、无穷大量的概念及其关系,掌握无穷小量的性质及无穷小量的比较方法。
理解极限的运算法则,会运用极限的四则运算求极限值。
理解极限存在的两个准则,并会利用它们求极限值。
理解两个重要极限,并会用它们求极限值。
理解函数连续的概念,会求函数的间断点类型。
理解闭区间上连续函数的性质,会判断闭区间上连续函数的性质以及函数的最大值、最小值及其取值范围。
2. 一元函数微分学考试内容:导数的概念及几何意义、导数的计算方法及应用举例、微分的概念及应用举例、导数的四则运算及复合函数的导数计算方法、导数在几何上的应用(切线斜率、法线斜率、曲线切线)、导数在实际问题中的应用举例(曲线的凹凸性及拐点判断)。
考试要求:理解导数的概念及其几何意义,会求平面曲线的切线斜率及法线斜率。
掌握导数的计算方法及应用举例。
理解微分的概念及应用举例,会求函数的微分。
2023年全国硕士研究生入学统一考试数学(二)试题及答案考试时间:180分钟,满分:150分一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(1)曲线1ln()1yx e x =+−的斜渐近线方程为( ) (A)y x e =+ (B)1y x e=+(C)y x = (D)1y x e=−【答案】B 【解析】1limlimln()11x x y ke x x →∞→∞==+=−,11lim()lim()lim[ln(]lim [ln(ln ]11x x x x b y kx y x x e x x e e x x →∞→∞→∞→∞=−==−=+−=+−−−111lim ln(1lim (1)(1)x x x x e x e x e→∞→∞=+==−−,所以渐进线方程为1y x e =+,答案为B(2)设0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( )(A)),0()(1)cos sin ,0x x F x x x x x ⎧⎪−≤=⎨+−>⎪⎩(B))1,0()(1)cos sin ,0x x F x x x x x ⎧⎪−+≤=⎨+−>⎪⎩(C)),0()(1)sin cos ,0x x F x x x x x ⎧⎪+≤=⎨++>⎪⎩(D))1,0()(1)sin cos ,x x F x x x x x ⎧⎪++≤=⎨++>⎪⎩【答案】D【解析】根据原函数的连续性,可排除(A)(C);再根据原函数的可导性,可排除选项(B),答案为(D) (3)已知{}n x ,{}n y 满足1112x y ==,1sin n n x x +=,21(1,2,)n n y y n +== ,则当n →∞时( )(A)n x 是n y 的高阶无穷小(B)n y 是n x 的高阶无穷小(C)n x 与n y 是等价无穷小(D)n x 与n y 是同阶但不等价的无穷小【答案】B【解析】由已知可得,{}n x ,{}n y 均单调递减,且12n y ≤,又因为sin x x 在(0,2π上单调递减,故2sin 1x x π<<,所以2sin x x π>,所以21112sin sin 24n n n n nn n n n n ny y y y y y x x x x x ππ++==≤=,依次类推可得,111100()444n nn n n n y y y n x x x πππ++⎛⎫⎛⎫≤≤≤≤=→→∞ ⎪ ⎪⎝⎭⎝⎭,故n y 是n x 的高阶无穷小,答案为B (4)若微分方程0y ay by ′′′++=的解在(,)−∞+∞上有界,则( )(A)0,0a b <>(B)0,0a b >>(C)0,0ab =>(D)0,0ab =<【答案】C 【解析】0y ay by ′′′++=的解一共三种情形:①240a b Δ=−>,1212x xy C e C e λλ=+,但此时无论12,λλ取何值,y 在(,)−∞+∞上均无界;②240a b Δ=−=,12()xy C C x eλ=+,但此时无论λ取何值,y 在(,)−∞+∞上均无界;③240a b Δ=−<,12(cos sin )xy e C x C x αββ=+,此时若y 在(,)−∞+∞上有界,则需满足0α=,所以0,0a b =>,答案为(C)(5)设函数()y f x =由2sin x t ty t t⎧=+⎪⎨=⎪⎩确定,则( ) (A)()f x 连续,(0)f ′不存在(B)(0)f ′不存在,()f x ′在0x =处不连续(C)()f x ′连续,(0)f ′′不存在(D)(0)f ′′存在,()f x ′′在0x =处不连续【答案】C 【解析】当0t =时,有0x y ==①当0t>时,3sin x t y t t=⎧⎨=⎩,可得sin 33x xy =,故()f x 右连续;②当0t<时,sin x ty t t=⎧⎨=−⎩,可得sin y x x =−,故()f x 左连续,所以()f x 连续;因为0sin 033(0)lim 0x x x y x ++→−′==;0sin 0(0)lim 0x x x y x −−→−−′==,所以(0)0f ′=;③当0x >时,1sin sin cos 333393x x x x x y ′⎛⎫′==+ ⎪⎝⎭,所以0lim ()0x y x +→′=,即()f x ′右连续;④当0x <时,()sin sin cos y x x x x x ′′=−=−−,所以0lim ()0x y x −→′=,即()f