高数单元测验二(答案)
- 格式:doc
- 大小:258.50 KB
- 文档页数:3
高等数学第二章答案2 4高等数学第二章答案2-4练习2?四1?求由下列方程所确定的隐函数y的导数(1)y2?2xy?9?0??(2)x3?y3?3axy?0?(3)xy?ex?y??(4)y?1?xey?解决(1)获得2yy??2岁?2xy??0所以(y?X)y??YYYYxdy?得到了DX(2)方程的导数3x2?3y2y??2ay?3axy??0??于是(y2?ax)y??ay?x2??是吗?x2y??2.y?ax(3)方程两边求导数得y?xy??ex?y(1?y?)??于是(x?ex?y)y??ex?y?y??前任?Yyyx?ex?y(4)方程两边求导数得yey?xeyy??于是(1?xey)yey?呃?Y1?xey在点(2a,2a)处的切线方程和法线方程?44求方程两边的导数,得到2?2x3?2y3y0?33112找到曲线X32了吗?y32?A3。
Y1x31y3在点(2a,2a)处y1?44切线方程是y?2a??(x?2a)?即x?y?2a?442正态方程是y?2a?(x?2a)?即x?y?0?44d2y3?求隐式函数y的二阶导数,由以下等式2确定?dx22(1) x?Y1.(2)b2x2?a2y2?a2b2?(3)y?tan(x?y)?(4)y?1?xey?解(1)方程两边的导数得到2x?2yy??0年??十、yy?xxy?xy?yy2?x2x1y???()???yy2y2y3y3(2)方程两边求导数得2b2x?2a2yy??02by2?x?ay2bx)y?x(??2y2y?xy?2abby?2?2??2?Ayay2a2y2?b2x24bb??2.23? 得到了aa2y3ay(3)方程的导数y??sec2(x?y)?(1?y?)?se2c(x?y)1y221? 秒(x?y)cos(x?y)?12sin(x?y)?二氧化碳(x?y)1 1.2.sin(x?y)y22(1?y2)221y3y??3(?1?2) 从yyy5(4)方程的两侧获得导数y??ey?xeyyYYYYEE??Y1.xey1?(y?1)2?是吗?(2?y)?是吗y(3?y)y?e2y(3年)y223(2年)(2年)(2年)4?用对数导数法求下列函数的导数?(1)y?(x)x?1.十、(2)y?55x?5?x2?2倍?2(3?x)4(3)y??(x?1)5(4)y?xsinx1?ex??解(1)两边取对数得莱尼?xln | x |?xln | 1?X |,两边的导数为11(?x)?x?1?y??lnx?x??ln1yx1?x于是y??(x)x[lnx?1]?1.x1?x1?取X(2)两边的对数lny?1ln|x?5|?1lnx(2?2)?525两边的推导111?1?2xyy5x?525x2?2.3.3?? 1555x?5.[1?1?2x]?2x2?2x?55x?2(3)两边取对数得lny?1lnx(?2)?4ln3(?x)?5lnx(?1)?2两边的推导1y??1?4?5?y2(x?2)3?xx?1x?2(3?x)41?4.5] 那么你呢??[2(x?2)x?3x?1(x?1)5(4)取两边的对数得到lny?1lnx?1lnsinx?1ln1(?ex)?224两边的推导x111et?ycox?y2x24(1?ex)xx1?ex[1?1coxt?ex]于是y??xsin2x24(1?e)x1ex2xsinx1?e[?2cotx?x]??4xe?15?求下列参数方程所确定的函数的导数阿迪?dx?十、at2(1)??2岁?英国电信??十、(1?罪?)(2)??y??cos??2dyy?解(1)?t?3bt?3bt?dxxt?2at2adyy?(2) 余弦罪1sincosdxxxetsint,时dy的值?6?已知?求当t?t3dx?y?ecost.dyyt?etcost?etsintcost?sint解?dxxt?etsint?etcostsint?cost1?3dy221?33?2?当t??时?dx1331?3.227? 在给定参数值的对应点写出下列曲线的切线方程和法线方程?xsint(1)在t??处?4.Ycos2t?十、3at?1.t2(2)?2.t=2?3at?Y1.泰迪?解决方案(1)?T2sin2t??dxxt?cost?)?2sin(2?dy4??2??22?x?2?y?0当t??时?00?2dx42cos42所求切线方程为?Y22(x?2)?22x?Y2.02所求法线方程为Y1(x?2)?2倍?4y?1.02?226at(1?t2)?3at2?2t6at?(2)yt(1?t2)2(1?t2)23a(1?t2)?3at?2t3a?3at2xt?(1? t2)2(1?t2)2dyyt6at2?2t2?dxxt?3a?3at1?tdy2?24 什么时候?两点钟??x0?6a?y0?12a?2dx1?2355切线方程是?y?12a??4(x?6a)?即4x?3y?12a?0?正常方程是y?12a?3(x?6a)?即3x?4y?6a?0?545d2y8?求由下列参数方程2确定的函数的二阶导数?dx2??x?t(1)?2?Y1.T十、成本(2)??y?bsint?。
高等数学测试题(二)导数、微分部分答案及解析一、选择题(每小题4分,共20分)1、设函数0()102x f x x ≠=⎨⎪=⎪⎩ 在0x =处( B )A 不连续B 连续但不可导C 二阶可导D 仅一阶可导 2、若抛物线2y ax =与曲线ln y x =相切,则a 等于( C ) A 1 B12 C 12eD 2e 3、设函数()ln 2f x x x =在0x 处可导,且0()2f x '=,则0()f x 等于( B ) A 1 B2e C 2eD e 4、设函数()f x 在点x a =处可导,则0()()limx f a x f a x x→+--等于( C )A 0B ()f a 'C 2()f a 'D (2)f a '5、设函数()f x 可微,则当0x ∆→时,y dy ∆-与x ∆相比是( ) A 等价无穷小 B 同阶非等价无穷小 C 低阶无穷小 D 高阶无穷小二、填空题(每小题4分,共20分) 1、设函数()f x x x =,则(0)f '= 02、 设函数()xf x xe =,则(0)f ''= 23、 设函数()f x 在0x 处可导,且0()f x =0,0()f x '=1,则01l i m()n n f x n→∞+= 4、 曲线228y x x =-+上点 处的切线平行于x 轴,点_____处的切线与x 轴正向的交角为4π。
x=1 23=x5、 d = x e dx - xe --三、解答题1、(7分)设函数()()(),()f x x a x x ϕϕ=-在x a =处连续,求()f a ')()(')(')()()(')(')()()('a x )()()()(a a f a a a a a f x a x x x f x x a x x f ϕϕϕϕϕϕϕ=-+=-+==-=连续在又2、(7分)设函数()a a xa x a f x x a a=++,求()f x '设aa m = a x n = xat =aa a a aaxa xa x f t a a n a a mx x f a a x x f x a a x a at n m tn m xaa ln *ln ln )(')'(ln )'(ln )(')(111+++=++=++=---x a a x a aa a a aaxa xa x f xaa *ln ln )('211+++=--3、(8分)求曲线 sin cos 2x t y t=⎧⎨=⎩ 在 6t π= 处的切线方程和法线方程∵sin cos 2x t y t=⎧⎨=⎩ ∴122+-=x y 6π=t 时 x=21 21=y14203242y'21x x4-y'=+-=-+-===y x y x 法线方程所以切线方程时当4、(7分)求由方程 1sin 02x y y -+=所确定的隐函数y 的二阶导数22d ydx对x 求导0*cos 211=+-dxdyy dx dy y dxdy dxdy y cos 21111)1cos 21(-=-=- 在对x 求导3222)cos 211(sin 21)cos 211(sin 21y yy dx dy y dxy d --=--=6、(10分)设函数212()12x x f x ax b x ⎧≤⎪⎪=⎨⎪+>⎪⎩,适当选择,a b 的值,使得()f x 在12x =处可导 ∵()f x 在12x =处可导 ∴41221lim =→x xb a b ax x +=+→21lim21 4121=+b a 。
模拟试卷一―――――――――――――――――――――――――――――――――― 注意:答案请写在考试专用答题纸上,写在试卷上无效。