x ′左连续,所以()f x ′连续;考虑01sin cos 23393(0)lim 9x x x xf x ++→+′′==;0sin cos (0)lim 2x x x x f x −−→−−′′==−,所以(0)f ′′不存在,答案为C(6)若函数121()(ln )f dx x x αα+∞+=⎰在0αα=处取得最小值,则0α=( ) (A)1ln(ln 2)−(B)ln(ln 2)− (C)1ln 2(D)ln 2【答案】A 【解析】当0α>时,121()(ln )f dx x x αα+∞+=⎰收敛, 此时21122111111()ln (ln )(ln )(ln )(ln 2)f dx d x x x x x ααααααα+∞+∞+∞++===−=⎰⎰,故211111ln ln 2()(ln 2)(ln 2)(ln 2)f ααααααα′⎡⎤−′==−⎢⎥⎣⎦,令()0f α′=,解得0α=1ln(ln 2)−(7)设函数2()()x f x x a e =+,若()f x 没有极值点,但曲线()y f x =有拐点,则a 的取值范围是( )(A)[0,1)(B)[1,)+∞(C)[1,2)(D)[2,)+∞【答案】C 【解析】2()()x f x x a e =+,2()(2)x f x x x a e ′=++,2()(42)x f x x x a e ′′=+++,因为()f x 没有极值点,所以440a −≤;又因为曲线()y f x =有拐点,所以164(2)0a −+>,联立求解得:[1,2)a ∈(8)设A ,B 为n 阶可逆矩阵,*M 为矩阵M 的伴随矩阵,则*A E OB ⎛⎫= ⎪⎝⎭( ) (A)****A B B A O B A ⎛⎫−⎪⎝⎭(B)****B A A B O A B ⎛⎫−⎪⎝⎭(C)****B A B A OA B ⎛⎫−⎪⎝⎭(D)****A B A B OB A ⎛⎫−⎪⎝⎭【答案】B【解析】*11111A E A E A E A AB A B O B O B O B O B −−−−−⎛⎫−⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111***1*A B A A B A B B A A B O A B B OA B −−−−⎛⎫⎛⎫−−== ⎪ ⎪⎝⎭⎝⎭,答案为B (9)二次型222123121323(,,)()()4()f x x x x x x x x x =+++−−的规范形为( )(A)2212y y +(B)2212y y −(C)2221234y y y +−(D)222123y y y +−【答案】B 【解析】222123121323(,,)()()4()f x x x x x x x x x =+++−−222123121323233228x x x x x x x x x =−−+++二次型矩阵为211134143A ⎛⎫⎪=− ⎪ ⎪−⎝⎭,211134(7)(3)143E A λλλλλλλ−−−−=−+−=+−−−+ 故答案为B(10)已知向量1123α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2211α⎛⎫ ⎪= ⎪ ⎪⎝⎭,1259β⎛⎫ ⎪= ⎪ ⎪⎝⎭,2101β⎛⎫ ⎪= ⎪⎪⎝⎭,若γ既可由12,αα线性表示,也可由12,ββ线性表示,则γ=( )(A)33,4k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭ (B)35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭ (C)11,2k k R −⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(D)15,8k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭【答案】D 【解析】令γ11221122k k l l ααββ=+=+,则有112211220k k l l ααββ+−−=,即12121212(,)0k k l l ααββ⎛⎫ ⎪ ⎪−−= ⎪ ⎪⎝⎭而121212211003(,)2150010131910011ααββ−−⎛⎫⎛⎫ ⎪ ⎪−−=−→− ⎪ ⎪⎪ ⎪−−⎝⎭⎝⎭所以1212(,,,)(3,1,1,1),TT k k l l c c R =−−∈,所以12(1,5,8)(1,5,8),T T c c c k k R γββ=−+=−=∈,答案为D二、填空题:11~16小题,每小题5分,共30分,请将答案写在答题纸指定位置上. (11)当0x →时,函数2()ln(1)f x ax bx x =+++与2()cos x g x e x =−是等价无穷小,则ab =________【答案】2−【解析】由已知可得:2222200022221(())()ln(1)2lim lim lim 1()cos (1())(1())2x x x x ax bx x x o x f x ax bx x g x e x x o x x o x →→→++−++++==−++−−+220221(1)(()2lim 13()2x a x b x o x x o x →++−+==+所以1310,22a b +=−=,即1,2a b =−=,所以2ab =−(12)曲线y =⎰的弧长为________43π【解析】由题意可得函数定义域为[x ∈,根据公式可得:2302sin 24cos L x t tdtπ====⎰304(1cos 2)t dt π=+=⎰43π+(13)设函数(,)z z x y =由2ze xz x y +=−确定,则2(1,1)2zx∂=∂_________【答案】32−【解析】代入(1,1)点可得,0z =,先代入1y =,可得21z e xz x +=−,两边对x 求导,2z e z z xz ′′++=,得(1)1z ′=两边再对x 求导,20z ze z e z z z xz ′′′′′′′++++=,代入(1,1)及0z =,(1)1z ′=得2(1,1)232zx∂=−∂(14)曲线35332x y y =+在1x =对应点处的法线斜率为________【答案】119−【解析】代入1x =得到1y =,两边对x 求导,242956x y y y y ′′=+,代入1x =,1y =可得:911y ′=,故1x =对应点处的法线斜率为1119y −=−′(15)设连续函数()f x 满足:(2)()f x f x x +−=,2()0f x dx =⎰,则31()f x dx =⎰_______【答案】12【解析】323211121()()()()(2)f x dx f x dx f x dx f x dx f x dx=+=++⎰⎰⎰⎰⎰[]2121111()()()022f x dx f x x dx f x dx xdx =++=+=+=⎰⎰⎰⎰(16)已知线性方程组13123123121202ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩有解,其中,a b 为常数,若0111412a a a =,则11120a a ab =_______【答案】8【解析】由题意可得:方程组系数矩阵秩为3,可得增广矩阵的秩也为3,即011110012002a a a ab =按照第四列进行行列式展开可得:144411011(1)122(1)11012a a a a a b a ++⋅−+⋅−⋅=所以111280a a ab =三、解答题:17~22小题,共70分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设曲线:()()L y y x x e =>经过点2(,0)e ,L 上任一点(,)P x y 到y 轴的距离等于该点处的切线在y 轴上的截距(1)求()y x ;(2)在L 上求一点,使得该点处的切线与两坐标轴所围三角形的面积最小,并求此最小面积【答案】(1)()(2ln )y x x x =− (2)33221(,)2e e ,最小面积是3e 【解析】(1)曲线L 上任一点(,)P x y 处的切线方程为()Y y y X x ′−=−,令0X =,则y 轴上的截距为Y y xy ′=−,则有x y xy ′=−,即11y y x′−=−,解得(ln )y x C x =−,其中C 为任意常数,代入2(,0)e 可得2C =,故()(2ln )y x x x =−(2)该点设为000(,(2ln ))x x x −,切线方程为0000(2ln )(1ln )()Y x x x X x −−=−− 令0X =,解得0Y x =;令0Y =,解得00ln 1x X x =−;所以该点处的切线与两坐标轴所围三角形的面积为:200011()22ln 1x S x XY x ==−求导00020(2ln 3)()2(ln 1)x x S x x −′=−,令0()0S x ′=,解得320x e =且为最小值点,最小面积为332()S e e =(18)(本题满分12分) 求函数2cos (,)2yx f x y xe=+的极值【答案】极小值为21(,2)2f e k e π−=−(k Z ∈) 【解析】先求驻点cos cos 0(sin )0y xy y f e x f xe y ⎧′=+=⎪⎨′=−=⎪⎩,解得驻点为1(,(21))e k π−−+和(,2)e k π−,其中k Z∈下求二阶偏导数,cos cos 2cos 1(sin )sin cos xx yxy y y yy f f e y f xe y xe y ⎧′′=⎪⎪′′=−⎨⎪′′=−⎪⎩代入1(,(21))e k π−−+(k Z ∈),解得210xxxy yy A f B f C f e −⎧′′==⎪⎪′′==⎨⎪′′==−⎪⎩,20AC B −<,故1(,(21))e k π−−+不是极值点; 代入(,2)e k π−(k Z ∈),解得210xxxy yy A f B f C f e ⎧′′==⎪⎪′′==⎨⎪′′==⎪⎩,20AC B −>且0A >,故(,2)e k π−是极小值点,其极小值为21(,2)2f e k e π−=−(k Z ∈) (19)(本题满分12分)已知平面区域{(,)01}D x y y x =≤≤≥(1)求D 的面积(2)求D 绕x 轴旋转所成旋转体的体积【答案】(1)ln(1S = (2)24V ππ=−【解析】(1)222214441tan sec csc ln csc cot tan sec D S x t tdt tdt t tt t ππππππ+∞====−⎰⎰⎰ln(1=+;(2)22222111111(1)1x V dx dx dx x x x x πππ+∞+∞+∞⎛⎫===− ⎪++⎝⎭⎰⎰⎰11arctan x x π+∞⎛⎫=−− ⎪⎝⎭24ππ=−(20)(本题满分12分)设平面有界区域D 位于第一象限,由曲线221x y xy +−=,222x y xy +−=与直线y =,0y =围成,计算2213Ddxdy x y +⎰⎰【解析】本题采用极坐标计算,322013Ddxdy d x y πθ=+⎰⎰⎰333222222000111ln 3cos sin 3cos sin 3cos sin d r d d πππθθθθθθθθθ===+++⎰⎰332220011111ln 2ln 2tan ln 22(3tan )cos 23tan 2d d ππθθθθθ=⋅=⋅==++⎰⎰(21)(本题满分12分) 设函数()f x 在[,]a a −上具有2阶连续导数,证明: (1)若(0)0f =,则存在(,)a a ξ∈−,使得21()[()()]f f a f a aξ′′=+−(2)若()f x 在(,)a a −内取得极值,则存在(,)a a η∈−,使得21()()()2f f a f a aη′′≥−−【答案】(1)利用泰勒公式在0x =处展开,再利用介值性定理; (2)利用泰勒公式在极值点处展开,再利用基本不等式进行放缩;【解析】(1)在0x =处泰勒展开,22()()()(0)(0)(0)2!2!f c f c f x f f x x f x x ′′′′′′=++=+, 其中c 介于0与x 之间;代入两个端点有:211()()(0),(0,)2!f f a f a a a ξξ′′′=+∈222()()(0)(),(,0)2!f f a f a a a ξξ′′′−=−+∈−两式相加可得:212()()()()2f f f a f a a ξξ′′′′++−=即122()()1[()()]2f f f a f a a ξξ′′′′++−=因为()f x 在[,]a a −上具有2阶连续导数,所以()f x ′′存在最大值M 与最小值m , 根据连续函数的介值性定理可得,12()()2f f m M ξξ′′′′+≤≤,所以存在(,)a a ξ∈−,使得12()()()2f f f ξξξ′′′′+′′=,即21()[()()]f f a f a aξ′′=+−成立;(2)若()f x 在(,)a a −内取得极值,不妨设0x 为其极值点,则由费马引理可得,0()0f x ′=将()f x 在0x 处泰勒展开,22000000()()()()()()()()()2!2!f d f d f x f x f x x x x x f x x x ′′′′′=+−+−=+−其中d 介于0x 与x 之间;代入两个端点有:210010()()()(),(,)2!f f a f x a x x a ηη′′=+−∈ 220020()()()(),(,)2!f f a f x a x a x ηη′′−=+−−∈−两式相减可得:221200()()()()()()22f f f a f a a x a x ηη′′′′−−=−−−−所以22120022()()11()()()()2222f f f a f a a x a x a a ηη′′′′−−=−−−− 22102021[()()()()]4f a x f a x aηη′′′′≤−++,记112()max[(),()]f f f ηηη′′′′′′=, 又因为22220000()()[()()]4a x a x a x a x a −++≤−++=,所以21()()()2f a f a f aη′′−−≤成立 (22)(本题满分12分)设矩阵A 满足对任意123,,x x x 均有112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=−+ ⎪ ⎪⎪ ⎪−⎝⎭⎝⎭(1)求A(2)求可逆矩阵P 与对角矩阵Λ,使得1P AP −=Λ【答案】(1)111211011A ⎛⎫⎪=− ⎪⎪−⎝⎭11 /11 (2)401310112P −⎛⎫ ⎪=− ⎪ ⎪⎝⎭,1221P AP −⎛⎫ ⎪=Λ=− ⎪ ⎪−⎝⎭【解析】(1)因为任意123,,x x x 均有112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=−+ ⎪ ⎪ ⎪ ⎪−⎝⎭⎝⎭,即112233*********x x A x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=− ⎪ ⎪⎪ ⎪ ⎪⎪−⎝⎭⎝⎭⎝⎭故可分别取单位向量100010001⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,可得100111100010211010001011001A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=− ⎪ ⎪⎪ ⎪ ⎪⎪−⎝⎭⎝⎭⎝⎭所以111211011A ⎛⎫ ⎪=− ⎪ ⎪−⎝⎭(2)111101101211221(2)2110110(2)1011E A λλλλλλλλλλλ−−−−−−−−=−+−=−+−=+−−−+−++−+101(2)211(2)(2)(1)20λλλλλλ−−=+−−=+−+− 所以A 的特征值为21,2−−,,下求特征向量: 当2λ=−时,解方程组(2)0E A x −−=,可得基础解系为1(0,1,1)T ξ=−;当1λ=−时,解方程组()0E A x −−=,可得基础解系为2(1,0,2)Tξ=−当2λ=时,解方程组(2)0E A x −=,可得基础解系为3(4,3,1)T ξ=令401310112P −⎛⎫ ⎪=− ⎪ ⎪⎝⎭,有1221P AP −⎛⎫ ⎪=Λ=− ⎪ ⎪−⎝⎭成立。