(本卷考试时间100分)一、单项选择题(每题3分,共24分)1、已知平面π:042=-+-z y x 与直线111231:-+=+=-z y x L 的位置关系是( ) (A )垂直 (B )平行但直线不在平面上(C )不平行也不垂直 (D )直线在平面上 2、=-+→→1123lim0xy xy y x ( )(A )不存在 (B )3 (C )6 (D )∞3、函数),(y x f z =的两个二阶混合偏导数y x z ∂∂∂2及xy z∂∂∂2在区域D 内连续是这两个二阶混合偏导数在D 内相等的( )条件.(A )必要条件 (B )充分条件(C )充分必要条件 (D )非充分且非必要条件 4、设⎰⎰≤+=ay x d 224πσ,这里0 a ,则a =( )(A )4 (B )2 (C )1 (D )0 5、已知()()2y x ydydx ay x +++为某函数的全微分,则=a ( )(A )-1 (B )0 (C )2 (D )16、曲线积分=++⎰L z y x ds222( ),其中.110:222⎩⎨⎧==++z z y x L(A )5π(B )52π (C )53π (D )54π7、数项级数∑∞=1n na发散,则级数∑∞=1n nka(k 为常数)( )(A )发散 (B )可能收敛也可能发散(C )收敛 (D )无界 8、微分方程y y x '=''的通解是( )(A )21C x C y += (B )C x y +=2(C )221C x C y += (D )C x y +=221 二、填空题(每空4分,共20分)1、设xyez sin =,则=dz 。
2、交换积分次序:⎰⎰-222xy dy e dx = 。
2023成人高考《高数二》真题及答案_高等数学二2023成人高考《高数二》真题及答案(回忆版)成人高考高数备考技巧有哪些?成人高考高数备考技巧有以下几点:重视新版《考试大纲》,全面进行复习;掌握学习方法,注意知识的系统性;多做题,加强练习,注意试题要少而精;学会在练习中总结类型与解题规律,培养解题能力;归纳总结,把知识条理化、网络化。
成人高考有几门考试成人高考高起专考试科目一共三门,文科考语文、数学(文)、英语;理科考语文、数学(理)、英语。
成人高考高起专考试科目一共四门,文科考语文、数学(文)、英语、史地;理科考语文、数学(理)、英语、理化。
成人高考专升本考试科目一共三科,政治、外语、一门专业基础课,专业基础课根据具体专业的不同而不同:文史类考大学语文;艺术类考艺术概论;理工类考高等数学(一);经管类考高等数学(二);法学类考民法;教育学类考教育理论;农学类考生态学基础;医学类考医学综合。
成人高考该如何备考1.熟读教材、掌握大纲:成人高考教材是成人高考复习的根本,考试所考的知识点在教材中都有体现。
成人高考考试大纲是对成人高考教材各章节知识点的梳理,考试命题也不会超出成人高考考试大纲。
2.适量做题:做题是对学习的一种检测,只有在做题中了解自己是否掌握了教材中的知识点,尤其是历年成人高考的考试内容,考生可以反复琢磨,看历年的考点都是什么。
所以适量的做一些成人高考练习题,对大家掌握知识点是很有作用的。
成考专升本数学如何提高分数1、熟悉考试题型,合理安排做题时间其实,不仅仅是成考数学考试,在参加任何一门考试之前,你都要弄清楚或明确几个问题:考试一共有多长时间,总分多少,选择、填空和其他主观题各占多少。
2.详细分析出题方式选择题:打破常规的按照顺序答题的方式,有选择性的先答会做的题目,不会做的题目就放弃了,不要浪费太多时间。
对于完全不会的题目,也必须要答,想一个答案填上去,切记不要留空。
大题:就算不会也要把解字写上也会得到一分,把知道的公式写上也会得分。
人教版高中数学选择性必修第二册全册模块综合检测2(原卷版)(时间:120分钟,分值:150分)一、单项选择题(本题共8小题,每小题5分,共40分)1.已知函数f(x)=e2x+1,则f′(0)=()A.0B.eC.2e D.e22.在等差数列{a n}中,a1+a4+a7=36,a2+a5+a8=33,则a3+a6+a9的值为() A.27B.30C.33D.363.已知a>0,b>0,a,b的等比中项为2,则a+1b+b+1a的最小值为()A.3B.4 C.5D.424.函数y=x-12x+1在(1,0)处的切线与直线l:y=ax垂直,则a=() A.-3B.3C.13D.-135.已知等差数列{a n}的前n项和S n满足:S37-S23=a,则S60=()A.4a B.307aC.5a D.407a6.函数f(x)=(x2+2x)e2x的图象大致是()7.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,则芒种日影长为()A.一尺五寸B.二尺五寸C.三尺五寸D.四尺五寸8.已知函数f(x)=x3-x和点P(1,-1),则过点P与该函数图象相切的直线条数为() A.1B.2C.3D.4二、多项选择题(本题共4小题,每小题5分,共20分)9.已知数列{a n}的前n项和为S n,S n=2a n-2,若存在两项a m,a n,使得a m a n=64,则() A.数列{a n}为等差数列B.数列{a n}为等比数列C.a21+a22+…+a2n=4n-13D.m+n为定值10.若函数e x f(x)(e=2.7182…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数为()A.f(x)=2-x B.f(x)=3-xC.f(x)=x3D.f(x)=x2+211.设等比数列{a n}的公比为q,其前n项和为S n,前n项积为T n,并且满足条件a1>1,a6a7>1,a6-1<0,则下列结论正确的是()a7-1A.0<q<1B.a6a8>1C.S n的最大值为S7D.T n的最大值为T612.设f′(x)为函数f(x)的导函数,已知x2f′(x)+xf(x)=ln x,f(1)=12,则下列结论正确的是()A.xf(x)在(1,+∞)单调递增B.xf(x)在(0,1)单调递减C.xf(x)在(0,+∞)上有极大值12D.xf(x)在(0,+∞)上有极小值12三、填空题(本题共4小题,每小题5分,共20分)13.已知等差数列{a n}中,a4=8,a8=4,则其通项公式a n=________.a1a9,则a n=________,数列14.已知正项等比数列{a n}满足a1=1,a2a6a7=116{log2a n}的前n项和为________.15.函数f(x)=12x2-ln x的单调递减区间是________.16.已知函数f(x)=ln x+mx,若函数f(x)的极小值不小于0,则实数m的取值范围为________.四、解答题(本题共6小题,共70分)17.(10分)等比数列{a n}中,已知a1=2,a4=16.(1)求数列{a n}的通项公式a n;(2)若a3,a5分别是等差数列{b n}的第4项和第16项,求数列{b n}的通项公式及前n项和S n.18.(12分)已知函数f(x)=12x2-3ln x.(1)求f(x)在(1,f(1))处的切线方程;(2)试判断f(x)在区间(1,e)上有没有零点.若有,判断零点的个数.19.(12分)设数列{a n}是等差数列,其前n项和为S n,且a3=2,S9=54.(1)求数列{a n}的通项公式;(2)证明:1a1+3+1a2+3+1a3+3+…+1a100+3>13.20.(12分)设函数f(x)=e x-ax-1(a∈R).(1)若a=2,求函数f(x)在区间[0,2]上的最大值和最小值;(2)当x≥0时,f(x)≥0,求a的取值范围.21.(12分)等差数列{a n}中,S3=21,S6=24,(1)求数列{a n}的前n项和公式S n;(2)求数列{|a n|}的前n项和T n.22.(12分)已知a,b∈R,设函数f(x)=e x-ax-b x2+1.(1)若b=0,求f(x)的单调区间;(2)当x∈[0,+∞)时,f(x)的最小值为0,求a+5b的最大值.注:e=2.71828…为自然对数的底数.人教版高中数学选择性必修第二册全册模块综合检测2(解析版)(时间:120分钟,分值:150分)一、单项选择题(本题共8小题,每小题5分,共40分)1.已知函数f (x )=e 2x +1,则f ′(0)=()A .0B .e C .2e D .e 2C解析:∵f (x )=e 2x +1,∴f ′(x )=2e 2x +1,∴f ′(0)=2e.故选C .2.在等差数列{a n }中,a 1+a 4+a 7=36,a 2+a 5+a 8=33,则a 3+a 6+a 9的值为()A .27B .30C .33D .36B解析:因为a 1+a 4+a 7=3a 4=36,所以a 4=12.因为a 2+a 5+a 8=33,所以a 5=11.所以d=a 5-a 4=-1,所以a 3+a 6+a 9=3a 6=3(a 5+d )=30.故选B .3.已知a >0,b >0,a ,b 的等比中项为2,则a +1b +b +1a 的最小值为()A .3B .4C .5D .42C解析:∵a +1b +b +1a =(a +b )+a +b ab=(a +b =54(a +b )≥54·2ab =5,等号成立当且仅当a =b =2,原式的最小值为5.4.函数y =x -12x +1在(1,0)处的切线与直线l :y =ax 垂直,则a =()A .-3B .3C .13D .-13A解析:∵y ′=3(2x +1)2,∴y ′|x =1=13,∴函数在(1,0)处的切线的斜率是13,所以,与此切线垂直的直线的斜率是-3,∴a =-3.故选A .5.已知等差数列{a n }的前n 项和S n 满足:S 37-S 23=a ,则S 60=()A .4aB .307a C .5aD .407aB 解析:因为S 37-S 23=a 24+a 25+…+a 37=a 24+a 372×14=7(a 24+a 37)=a .所以S 60=a 1+a 602×60=30(a 24+a 37)=307a .故选B .6.函数f (x )=(x 2+2x )e 2x 的图象大致是()A 解析:由于f ′(x )=2(x 2+3x +1)·e 2x ,而y =x 2+3x +1的判别式Δ=9-4=5>0,所以y=x 2+3x +1开口向上且有两个根x 1,x 2.不妨设x 1<x 2,所以f (x )在(-∞,x 1),(x 2,+∞)上递增,在(x 1,x 2)上递减.所以C ,D 选项不正确.当x <-2时,f (x )>0,所以B 选项不正确.由此得出A 选项正确.故选A .7.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,则芒种日影长为()A .一尺五寸B .二尺五寸C .三尺五寸D .四尺五寸B解析:由题知各节气日影长依次成等差数列,设为{a n },S n 是其前n 项和,则S 9=9(a 1+a 9)2=9a 5=85.5,所以a 5=9.5,由题知a 1+a 4+a 7=3a 4=31.5,所以a 4=10.5,所以公差d =a 5-a 4=-1.所以a 12=a 5+7d =2.5尺.故选B .8.已知函数f (x )=x 3-x 和点P (1,-1),则过点P 与该函数图象相切的直线条数为()A .1B .2C .3D .4B解析:因为f (1)=13-1=0,所以点P (1,-1)没有在函数的图象上.设切点坐标为(x 0,y 0),则y 0=x 30-x 0,则f ′(x )=3x 2-1.由导数的几何意义可知,过切点的斜率为k =3x 20-1,过P (1,-1)和切点的斜率表示为k =y 0+1x 0-1,-x0,3x20-1,化简可得x20(2x0-3)=0,所以x0=0或x0=32.所以切点有两个,因而有两条切线方程.故选B.二、多项选择题(本题共4小题,每小题5分,共20分)9.已知数列{a n}的前n项和为S n,S n=2a n-2,若存在两项a m,a n,使得a m a n=64,则() A.数列{a n}为等差数列B.数列{a n}为等比数列C.a21+a22+…+a2n=4n-13D.m+n为定值BD解析:由题意,当n=1时,S1=2a1-2,解得a1=2,当n≥2时,S n-1=2a n-1-2,所以S n-S n-1=a n=2a n-2-(2a n-1-2)=2a n-2a n-1,所以a na n-1=2,数列{a n}是以a1=2为首项,q=2为公比的等比数列,a n=2n,故选项A错误,选项B正确;数列{a2n}是以a21=4为首项,q1=4为公比的等比数列,所以a21+a22+…+a2n=a21(1-q n1)1-q1=4×(1-4n)1-4=4n+1-43,故选项C 错误;a m a n=2m2n=2m+n=64=26,所以m+n=6为定值,故选项D正确.故选BD.10.若函数e x f(x)(e=2.7182…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数为()A.f(x)=2-x B.f(x)=3-xC.f(x)=x3D.f(x)=x2+2AD解析:对于选项A,f(x)=2-x,则g(x)=e x f(x)=e x·2-x为实数集上的增函数;对于选项B,f(x)=3-x,则g(x)=e x f(x)=e x·3-x为实数集上的减函数;对于选项C,f(x)=x3,则g(x)=e x f(x)=e x·x3,g′(x)=e x·x3+3e x·x2=e x(x3+3x2)=e x·x2(x+3),当x<-3时,g′(x)<0,∴g(x)=e x f(x)在定义域R上先减后增;对于选项D,f(x)=x2+2,则g(x)=e x f(x)=e x(x2+2),g′(x)=e x(x2+2)+2x e x=e x(x2+2x+2)>0在实数集R上恒成立,∴g(x)=e x f(x)在定义域R上是增函数.故选AD.11.设等比数列{a n}的公比为q,其前n项和为S n,前n项积为T n,并且满足条件a1>1,a6a7>1,a6-1a7-1<0,则下列结论正确的是()A.0<q<1B.a6a8>1C.S n的最大值为S7D.T n的最大值为T6AD 解析:易知q >0,若q >1,则a 6>1,a 7>1,与a 6-1a 7-1>0矛盾,故0<q <1.所以0<a 7<1.所以a 6a 8=a 27<1.因为a 7>0,a 8>0,所以S n 的最大值一定不为S 7.因为0<a 7<1,a 6>1,所以T n 的最大值为T 6,故选AD .12.设f ′(x )为函数f (x )的导函数,已知x 2f ′(x )+xf (x )=ln x ,f (1)=12,则下列结论正确的是()A .xf (x )在(1,+∞)单调递增B .xf (x )在(0,1)单调递减C .xf (x )在(0,+∞)上有极大值12D .xf (x )在(0,+∞)上有极小值12ABD解析:由x 2f ′(x )+xf (x )=ln x 得x >0,则xf ′(x )+f (x )=ln x x ,由[xf (x )]′=ln xx .设g (x )=xf (x ),即g ′(x )=ln xx>0得x >1.由g ′(x )<0得0<x <1,即xf (x )在(1,+∞)单调递增,在(0,1)单调递减,即当x =1时,函数g (x )=xf (x )取得极小值g (1)=f (1)=12.故选ABD .三、填空题(本题共4小题,每小题5分,共20分)13.已知等差数列{a n }中,a 4=8,a 8=4,则其通项公式a n =________.12-n 解析:∵等差数列{a n }中,a 4=8,a 8=4,4=a 1+3d =8,8=a 1+7d =4,解得a 1=11,d =-1,∴a n =11+(n -1)×(-1)=12-n .14.已知正项等比数列{a n }满足a 1=1,a 2a 6a 7=116a 1a 9,则a n =________,数列{log 2a n }的前n 项和为________.2-n +1-n (n -1)2解析:由a 1=1,a 2a 6a 7=1161a 9得a 5=a 1q 4=116,q =12,a n -1=2-n+1.而log 2a n =-n +1,所以{log 2a n }的前n 项和为-n (n -1)2.15.函数f (x )=12x 2-ln x 的单调递减区间是________.(0,1]解析:f (x )=12x 2-ln x ,则f ′(x )=x -1x =x 2-1x =(x +1)(x -1)x≤0,故0<x ≤1.16.已知函数f (x )=ln x +mx,若函数f (x )的极小值不小于0,则实数m 的取值范围为________.1e,+∞解析:由f (x )=ln x +m x 得f ′(x )=1x -m x 2=x -mx2,定义域为(0,+∞).当m ≤0时,f ′(x )>0,函数y =f (x )单调递增,函数无极值;当m >0时,令f ′(x )=0⇒x =m ,当x ∈(0,m )时,f ′(x )<0,函数y =f (x )单调递减;当x ∈(m ,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以当x =m 时,函数y =f (x )取极小值,且为f (m )=ln m +1.依题意有ln m +1≥0⇒m ≥1e ,因此,实数m 的取值范围是1e ,+∞四、解答题(本题共6小题,共70分)17.(10分)等比数列{a n }中,已知a 1=2,a 4=16.(1)求数列{a n }的通项公式a n ;(2)若a 3,a 5分别是等差数列{b n }的第4项和第16项,求数列{b n }的通项公式及前n 项和S n .解:(1)设{a n }的公比为q ,由已知得16=2q 3,解得q =2,所以a n =2n .(2)由(1)得a 3=8,a 5=32,则b 4=8,b 16=32.设{b n }的公差为d b 1+3d =8,b 1+15d =32,b 1=2,d =2.从而b n =2+2(n -1)=2n .所以数列{b n }的前n 项和S n =(2+2n )n2=n 2+n .18.(12分)已知函数f (x )=12x 2-3ln x .(1)求f (x )在(1,f (1))处的切线方程;(2)试判断f (x )在区间(1,e)上有没有零点.若有,判断零点的个数.解:(1)由已知得f ′(x )=x -3x ,有f ′(1)=-2,f (1)=12,∴在(1,f (1))处的切线方程为y -12=-2(x -1),化简得4x +2y -5=0.(2)由(1)知f ′(x )=(x -3)(x +3)x ,因为x >0,令f ′(x )=0,得x = 3.所以当x ∈(0,3)时,有f ′(x )<0,则(0,3)是函数f (x )的单调递减区间;当x ∈(3,+∞)时,有f ′(x )>0,则(3,+∞)是函数f (x )的单调递增区间;当x ∈(1,e)时,函数f (x )在(1,3)上单调递减,在(3,e)上单调递增.又因为f (1)=12,f (e)=12e 2-3>0,f (3)=32(1-ln 3)<0,所以f (x )在区间(1,e)上有两个零点.19.(12分)设数列{a n }是等差数列,其前n 项和为S n ,且a 3=2,S 9=54.