第一章 函数、极限和连续第一节 函 数一、函数的概念1. 函数的定义 〔了解〕设在某个变化过程中有两个变量x 和y ,变量y 随变量x 的变化而变化。
当变量x 在一个非空实数集合D 上取某一个数值时,变量y 依照某一对应规则f 总有唯一确定的数值与之对应,则称变量y 是变量x 的函数,记为D)(x )(∈=x f y ,其中x 叫做自变量,y 叫做因变量或函数。
数集D 称为这个函数的定义域,记为D 或)(f D 。
当x 取定值x 0时所对应的y 的数值)(00x yf =或|0x x y =,称为当x x =0时,函数)(x f y =的函数值。
全体函数值的集合{}D x x f y y ∈=),(|称为函数)(x f y =的值域,记为Z 或)(f Z 。
2.分段函数 〔了解〕函数不能用一个统一的公式表示出来,必须要用两个或两个以上的公式来表示,这类函数称为分段函数。
形如:⎪⎩⎪⎨⎧∈∈=D D x x g x x f y 21 )( )(例如:⎩⎨⎧>≤+=1, 1, 1x 32x x x y 就是定义在()∞+∞- , 内的分段函数。
3.隐函数 〔了解〕函数y 与自变量x 的对应规则用一个方程0),(=y x F 表示的函数,称为隐函数。
例如0422=-+y x 就是一个隐函数。
4.反函数 〔了解〕二、函数的简单性质1.函数的单调性 〔了解〕设函数)(x f y =在区间()b , a 内有定义,如果对于()b , a 内的任意两点21x x <,假设恒有)()(21x f x f ≤,则称)(x f 在区间()b , a 内单调增加; 假设恒有)()(21x f x f ≥,则称)(x f 在区间()b , a 内单调减少;假设恒有)()(21x f x f <,则称)(x f 在区间()b , a 内严格单调增加;假设恒有)()(21x f x f >,则称)(x f 在区间()b , a 内严格单调减少。
高等数学部分第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开线性代数部分第一章行列式1、行列式的定义2、行列式的性质3、特殊行列式的值4、行列式展开定理5、抽象行列式的计算第二章矩阵1、矩阵的定义及线性运算2、乘法3、矩阵方幂4、转置5、逆矩阵的概念和性质6、伴随矩阵7、分块矩阵及其运算8、矩阵的初等变换与初等矩阵9、矩阵的等价10、矩阵的秩第三章向量1、向量的概念及其运算2、向量的线性组合与线性表出3、等价向量组4、向量组的线性相关与线性无关5、极大线性无关组与向量组的秩6、内积与施密特正交化7、n维向量空间(数学一)第四章线性方程组1、线性方程组的克莱姆法则2、齐次线性方程组有非零解的判定条件3、非齐次线性方程组有解的判定条件4、线性方程组解的结构第五章矩阵的特征值和特征向量1、矩阵的特征值和特征向量的概念和性质2、相似矩阵的概念及性质3、矩阵的相似对角化4、实对称矩阵的特征值、特征向量及其相似对角矩阵第六章二次型1、二次型及其矩阵表示2、合同变换与合同矩阵3、二次型的秩4、二次型的标准型和规范型5、惯性定理6、用正交变换和配方法化二次型为标准型7、正定二次型及其判定概率论与数理统计部分第一章随机事件和概率1、随机事件的关系与运算2、随机事件的运算律3、特殊随机事件(必然事件、不可能事件、互不相容事件和对立事件)4、概率的基本性质5、随机事件的条件概率与独立性6、五大概率计算公式(加法、减法、乘法、全概率公式和贝叶斯公式)7、全概率公式的思想8、概型的计算(古典概型和几何概型)第二章随机变量及其分布1、分布函数的定义2、分布函数的充要条件3、分布函数的性质4、离散型随机变量的分布律及分布函数5、概率密度的充要条件6、连续型随机变量的性质7、常见分布(0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、指数分布、正态分布)8、随机变量函数的分布(离散型、连续型)第三章多维随机变量及其分布1、二维离散型随机变量的三大分布(联合、边缘、条件)2、二维连续型随机变量的三大分布(联合、边缘和条件)3、随机变量的独立性(判断和性质)4、二维常见分布的性质(二维均匀分布、二维正态分布)5、随机变量函数的分布(离散型、连续型)第四章随机变量的数字特征1、期望公式(一个随机变量的期望及随机变量函数的期望)2、方差、协方差、相关系数的计算公式3、运算性质(期望、方差、协方差、相关系数)4、常见分布的期望和方差公式第五章大数定律和中心极限定理1、切比雪夫不等式2、大数定律(切比雪夫大数定律、辛钦大数定律、伯努利大数定律)3、中心极限定理(列维—林德伯格定理、棣莫弗—拉普拉斯定理)第六章数理统计的基本概念1、常见统计量(定义、数字特征公式)2、统计分布3、一维正态总体下的统计量具有的性质4、估计量的评选标准(数学一)5、上侧分位数(数学一)第七章参数估计1、矩估计法2、最大似然估计法3、区间估计(数学一)第八章假设检验(数学一)1、显着性检验2、假设检验的两类错误3、单个及两个正态总体的均值和方差的假设检验最后冲刺很多同学在做模拟题,提醒大家要学会思考着去做题。