(1)求数列{a n }的通项公式;(2)证明:1a 1+3+1a 2+3+1a 3+3+…+1a 100+3>13.(1)解:设数列{a n }的公差为d ,∵S 9=9a 5=54,∴a 5=6,∴d =a 5-a 35-3=2,∴a n =a 3+(n -3)d =2n -4.(2)证明:∵1a n +3=12n -1>22n -1+2n +1=2n +1-2n -1,∴1a 1+3+1a 2+3+1a 3+3+…+1a 100+3>(3-1)+(5-3)+…+(201-199)=201-1>14-1=13,∴1a 1+3+1a 2+3+1a 3+3+…+1a 100+3>13.20.(12分)设函数f (x )=e x -ax -1(a ∈R ).(1)若a =2,求函数f (x )在区间[0,2]上的最大值和最小值;(2)当x ≥0时,f (x )≥0,求a 的取值范围.解:(1)f (x )=e x -2x -1,取f ′(x )=e x -2=0,即x =ln 2,函数在[0,ln 2]上单调递减,在(ln 2,2]上单调递增,且f (0)=0,f (2)=e 2-5,f (ln 2)=1-2ln 2,故函数的最大值为f (2)=e 2-5,最小值为f (ln 2)=1-2ln 2.(2)f (x )=e x -ax -1,f ′(x )=e x -a ,f (0)=0.当a ≤0时,f ′(x )=e x -a >0,函数单调递增,故f (x )≥f (0)=0,成立;当a >0时,f ′(x )=e x -a =0,即x =ln a ,故函数在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增,故f (ln a )<f (0)=0,不成立.综上所述,a 的取值范围为(-∞,0].21.(12分)等差数列{a n }中,S 3=21,S 6=24,(1)求数列{a n }的前n 项和公式S n ;(2)求数列{|a n |}的前n 项和T n .解:(1)设{a n }首项为a 1,公差为d ,由S 3=21,S 6=24,a 1+3×22d =21,a 1+6×52d =24,1=9,=-2.∴S n =n ×9+n (n -1)2×(-2)=-n 2+10n .(2)由(1)知,a n =9+(n -1)×(-2)=-2n +11,由a n ≥0得-2n +11≥0,即n ≤112.当n ≤5时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =S n =-n 2+10n ;当n ≥6时,T n =|a 1|+…+|a 5|+|a 6|+…+|a n |=(a 1+a 2+…+a 5)-(a 6+…+a n )=S 5-(S n -S 5)=n 2-10n +50.综上,T nn 2+10n (n ≤5),2-10n +50(n ≥6).22.(12分)已知a ,b ∈R ,设函数f (x )=e x -ax -b x 2+1.(1)若b =0,求f (x )的单调区间;(2)当x ∈[0,+∞)时,f (x )的最小值为0,求a +5b 的最大值.注:e =2.71828…为自然对数的底数.解:(1)f (x )=e x -ax ,f ′(x )=e x -a ,当a ≤0时,f ′(x )=e x -a ≥0恒成立,函数单调递增;当a >0时,f ′(x )=e x -a =0,x =ln a ,当x ∈(-∞,ln a )时,f ′(x )<0,函数单调递减;当x ∈(ln a ,+∞)时,f ′(x )>0,函数单调递增.综上所述,a ≤0时,f (x )在R 上单调递增;a >0时,f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增.(2)f (x )=e x-ax -bx 2+1≥0在x ∈[0,+∞)上恒成立,=e -12a -52b ≥0,故a +5b ≤2e ,现在证明存在a ,b ,a +5b =2e ,使f (x )的最小值为0.取a =3e 4,b =5e 4(此时可使f 0),f ′(x )=e x -a -bx x 2+1,f ″(x )=e x -b (x 2+1)x 2+1,b =5e 4<1,故当x ∈[0,+∞)时,(x 2+1)x 2+1≥1,e x ≥1,故f ″(x )≥0,f ′(x )在[0,+∞)上单调递增,f 0,故f (x )在0f (x )min =0.综上所述,a +5b 的最大值为2 e.。
大学-高等数学(Ⅱ)试卷题(D )一、选择题:(每小题2分,共10分)1. 函数 ⎪⎩⎪⎨⎧=+≠++=0y x , 00y x , y x xy y x f 222222,),(则f(x,y)在(0,0)点 ( );A.连续但偏导数不存在;B.极限存在但不连续;C.偏导数存在但不连续;D.全微分存在.2.下列级数发散的是( )A .;(1)n nn n ∞=+- B.2(1)ln(1);1n n n n ∞=-++∑ C .222sin();n a π∞=+∑ D.1.1nn n ∞=+ 3.级数1sin (0) n nxx n ∞=≠∑!,则该级数( )。
A.是发散级数; B.是绝对收敛级数;C.是条件收敛级数;D. 仅在)1,0)(0,1(-内级数收敛,其他x 值时数发散。
4. 双曲抛物面22x y z p p-=.(p >0,q >0)与xOy 平面的交线是( ) A.双曲线 B.抛物线C.平行直线D.相交于原点的两条直线. 5.322(,)42,f x y x x xy y =-+-函数下列命题正确的是。
A.点(2,2)是f(x,y)的极小值点B. 点(0,0)是f(x,y)的极大值点C. 点(2,2)不是f(x,y)的驻 点D.f(0,0)不是 f(x,y)的极值.二、填空题:(每小题3分,共30分 )1.22yx 1x x y ln z --+-=)( ;2.曲面1-y x z 22+=在点(2 , 1, 4 )处的法线方程是 ;3.设yxarcsin1y x ) y ,f(x )(-+=,则=) 1 ,(x f x ; 4.已知D 是由直线y = 1,x = 2及x = y 所围成 ,则⎰⎰Dxyd σ= ;5.⎰⎰+-2212),(y ydx y x f dy 积分交换积分次序得 ;6.函数f(x,y)是以2为周期的周期函数,它在),[ππ-上的表达式为⎩⎨⎧<≤<≤=ππx 0 , e 0x - ,x )f(x x的和函数为S(x).则)(π25S = ; 7.若级数∑∞=1n n u 收敛,级数 ∑∞=1n n |u |发散,则级数∑∞=1n n u ;8.微分方程y / + P(x)y = Q(x)的的通解为_____________; 9.设y z x dz ==,则;10.设P(x,y)、Q(x,y)在曲线L 围成的单联通区域内具有一阶连续偏导数。
(人教版B 版2017课标)高中数学必修第二册 全册综合测试卷二(附答案)第四章综合测试一、单项选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数()3x y f =的定义域为[1,1]-,则函数()3log y f x =的定义域为( ) A .[1,1]-B .1,23⎡⎤⎢⎥⎣⎦C .[1,2]D .2.已知函数1()2)2f x x =+,则1(lg 2)lg 2f f ⎛⎫+= ⎪⎝⎭( ) A .1-B .0C .1D .2 3.设函数2()log f x x =,若(1)2f a +<,则实数a 的取值范围为( ) A .(1,3)-B .(,3)-∞C .(,1)-∞D .(1,1)-4.已知函数2||()e x f x x =+,若()2a f =,121log 4b f ⎛⎫= ⎪ ⎪⎝⎭,2log c f ⎛= ⎝⎭,则,,a b c 的大小关系为( ) A .a b c >>B .a c b >>C .b a >>cD .c a b >>5.已知(31)4,1,()log ,1aa x a x f x x x -+⎧=⎨⎩<≥,是R 上的减函数,那么实数a 的取值范围是( )A .(0,1)B .11,73⎡⎫⎪⎢⎣⎭C .10,3⎛⎫ ⎪⎝⎭D .11,93⎛⎫ ⎪⎝⎭6.已知,(1,)m n ∈+∞,且m n >,若26log log 13m n n m +=,则函数2()m nf x x =的图像为( )ABCD7.给出下列命题:①函数e e 2x xy -+=为偶函数;②函数e 1e 1x x y -=+在x ∈R 上单调递增;③函数lg y x =在区间(0,)+∞上单调递减;④函数13xy ⎛⎫= ⎪⎝⎭与3log y x =-的图像关于直线y x =对称。
其中正确命题的个数是( ) A .1B .2C .3D .48.设函数()2ln 1y x x =-+,则下列命题中不正确的是( ) A .函数的定义域为RB .函数是增函数C .函数的图像关于直线12x =对称D .函数的值域是3ln ,4⎡⎫+∞⎪⎢⎣⎭9.某种热饮需用开水冲泡,其基本操作流程如下:①先将水加热到100℃,水温()y ℃与时间(min)t 近似满足一次函数关系;②用开水将热饮冲泡后在室温下放置,温度()y ℃与时间(min)t 近似满足函数关系式101802t ay b -⎛⎫=+ ⎪⎝⎭(,a b 为常数).通常这种热饮在40℃时,口感最佳,某天室温为20℃,冲泡热饮的部分数据如图所示,那么按上述流程冲泡一杯热饮,并在口感最佳时饮用,最少需要的时间为( )A .35minB .30minC .25minD .20min10.已知函数22log ,02,()43,2,x x f x x x x ⎧⎪=⎨-+-⎪⎩<≤>若,,a b c 互不相等,且()()()f a f b f c ==,则abc 的取值范围是( ) A .[2,3]B .(2,3)C .[2,3)D .(2,3]二、多项选择题(本大题共2小题,每小题5分,共10分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分) 11.给出下列结论,其中正确的结论是( ) A .函数2112x y -+⎛⎫= ⎪⎝⎭的最大值为12B .已知函数log (2)a y ax =-(0a >且1a ≠)在(0,1)上是减函数,则实数a 的取值范围是(1,2)C .在同一平面直角坐标系中,函数2x y =与2log y x =的图像关于直线y x =对称D .已知定义在R 上的奇函数()f x 在(,0)-∞内有1 010个零点,则函数()f x 的零点个数为2 02112.定义“正对数”:0,01,ln ln , 1.x x x x +⎧=⎨⎩<<≥若0a >,0b >,则下列结论中正确的是( )A .()ln ln b a b a ++=B .ln ()ln ln ab a b +++=+C .ln ()ln ln a b a b +++++≥D .ln ()ln ln ln 2a b a b ++++++≤三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)13.已知()y f x =为定义在R 上的奇函数,且当0x >时,()e 1x f x =+,则(ln2)f -的值为________.14.某新能源汽车公司为激励创新,计划逐年加大研发资金投入,若该公司2018年(记为第1年)全年投入研发资金5 300万元,在此基础上,以后每年投入的研发资金比上一年增长8%,则该公司全年投入的研发资金开始超过7 000万元的年份是________年.(参考数据:lg1.080.03≈,lg5.30.72≈,lg70.85≈)15.已知函数()log (1)a f x x =-+(0a >且1a ≠)在[2,0]-上的值域是[1,0]-.若函数()3x m g x a +=-的图像不经过第一象限,则m 的取值范围为________.16.若不等式()21212xxm m ⎛⎫-- ⎪⎝⎭<对一切(,1]x ∈-∞-恒成立,则实数m 的取值范围是________.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)(1()231251log 227-⎛⎫--+ ⎪⎝⎭的值;(2)计算:1324lg 2493-18.(12分)已知幂函数()221()1m f x m m x --=--⋅在(0,)+∞上单调递增,函数()22x x m g x =+. (1)求实数m 的值,并简要说明函数()g x 的单调性; (2)若不等式(13)(1)0g t g t -++≥恒成立,求实数t 的取值范围.19.(12分)目前,我国一些高耗能低效产业(煤炭、钢铁、有色金属、炼化等)的产能过剩将严重影响生态文明建设,“去产能”将是一项重大任务.某企业从2018年开始,每年的产能比上一年减少的百分比为(01)x x <<. (1)设n 年后(2018年记为第1年)年产能为2017年的a 倍,请用a ,n 表示x ; (2)若10%x =,则至少要到哪一年才能使年产能不超过2017年的25%?(参考数据:lg20.301≈,lg30.477≈)20.(12分)已知函数2()lg 2lg(10)3f x x a x =-+,1,10100x ⎡⎤∈⎢⎥⎣⎦. (1)当1a =时,求函数()f x 的值域;(2)若函数()y f x =的最小值记为()m a ,求()m a 的最大值.21.(12分)已知函数()log a f x x b =+(其中,a b 均为常数,0a >且1a ≠)的图像经过点()2,5与点()8,7.(1)求,a b 的值;(2)设函数2()x x g x b a +=-,若对任意的1[1,4]x ∈,存在[]220,log 5x ∈,使得()()12f x g x m =+成立,求实数m 的取值范围.22.(12分)已知函数()4()log 41()x f x kx k =++∈R 是偶函数. (1)求k 的值;(2)设44()log 23x g x a a ⎛⎫=⋅- ⎪⎝⎭,若函数()f x 与()g x 的图像有且只有一个公共点,求实数a 的取值范围; (3)若函数[]1()22()421,0,log 3f x xx h x m x +=+⋅-∈,是否存在实数()h x 使得最小值为0,若存在,求出m 的值;若不存在,请说明理由.第四章综合测试答案解析一、 1.【答案】D【解析】由[1,1]x ∈-,得13,33x ⎡⎤∈⎢⎥⎣⎦,所以31log ,33x ⎡⎤∈⎢⎥⎣⎦,所以x ∈.2.【答案】C1()2)2f x x =-+,11()()2)2)2)2)122f x f x x x x x ∴+-=+++=++22lg(144)1lg111x x =+-+=+=,1(lg 2)lg (lg 2)(lg 2)12f f f f ⎛⎫∴+=+-= ⎪⎝⎭.3.【答案】A 【解析】函数2()log f x x =在定义域内单调递增,2(4)log 42f ==,∴不等式(1)2f a +<等价于014a +<<,解得13a -<<,故选A .4.【答案】C【解析】2||2||()()e e ()x x f x x x f x --=-+=+=知函数()f x 为偶函数,且在(0,)+∞为增函数,()02(1)a f f ==,121log (2)4b f f ⎛⎫== ⎪ ⎪⎝⎭,211log 22f f f c ⎛⎛⎫⎛⎫=-= ⎪ ⎪ ⎭⎝⎝⎭=⎝⎭,所以1(2)(1)2f f f ⎛⎫⎪⎝⎭>>,即b a c >>.5.【答案】B【解析】由题意得310,3140,01,a a a a -⎧⎪-+⎨⎪⎩<≥<<解得1173a ≤<,故选B .6.【答案】A【解析】由题意,得26log log 2log 6log 13m m n n n m n m +=+=,令log (1)m t n t =<,则6213t t +=,解得12t =或6t =(舍去),所以n =21m n=,所以2()mn f x x =的图像即为()f x x =的图像,故选A .7.【答案】C【解析】由e e ()()2x x f x f x -+-==,知e 2e x xy -+=为偶函数,因此①正确;由11e e 221111e e e x x x x x y -+-===-+++知1e e 1x x y -=+在R 上单调递增,因此②正确;当0x >时,lg lg y x x ==,它在(0,)+∞上是增函数,因此③错误;由313log log y x x =-=知13xy ⎛⎫= ⎪⎝⎭与3log y x =-的图像关于直线y x =对称,因此④正确,故选C .8.【答案】B【解析】A 中命题正确,22131024x x x ⎛⎫-+=-+ ⎪⎝⎭>恒成立,∴函数的定义域为R ;B 中命题错误,函数()2ln 1y x x =-+在12x >时是增函数,在12x <时是减函数;C 中命题正确,函数的图像关于直线12x =对称:D 中命题正确,由221331244x x x ⎛⎫-+=-+ ⎪⎝⎭≥可得()23ln 1ln 4y x x =-+≥,∴函数的值域为3ln ,4⎡⎫+∞⎪⎢⎣⎭.故选B .9.【答案】C【解析】由题图知,当05t ≤<时,函数图像是一条线段,当5t ≥时,因为函数的解析式为101802t a y b -⎛⎫=+ ⎪⎝⎭,所以将(5,100)和(15,60)代入解析式,得5101510110080,216080,2aa b b --⎧⎛⎫⎪=+ ⎪⎪⎪⎝⎭⎨⎪⎛⎫⎪=+ ⎪⎪⎝⎭⎩解得5,20,a b =⎧⎨=⎩故函数的解析式为51018020,52t y t -⎛⎫=+ ⎪⎝⎭≥.令40y =,解得25t =,所以最少需要的时间为25min . 10.B 根据已知画出函数()f x 的草图如下。