高等数学二知识点总结(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如演讲致辞、合同协议、条据文书、策划方案、总结报告、简历模板、心得体会、工作材料、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of practical sample essays, such as speeches, contracts, agreements, documents, planning plans, summary reports, resume templates, experience, work materials, teaching materials, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!高等数学二知识点总结高等数学二知识点总结【5篇】生命教育是一种以培养生命素养和生态环保意识为目标的教育方式。
2022全国硕士研究生入学统一考试(数学二)试题解析一、选择题:1~10小题,每小题5分,共50分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)当0x →时,(),()x x αβ是非零无穷小,给出以下四个命题,其中所有正确的是( ) ①若()()x x αβ:,则22()()x x αβ:②若22()()x x αβ:,则()()x x αβ: ③若()()x x αβ:,则()()(())x x o x αβα-=④若()()(())x x o x αβα-=,则()()x x αβ:(A )①②(B )①④ (C )①③④(D )②③④【答案】C【解析】当0x →时,()()x x αβ:,则222000()()()lim 1,lim lim 1()()()x x x x x x x x x αααβββ→→→⎡⎤===⎢⎥⎣⎦,则: 0()()lim0()x x x x αβα→-=,所以()()(())x x o x αβα-=,故①③正确;当0x →时,22()()x x αβ:,则220()lim 1()x x x αβ→=,则0()lim1()x x x αβ→=±,当0()lim 1()x x x αβ→=-时, ()x α与()x β不是等价无穷小,所以②不正确;当()()(())x x o x αβα-=时,000()()()limlim lim 1()()(())()x x x x x x x x o x x αααβααα→→→===-,④正确.(2)22ydy =⎰⎰( )(A )6(B )13(C )3(D )23【答案】D【解析】方法:交换积分次序原式222320112(1)233xdx x ===+=⎰⎰⎰ (3)设函数()f x 在0x x =处有2阶导数,则( ) (A )当()f x 在0x 的某邻域内单调增加时,0'()0f x > (B )当0'()0f x >时,()f x 在0x 的某邻域内单调增加 (C )当()f x 在0x 的某邻域内是凹函数时,0''()0f x > (D )当0''()0f x >时,()f x 在0x 的某邻域内是凹函数 【答案】B【解析】因为函数()f x 在0x x =处有2阶导数,则:000'()'()''()limx x f x f x f x x x →-=-存在00lim '()'()x x f x f x →⇒=;当0'()0f x >时,由极限的局部保号性得:0,δ∃>当0(,)x U x δ∈,有'()0f x >,即0,δ∃>当0(,)x U x δ∈,有'()0f x >,故()f x 在0x 的某邻域内单调增加.(4)设函数()f t 连续,令0(,)()()x yF x y x y t f t -=--⎰,则( )(A )2222,F F F Fx y x y ∂∂∂∂==∂∂∂∂(B )2222,F F F Fx y x y ∂∂∂∂==-∂∂∂∂(C )2222,F F F F x y x y∂∂∂∂=-=∂∂∂∂ (D )2222,F F F F x y x y∂∂∂∂=-=-∂∂∂∂【答案】C【解析】原式0()()()x yx yx y f t dt tf t dt --=--⎰⎰则:00()()()()()()x y x y Ff t dt x y f x y x y f x y f t dt x--∂=+-----=∂⎰⎰,22()Ff x y x∂=-∂ 同理:00()()()()()()x y x y Ff t dt x y f x y x y f x y f t dt y--∂=----+--=-∂⎰⎰22()Ff x y y∂=-∂ 综上所述:2222,F F F Fx y x y∂∂∂∂=-=∂∂∂∂. (5)设p 为常数,若反常积分110(1)p pInxdx x x --⎰收敛,则p 的取值范围( )(A )(1,1)- (B )(1,2)- (C )(,1)-∞(D )(,2)-∞【答案】A【解析】当1p =时,11100(1)p p InxInx dx dx x x x-=-⎰⎰发散,排除B 和D ; 当1p =-时,111122000(1)(1)(1)(1)p p InxxInx t In t dx dx dt x x x t ---==--⎰⎰⎰, 2(1)(1)lim 1x t In t t t+→--⋅=-,发散,排除C (6)设有数列{}n x ,22n x ππ-≤≤,则( )(A )若lim cos(sin )n n x →∞存在,则lim n n x →∞存在 (B )若limsin(cos )n n x →∞存在,则lim n n x →∞存在 (C )若lim cos(sin )n n x →∞存在,则lim sin n n x →∞存在,但lim n n x →∞不一定存在 (D )若limsin(cos )n n x →∞存在,则lim cos n n x →∞存在,但lim n n x →∞不一定存在 【答案】D 【解析】在区间, 22ππ⎡⎤-⎢⎥⎣⎦上,若lim sin(cos )n n x a →∞=,但是lim n n x →∞例如arccos(arcsin ), arccos(arcsin ),n a n x a n ⎧=⎨-⎩为奇数为偶数满足前面的条件但lim n n x →∞不存在.不一定存在,(7)已知1102(1cos )x I dx x =+⎰,120ln(1)1cos x I dx x+=+⎰,13021sin xI dx x =+⎰,则( ) (A )123I I I << (B )213I I I << (C )132I I I <<(D )321I I I <<【答案】A【解析】令()ln(1)2x h x x =+-,11()012h x x '=->+,()0, 1x ∈,于是()h x 单调递增,又由(0)0h =可知()ln(1)02xh x x =+->,其中()0, 1x ∈,故ln(1)2(1cos )1cos x x x x +<++,故12I I <. 当()0, 1x ∈时,,则,故23I I <. (8)设A 为3阶矩阵,100010000⎡⎤⎢⎥Λ=-⎢⎥⎢⎥⎣⎦,则A 特征值为1,1,0-的充分必要条件是( )(A )存在可逆矩阵,P Q ,使得A P Q =Λ (B )存在可逆矩阵P ,使得1A P P -=Λ (C )存在正交矩阵Q ,使得1A Q Q -=Λ (D )存在可逆矩阵P ,使得T A P P =Λ 【答案】(B )【解析】若(B )成立,则矩阵A Λ与相似,特征值相等,可推出A 特征值为1,1,0- 若A 特征值为1,1,0-,则矩阵A 可以相似对角化,矩阵A Λ与相似,所以(B )为充要条件。
, y 3.已知 x n n 2023年全国硕士研究生招生考试(数学二)试题及答案解析一、选择题1.曲线1ln e 1y x x的斜渐近线方程为A. e.1B..eC..1D..ey x y x y x y xx 0,2.函数f (x ) (x 1)cos x ,x 0的一个原函数为 x ),x 0,A.F (x )(x 1)cos x sin x ,x 0. x ) 1,x 0,B.F (x )(x 1)cos x sin x ,x 0. x ),x 0,C.F (x )(x 1)sin x cos x ,x 0. x ) 1,x 0,D.F (x )(x 1)sin x cos x ,x 0.A.x n 是y n 的高阶无穷小.B.y n 是x n 的高阶无穷小.C.x n 与y n 是等价无穷小.D.x n 与y n 是同阶但不等价的无穷小.2,x n 1 sin x n ,y n 1 y n 2(n 1,2, ), 则当n 满足:x 1 y 11 时,C.B *A *B *A *BO A D.*8.设A,B 为n 阶可逆矩阵,E 为n 阶单位矩阵,M *为矩阵M 的伴随矩阵,则A E OB A. A B * B *A *O B A * B.5.设函数y f (x )由 上有界,则B.a 0,b 0.D.a 0,b 0.4.若微分方程y ay by 0的解在 ,A.a 0,b 0.C.a 0,b 0.2,sin x t t y t t确定,则A.f (x )连续,f (0)不存在.B.f (0)存在,f (x )在x 0处不连续.C.f (x )连续,f (0)不存在.D.f (0)存在,f (x )在x 0处不连续.2x (ln1x )1d x 在 0处取得最小值,则 0 B. ln(ln 2)C.ln 12D.ln 26.若函数f ( )A.ln(l 1n 2)7.设函数f (x ) (x 2+a )e x ,若f (x )没有极值点,但曲线y f (x )有拐点,则a 的取值范围B.[1, )C.[1,2)D.[2, )A.[0,1)A B *A *B *O B A * B *A * A *B *BO A 9.二次型f (x 1,x 2,x 3) (x 1 x 2)2+(x 1 x 3)24(x 2 x 3)2的规范形为A.y 12y 22B.y 12y 22C.y 12y 224y 32D.y 12y 22y 322311 12 2 1 5 09 1 10.已知向量 1 , 2 , 1 , 2 .若 既可由 1, 2线性表示,也可由1, 2线性表示,则3 4 3 A.k,k R50 3 B.k1 ,k R1 2 1 C.k,k R1 D.k 58,k R二、填空题11.当x 0时,函数f (x ) ax bx 2 ln(1 x )与g (x ) e x 2cos x 是等价无穷小,则ab______.12.曲线yt 的弧长为_______.2(1,1)=______.2z13.