单元素养检测(二)(第四章)(120分钟150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求的)1.一盒中装有5X彩票,其中2X有奖,3X无奖,现从此盒中不放回地抽取2次,每次抽取一X彩票.设第1次抽出的彩票有奖的事件为A,第2次抽出的彩票有奖的事件为B,则P(B|A)=( )A.B.C.D.【解析】选D.由题意,第1次抽出的彩票有奖,剩下4X彩票,其中1X有奖,3X无奖,所以P(B|A)=.2.设随机变量X~B,则P(X=3)等于( )A. B. C.D.【解析】选A.由二项分布概率公式可得:P(X=3)=××=20×=.3.在某项测试中,测量结果ξ服从正态分布N(1,σ2)(σ>0),若P(0<ξ<1)=0.4,则P(0<ξ<2)=( )A.0.4B.0.8C.0.6D.0.2【解析】选B.由正态分布的图像和性质得P(0<ξ<2)=2P(0<ξ<1)=2×0.4=0.8.4.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好40 20 60不爱好20 30 50总计60 50 110由χ2=算得,χ2=≈7.8附表:P(χ2≥k) 0.050 0.010 0.001k 3.841 6.635 10.828参照附表,得到的正确结论是( )A.有99%以上的把握认为“爱好该项运动与性别有关”B.有99%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”【解析】选A.由χ2≈7.8>6.635,而P(χ2≥6.635)=0.010,故由独立性检验的意义可知选A.5.袋中装有标号为1,2,3,4,5,6且大小相同的6个小球,从袋子中一次性摸出两个球,记下并放回,如果两个的和是3的倍数,则获奖,若有5人参与摸球,则恰好2人获奖的概率是( )A. B. C. D.【解析】选C.从6个球中摸出2个,共有=15种结果,两个球的之和是3的倍数,共有(1,2),(1,5),(2,4),(3,6),(4,5),所以摸一次中奖的概率是=,5个人摸奖,相当于发生5次试验,且每一次发生的概率是,所以有5人参与摸奖,恰好有2人获奖的概率是··=.6.某市环保局举办“六·五”世界环境日宣传活动,进行现场抽奖.抽奖规则是:盒中装有10X 大小相同的精美卡片,卡片上分别印有“环保会徽”或“绿色环保标志”图案.参加者每次从盒中抽取卡片两X,若抽到两X都是“绿色环保标志”卡即可获奖.已知从盒中抽两X都不是“绿色环保标志”卡的概率是.现有甲、乙、丙、丁四人依次抽奖,抽后放回,另一人再抽,用ξ表示获奖的人数,那么E(ξ)+D(ξ)=( )A. B. C. D.【解析】选A.设盒中装有10X大小相同的精美卡片,其中印有“环保会徽”的有nX,“绿色环保标志”图案的有10-nX,由题意得=,解得n=6,所以参加者每次从盒中抽取卡片两X,获奖概率P==,所以现有甲、乙、丙、丁四人依次抽奖,抽后放回,另一人再抽,用ξ表示获奖的人数,则ξ~B,所以E(ξ)+D(ξ)=4×+4××=.7.盒中有6个小球,其中4个白球,2个黑球,从中任取i(i=1,2)个球,在取出的球中,黑球放回,白球则涂黑后放回,此时盒中黑球的个数X i(i=1,2),则( )A.P>P,E(X1)>E(X2)B.P<P,E(X1)>E(X2)C.P>P,E(X1)<E(X2)D.P<P,E(X1)<E(X2)【解析】选C.X1=3表示取出的为一个白球,所以P==.X1=2表示取出一个黑球,P==,所以E(X1)=3×+2×=.X2=3表示取出两个球,其中一黑一白,P==,X2=2表示取出两个球为黑球,P==,X2=4表示取出两个球为白球,P(X2=4)==,所以E(X2)=3×+2×+4×=.所以P(X1=3)>P(X2=3),E(X1)<E(X2).8.已知变量x,y的关系可以用模型y=ce kx拟合,设z=lny,其变换后得到一组数据如表:x 16 17 18 19z 50 34 41 31由表可得回归直线方程=-5x+,则c=( )A.-5B.e-5C.126.5D.e126.5【解析】选D.==17.5,==39,代入=-5x+得39=-5×17.5+,解得=126.5.所以=-5x+126.5. 由y=ce kx,得ln y=ln(ce kx)=ln c+ln e kx=ln c+kx,令z=ln y,则z=ln c+kx,所以ln c=126.5,则c=e126.5.二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得3分,有选错的得0分)9.某大学为了解学生对学校食堂服务的满意度,随机调查了50名男生和50名女生,每位学生对食堂的服务给出满意或不满意的评价,得到如表所示的列联表.经计算χ2≈4.762,则可以推断出( )A.该学校男生对食堂服务满意的概率的估计值为B.调研结果显示,该学校男生比女生对食堂服务更满意C.有95%的把握认为男、女生对该食堂服务的评价有差异D.有99%的把握认为男、女生对该食堂服务的评价有差异【解析】选AC.对于选项A,该学校男生对食堂服务满意的概率的估计值为=,故A 正确;对于选项B,该学校女生对食堂服务满意的概率的估计值为=>,故B错误;因为χ2≈4.762>3.841,所以有95%的把握认为男、女生对该食堂服务的评价有差异,故C 正确,D错误.10.如图所示的电路中,5只盒子表示保险匣,设5个盒子分别被断开为事件A,B,C,D,E.盒中所示数值表示通电时保险丝被切断的概率,下列结论正确的是( )A.A,B两个盒子串联后畅通的概率为B.D,E两个盒子并联后畅通的概率为C.A,B,C三个盒子混联后畅通的概率为D.当开关合上时,整个电路畅通的概率为【解析】选ACD.由题意知,P(A)=,P(B)=,P(C)=,P(D)=,P(E)=,所以A,B两个盒子畅通的概率为×=,因此A正确;D,E 两个盒子并联后畅通的概率为1-×=1-=,因此B错误;A,B,C三个盒子混联后畅通的概率为1-×=1-=,C正确;根据上述分析可知,当开关合上时,电路畅通的概率为×=,D正确.11.下列命题中,正确的命题的是( )A.已知随机变量服从二项分布B(n,p),若E(X)=30,D(X)=20,则p=B.将一组数据中的每个数据都加上同一个常数后,方差恒不变C.设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则P(-1<ξ≤0)=-pD.某人在10次射击中,击中目标的次数为X,X~B(10,0.8),则当X=8时概率最大【解析】选BCD.对于选项A:随机变量服从二项分布B(n,p),E(X)=30,D(X)=20,可得np=30,np(1-p)=20,则p=,故选项A错误;对于选项B:根据公式易知,将一组数据中的每个数据都加上同一个常数后,方差恒不变,一般地,E(aξ+b)=aE(ξ)+b,D(aξ+b)=a2D(ξ)(a,b为常数),故选项B正确;对于选项C:随机变量ξ服从正态分布N(0,1),则图像关于y轴对称,若P(ξ>1)=p,则P(0<ξ<1)=-p,即P(-1<ξ<0)=-p,故选项C正确;对于选项D:因为在10次射击中,击中目标的次数为X,X~B(10,0.8),当X=k时,对应的概率P(X=k)=×0.8k×0.210-k,所以当k≥1时,==,由=≥1得,44-4k≥k,即1≤k≤,因为k∈N*,所以1≤k≤8且k∈N*,即k=8时,概率P(X=8)最大,故选项D正确.12.下列说法中,正确的命题是( )A.已知随机变量ξ服从正态分布N(2,σ2),P=0.84,则P=0.16.B.以模型y=ce kx去拟合一组数据时,为了求出回归方程,设z=lny,将其变换后得到回归直线方程=0.3x+4,则c,k的值分别是e4和0.3.C.已知两个变量具有线性相关关系,其回归直线方程为=+x,若=2,=1,=3,则=1.D.若样本数据x1,x2,…,x10的方差为2,则数据2x1-1,2x2-1,…,2x10-1的方差为16 【解析】选BC.因为随机变量ξ服从正态分布N,P=0.84,所以P=P-0.5=0.84-0.5=0.34≠0.16,即A错;因为y=ce kx,所以ln y=ln(ce kx),所以ln y=kx+ln c,因为=0.3x+4,所以ln y=0.3x+4,从而k=0.3,ln c=4,所以k=0.3,c=e4,即B正确;因为=+x过(,),所以3=+,因为=2,所以=1,即C正确;因为样本数据x1,x2,…,x10的方差为2,所以数据2x1-1,2x2-1,…,2x10-1的方差为2×22=8,即D错误.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知x,y取值如表:x 0 1 3 5 6y 1 m 3m 5.6 7.4画散点图分析可知:y与x线性相关,且求得回归直线方程为=x+1,则m=________. 【解析】计算=×(0+1+3+5+6)=3,=×(1+m+3m+5.6+7.4)=,所以这组数据的样本中心点是,又y与x的回归直线方程=x+1过样本中心点,所以=1×3+1,解得m=.答案:14.在西非,“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁,为了考察某种埃博拉病毒疫苗的效果,现随机抽取100只小动物进行试验,得到列联表如表:感染未感染总计服用 5 45 50未服用15 35 50总计20 80 100附:χ2=P(χ2≥k) 0.100 0.050 0.025 0.010k 2.706 3.841 5.024 6.635根据题表,有________的把握认为“小动物是否感染与服用疫苗有关”.【解析】由题中数据可得χ2===6.25>5.024,根据临界值表可得:犯错误的概率不超过0.025.即有97.5%的把握认为“小动物是否感染与服用疫苗有关”.答案:97.5%15.设离散型随机变量X可能取的值为1,2,3,4.P(X=k)=ak+b(k=1,2,3,4).又X的数学期望E(X)=3,则a+b=________.【解析】依题意得E(X)=1·(a+b)+2·(2a+b)+3·(3a+b)+4·(4a+b)=3,且概率和(a+b)+(2a+b)+(3a+b)+(4a+b)=1,解得a=,b=0,a+b=.