设函数z z (x ,y )由e zxz 2x y 确定,则 x14.曲线3x 3 y 5 2y 3在x 1对应点处的法线斜率为______.15.设连续函数f (x )满足:f (x 2) f (x ) x ,13f (x )d x ______.2f (x )d x 0,则131221111a x a2x x 0a 21ax x ax 3a a a2 bax 1 bx 22 ax 1 x3 1,0,16.已知线性方程组 有解,其中a ,b 为常数,若1 4,则10,三、解答题17.设曲线L :y y (x )(x e )经过点(e 2,0),L 上任一点P (x ,y )到y 轴的距离等于该点处的切线在y 轴上的截距.(1)求y (x );(2)在L 上求一点,使该点处的切线与两坐标轴所围三角形的面积最小,并求此最小面积.22x 的极值.18.求函数f (x ,y ) x ecos y19.已知平面区域D {(x ,y )|0 y x 1}.(1)求D 的面积;(2)求D 绕x 轴旋转所成旋转体的体积.y 20.(12分)设平面有界区域D 位于第一象限,由曲线x 2 y 2 xy 1,x 2 y 2 xy 2与直线1y2d x d y .,y 0围成,计算3x 221.(12分)设函数f (x )在[ a ,a ]上具有2阶连续导数,证明:1a(1)若f (0) 0,则存在 a ,a ,使得f ''( )2[f (a ) f ( a )];(2)若f (x )在( a ,a )内取得极值,则存在 a ,a 使得1.2f ''a2 f (a ) f ( a )12122323.x x 3x 1x x 3x x x2x xx22.设矩阵 满足对任意x 1,x 2,x 3均有A (1)求 ;(2)求可逆矩阵P 与对角矩阵 ,使得P 1AP Λ.2023年全国硕士研究生入学统一考试数学二答案一、选择题1.B2.D3.B4.C5.C6.A7.C8.D9.B10.D二、填空题12、11、-23+43π13、-324、-119115、1216、8x ( ln x c )又x 1,y 2则c 2因此y (x ) x ( ln x 2)(2)f (x ) y (x ) x ( ln x 2) 0则x 0或x e 2.又x 0故f (x )的驻点为x e 21f (x ) ln x 2 x x 2 2 1 1 0f e 21.y则x x y y yx11ex d x y (x ) e x xd x c 1x xd x c【解析】由题意得y y (x x ) y 为切线方程,切线在y 轴上得截距为 x y y17e 21e 44为最大值, 5故f e 2x ( ln x 2)d x18【解析】f x e cos y x 0 f y 1 k e cos y ( sin y ) 0,得驻点( e,2n ), e ,(2n 1)π;1f x x f xy e cos y ( sin y )f y y x e cos y sin 2y k e cos y ( cos y )2e 2对于( e,2n π),A 1,B 0,C e 2,AC B 20,A 0.有极小值f ( e,2n π)1对于e ,(2n 1)π ,A 1,B 0,C e 12,AC B 2,无极值.π2π141(1)tan tx tan t sec t 24se tan sec 2t d t c tππ4t d t2csc t d t ln121π (2)11 1 πd x x 2 x 211 π d x x 2 1 1x 2π4)d x π(1 解析19【解析】D3x 21y2d x dy π012cos 23d r d r r 2 2r 224π201 x 22f【解析】(1)f (x ) f (0) f (0)x1 2则f (a ) f (0)a 2f 1 12f a 2,f ( a ) f (0)( a ) a 2,其中 1 a ,0 ,212 0,a .12 1 2 f ( a ) f (a )ff a 212 1 2 f f 2f (a )a f ( a ) f , 1, 2 a ,a ,由介值定理可知平均值 即证(2)x 0 0设f (x )在x =x 0处取得极值即x 0 ( a a ),f22x 0( )f f (x ) f x 0 fx x 0 x x 0代入x a ,x a21f f ( a ) f x 0 a x 02(1), 1 a ,x 02n 1f f (a ) f x 0a x 02(2), 2 x 0,a(2)-(1)得22 1f f f (a ) f ( a )a x 02a x 02222 1f f |f (a ) f ( a )|a x 02a x 02222( )f ( )f a x 0 a x 0 f ( ) 2 a x 0a x 02 22f ( ) 2a 2 2x 02f ( ) a 2 x 02f ( ) 1 2 f 2a 2,其中f ( ) maxf, a ,a f ( )21a 2|f (a ) f ( a )|.A 中 1对应的线性无关特征向量 1 (4,3,1)T (2)|A E | (2 )( 2)( 1) 0A 中 1 2, 2 1, 3 12123311111011x x x xx x2解(1)由题可知,A 11.11 1112 0A 2.1T2,0,1A 中 2对应的线性无关特征向量 2A 中 3对应的线性无关特征向量 3 (0, 1,1) p 1, 2, 3 2P 1AP 1222。