答案:16.在一次数学考试中,第22题和第23题为选做题,规定每位考生必须且只需在其中选做一题.设4名考生选做这两题的可能性均为.则其中甲、乙2名学生选做同一道题的概率为________;甲、乙2名学生都选做第22题的概率为________.【解析】设事件A表示“甲选做第22题”,事件B表示“乙选做第22题”,则甲,乙2名学生选做同一道题的事件为“AB∪”,且事件A,B相互独立,所以P(AB∪)=P(A)P(B)+P()P()=×+×=.所以甲、乙两名学生选做同一道题的概率为;因为P(A)P(B)=×=,所以甲、乙两名学生都选做第22题的概率为.答案:四、解答题(本大题共6个小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(10分)通过市场调查,得到某种产品的资金投入x(单位:万元)与获得的利润y(单位:万元)的数据,如表所示:资金投入x 2 3 4 5 6利润y 2 3 5 6 9(1)画出数据对应的散点图;(2)根据上表提供的数据,用最小二乘法求线性回归直线方程=x+;(3)现投入资金10万元,求获得利润的估计值为多少万元?参考公式:【解析】(1)(2)==4,==5,===1.7,所以=-=-1.8,所以=1.7x-1.8;(3)当x=10(万元),=15.2(万元).18.(12分)在某公司的一次招聘初试笔试中,随机抽取了50名应聘者的成绩(单位:分),并把所得数据列成了如表所示的频数分布表:组别[40,50) [50,60) [60,70) [70,80) [80,90) [90,100]频数 3 9 14 13 8 3(1)求抽取的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)已知样本中成绩在[80,90)中的8名考生中,有5名男生,3名女生,现从中选4人进行谈话,记选出的男生人数为ξ,求ξ的分布列与期望E(ξ).【解析】(1)由频数分布表,得样本平均数为=45×0.06+55×0.18+65×0.28+75×0.26+85×0.16+95×0.06=69.6;(2)由已知得ξ的可能取值为1,2,3,4,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,P(ξ=4)==,所以ξ的分布列为ξ 1 2 3 4PE(ξ)=1×+2×+3×+4×=2.5.19.(12分)为迎接“五一”节的到来,某单位举行“庆五一,展风采”的活动.现有6人参加其中的一个节目,该节目有A,B两个环节可供参加者选择,为增加趣味性,该单位用电脑制作了一个选择方案:按下电脑键盘“Enter”键则会出现模拟抛两枚质地均匀骰子的画面,若干秒后在屏幕上出现两个点数n和m,并在屏幕的下方计算出d=的值.现规定:每个人去按“Enter”键,当显示出来的d小于2时则参加A环节,否则参加B环节.(1)求这6人中恰有2人参加该节目A环节的概率;(2)用X,Y分别表示这6个人中去参加该节目A,B两个环节的人数,记ξ=|X-Y|,求随机变量ξ的分布列与数学期望.【解析】(1)依题意得,由屏幕出现的点数n和m形成的有序数对(n,m),一共有6×6=36种等可能的基本事件,符合d<2的有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(5,1),(5,2),(5,3),(6,1)共24种,所以选择参加A环节的概率为P1==,选择参加B环节的概率为P2=,所以这6人中恰有2人参加该节目A环节的概率P===;(2)依题意得ξ的可能取值为0,2,4,6,P(ξ=0)=P(X=3)==,P(ξ=2)=P(X=2)+P(X=4)=+=,P(ξ=4)=P(X=1)+P(X=5)=+=,P(ξ=6)=P(X=0)+P(X=6)=+=,所以ξ的分布列为ξ0 2 4 6P数学期望E(ξ)=0×+2×+4×+6×=.20.(12分)某商场举行促销活动,有两个摸奖箱,A箱内有一个“1”号球,两个“2”号球,三个“3”号球、四个无号球,B箱内有五个“1”号球,五个“2”号球,每次摸奖后放回,每位顾客消费额满100元有一次A箱内摸奖机会,消费额满300元有一次B箱内摸奖机会,摸得有数字的球则中奖,“1”号球奖50元,“2”号球奖20元,“3”号球奖5元,摸得无号球则没有奖金.(1)经统计,顾客消费额X服从正态分布N,某天有1000位顾客,请估计消费额X(单位:元)在区间[100,150]内并中奖的人数.(结果四舍五入取整数)附:若X~N(μ,σ2),则P≈68.3%,P(μ-2σ≤X≤μ+2σ)≈95.4%.(2)某三位顾客各有一次A箱内摸奖机会,求其中中奖人数ξ的分布列.(3)某顾客消费额为308元,有两种摸奖方法,方法一:三次A箱内摸奖机会;方法二:一次B箱内摸奖机会.请问:这位顾客选哪一种方法所得奖金的期望值较大.【解析】(1)依题意得μ=150,σ2=625,得σ=25,消费额X在区间[100,150]内的顾客有一次A箱内摸奖机会,中奖率为0.6,人数约1 000×P(μ-2σ≤X≤μ)≈1 000×=477(人),其中中奖的人数约为477×0.6≈286(人),(2)三位顾客每人一次A箱内摸奖中奖率都为0.6,三人中中奖人数ξ服从二项分布B,P=0.6k0.43-k,故ξ的分布列为ξ0 1 2 3P 0.064 0.288 0.432 0.216(3)A箱摸一次所得奖金的期望为50×0.1+20×0.2+5×0.3=10.5,B箱摸一次所得奖金的期望为50×0.5+20×0.5=35,方法一所得奖金的期望值为3×10.5=31.5,方法二所得奖金的期望值为35,所以这位顾客选方法二所得奖金的期望值较大.21.(12分)某超市在节日期间进行有奖促销,规定凡在该超市购物满400元的顾客,均可获得一次摸奖机会.摸奖规则如下:奖盒中放有除颜色不同外其余完全相同的4个球(红、黄、黑、白).顾客不放回地每次摸出1个球,若摸到黑球则摸奖停止,否则就继续摸球.按规定摸到红球奖励20元,摸到白球或黄球奖励10元,摸到黑球不奖励.(1)求1名顾客摸球2次摸奖停止的概率;(2)记X为1名顾客摸奖获得的奖金数额,求随机变量X的分布列和数学期望.【解析】(1)1名顾客摸球2次摸奖停止,说明第一次是从红球、黄球、白球中摸一球,第二次摸的是黑球,所以1名顾客摸球2次摸奖停止的概率P==.(2)X的可能取值为:0,10,20,30,40.P(X=0)==,P(X=10)==,P(X=20)=+=,P(X=30)==,P(X=40)==,所以随机变量X的分布列为X 0 10 20 30 40P数学期望E(X)=0×+10×+20×+30×+40×=20.22.(12分)某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在[100,120)内,则为合格品,否则为不合格品.表1是甲套设备的样本的频数分布表,图1是乙套设备的样本的频率分布直方图.表1:甲套设备的样本的频数分布表质量指标值[95,100) [100,105)[105,110)[110,115)[115,120)[120,125]频数 1 5 18 19 6 1图1:乙套设备的样本的频率分布直方图(1)将频率视为概率.若乙套设备生产了5000件产品,则其中的不合格品约有多少件?(2)填写下面列联表,并根据列联表判断是否有90%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关;甲套设备乙套设备总计合格品不合格品总计(3)根据表1和图1,对两套设备的优劣进行比较.附:P(χ2≥k) 0.10 0.050 0.010k 2.706 3.841 6.635 χ2=.【解析】(1)由图1知,乙套设备生产的不合格品概率约为,所以乙套设备生产的5 000件产品中不合格品约为5 000×=700(件). (2)由题干表1和图1得到列联表甲套设备乙套设备总计合格品48 43 91不合格品 2 7 9总计50 50 100 将列联表中的数据代入公式计算得χ2==≈3.05.因为3.05>2.706,所以有90%的把握认为产品的质量指标值与甲、乙两套设备的选择有关.(3)由题干表1和图1知,甲套设备生产的合格品的概率约为,乙套设备生产的合格品的概率约为,甲套设备生产的产品的质量指标值主要集中在[105,115)内,乙套设备生产的产品的质量指标值与甲套设备相比较为分散.因此,可以认为甲套设备生产的合格品的概率更高,且质量指标值更稳定,从而甲套设备优于乙套设备.。
A.得分/总分A.6.00/6.00•B.•C.•D.正确答案:A你选对了4单选(6分)1.下列为齐次方程的是()得分/总分•A.6.00/6.00•B.•C.•D.正确答案:A你选对了5单选(6分)得分/总分•A.6.00/6.00•B.•C.•D.正确答案:A你选对了6单选(6分)1.下列微分方程满足所给初始条件的特解为()得分/总分•A.•B.•C.0.00/6.00•D.正确答案:A你错选为C1判断(5分)得分/总分•A.5.00/5.00•B.正确答案:A你选对了2判断(5分)得分/总分•A.•B.5.00/5.00正确答案:B你选对了3单选(6分)得分/总分•A.6.00/6.00•B.•C.•D.正确答案:A你选对了4单选(6分)得分/总分•A.6.00/6.00•B.•C.•D.正确答案:A你选对了5单选(6分)得分/总分•A.6.00/6.00•B.•C.•D.正确答案:A你选对了6判断(5分)得分/总分•A.5.00/5.00•B.正确答案:A你选对了1单选(6分)得分/总分•A.6.00/6.00•B.•C.y轴上•D.第一卦限内正确答案:A你选对了2单选(6分)得分/总分•A.6.00/6.00•B.•C.•D.正确答案:A你选对了3单选(6分)得分/总分•A.6.00/6.00•B.•C.•D.正确答案:A你选对了4单选(6分)得分/总分•A.•B.6.00/6.00•C.•D.正确答案:B你选对了5单选(6分)得分/总分•A.•B.•C.•D.6.00/6.00正确答案:D你选对了6单选(6分)得分/总分•A.•B.•C.6.00/6.00•D.正确答案:C你选对了1单选(6分)得分/总分•A.•B.•C.•D.6.00/6.00正确答案:D你选对了2单选(6分)得分/总分•A.•B.0.00/6.00•C.•D.正确答案:D你错选为B3单选(6分)得分/总分•A.0.00/6.00•B.•C.•D.正确答案:C你错选为A4单选(6分)得分/总分•A.•B.6.00/6.00•C.D.正确答案:B你选对了5单选(6分)得分/总分•A.直线垂直平面•B.直线平行平面且不在平面上6.00/6.00•C.直线在平面上•D.直线与平面相交但不垂直正确答案:B你选对了6单选(6分)得分/总分•A.B.6.00/6.00•C.•D.正确答案:B你选对了1单选(6分)得分/总分•A.•B.•C.•D.6.00/6.00正确答案:D你选对了2单选(6分)得分/总分•A.•B.0.00/6.00•C.•D.正确答案:D你错选为B3单选(6分)得分/总分•A.0.00/6.00•B.•C.•D.正确答案:C你错选为A4单选(6分)得分/总分•A.•B.6.00/6.00•C.•D.正确答案:B你选对了5单选(6分)得分/总分•A.直线垂直平面•B.直线平行平面且不在平面上6.00/6.00•C.直线在平面上•D.直线与平面相交但不垂直正确答案:B你选对了6单选(6分)得分/总分•A.•B.6.00/6.00•C.•D.正确答案:B你选对了1单选(6分)得分/总分•A.•B.6.00/6.00•C.•D.正确答案:B你选对了2单选(6分)得分/总分•A.平面Y=1上的椭圆6.00/6.00•B.椭圆柱面在平面Y=0的投影曲线•C.椭圆柱面•D.椭球面正确答案:A你选对了3单选(6分)得分/总分•A.椭球面•B.单叶双曲面6.00/6.00•C.椭圆抛物面•D.双叶双曲面正确答案:B你选对了得分/总分得分/总分•A.•B.5.00/5.00正确答案:B你选对了1单选(6分)得分/总分•A.3•B.2•C.1•D.6.00/6.00正确答案:D你选对了2单选(6分)得分/总分•A.•B.6.00/6.00•C.•D.正确答案:B你选对了3单选(6分)得分/总分•A.6.00/6.00•B.•C.•D.正确答案:A你选对了单选(6分)得分/总分•A.既非充分条件也非必要条件•B.充分必要条件•C.充分条件但非必要条件•D.必要条件但非充分条件6.00/6.00正确答案:D你选对了2单选(6分)得分/总分•A.•B.•C.•D.0.00/6.00正确答案:B你错选为D3单选(6分)得分/总分•A.等于1•B.等于06.00/6.00•C.•D.不存在正确答案:B你选对了4单选(6分)得分/总分•A.•B.•C.6.00/6.00•D.正确答案:C你选对了5单选(6分)得分/总分•A.•B.6.00/6.00•C.•D.正确答案:B你选对了6判断(5分)得分/总分•A.•B.5.00/5.00正确答案:B你选对了1单选(6分)得分/总分•A.6.00/6.00•B.•C.•D.正确答案:A你选对了2单选(6分)得分/总分•A.•B.•C.•D.6.00/6.00正确答案:D你选对了3单选(6分)得分/总分•A.•B.6.00/6.00•C.•D.正确答案:B你选对了4单选(6分)得分/总分•A.•B.•C.•D.6.00/6.00正确答案:D你选对了5单选(6分)得分/总分•A.6.00/6.00•B.•C.•D.正确答案:A你选对了6判断(5分)垂直于曲面上切平面的向量称为曲面的切平面的法向量。
高等数学(二)05062B一、填空题(每题4分)(1)微分方程)1()1(322y x y +-='的通解____________(2)直线⎩⎨⎧=-+=-+212z y x z y x 的方向向量 (3)设),(y x z z =是由0=-xyz e z 所确定的函数,则x z ∂∂= (4)过原点P (1,2,3)且与原点与P 的连线垂直的平面方程为(5)改变积分次序⎰⎰--21222),(x x x dy y x f dx = (6)∑∞=-+1)2)1(1(n n nn 是 (收敛、发散)级数 (7)∑∞=-122)1(n n nn x 的收敛半径R= 收敛域 二、计算题(8)(10分)D xydxdy D,⎰⎰是有直线0,2,=-==y x y x y 所围成的闭区域(9)(6分)判别级数∑∞=⋅1!5n n nn n 的收敛性(10)(10分)求内接于半径为a 的球且有最大体积的长方体(11)(10分)求曲面2132222=++z y x 的平行于平面064=++z y x 的切平面方程(12)(10分)把2)4(1)(x x f -=展开成x 的幂级数,并求出收敛区间.(13)(8分)求微分方程xy x y 2sin tan '=⋅+的通解。
(14)(10分)设函数)(x φ连续,且满足⎰-+=x dt t x t x x 02)()()(φφ,求)(x φ(15)(8分)求由2,2+==x y x y 围成图形的面积,以及此图形绕x 轴旋转一周所得立体的体积高等数学(二)05062B 解答及评分标准一、填空题(每题4分)(1)])1tan[(3C x y +-= (2){}1,1,0 (3)xye yz z - (4)1432=++z y x (5)⎰⎰-+-101122),(y y dx y xf dy (6)发散 (7)2;)2,2(-二、计算题(8)解:{}y x y y y x D -≤≤≤≤=2,10),(……………….2分 ⎰⎰⎰⎰-=y y D xydx dy xydxdy 210……………….6分⎰⎰+-=⋅=-1022102)244(|2dy y y x y dy y y …….8分 31321023=⎥⎦⎤⎢⎣⎡+-=y y ……………10分 (9)解:!5)!1(5)1(lim lim 111n n n n u u n nn n n n n n ⋅++=++∞→+∞→……………………3分 155)11(lim <=+=∞→e n nn ………………………………..4分 故原级数收敛…………………………………….6分(10)解: 建立空间直角坐标系,原点在球心设在第一卦限的长方体的顶点为),,(z y x则xyz V 8= 且满足2222a z y x =++……………..3分)(82222a z y x xyz L -+++=λ……………………5分 ⎪⎪⎩⎪⎪⎨⎧=++=+==+==+=)4()3(028)2(028)1(0282222a z y x z xy L y xz L x yz L zy x λλλ由)3)(2)(1(得z y x == 由)4(得a z y x 33===……8分当长方体为正方体且边长为a 332时体积最大……………10分 (11)解:设切点),,(000z y x ,则有 {}0006,4,2z y x n =………………2分 有条件得:664412000z y x ==,即0002z y x ==及2132202020=++z y x ……4分 解得:2,1000±==±=z y x …………………………………………………6分 曲面2132222=++z y x 的平行于平面064=++z y x 的切平面方程为: 2164±=++z y x ……………………………………………………10分(12)解:14)4(4141141410<⋅=-⋅=-∑∞=x x x x n n …………5分 两边求导2)4(1x -= 14)4(4112<⋅-∞=∑x x n n n ………………10分 (13)解:x x Q x x P 2sin )(,tan )(==])([)()(C dx e x Q e y dx x P dx x P +⎰⎰=⎰-…………………………4分]2sin [tan tan C dx xe e xdx xdx +⎰⎰=⎰-)cos 2(cos c x x +-=……………………………………………………8分(14)解:两边求导数,得⎰-=xdt t x x 0)(2)('φφ 及 )(2)(''x x φφ-=(1)0)( )( "=+x x φφ的特征方程为01 2=+ri r i r -==21,,则:x c x c y sin cos 21+=………………………………4分(2)观察知2)(*=x φ …………………………………………6分(3)通解为:2sin cos )(21++=x c x c x φ…………………………8分 0)0(=φ,0)0('=φ 得:0,221=-=c c即:2cos 2)(+-=x x φ……………………………………………10分(15)解:)4,2(),1,1(22-⇒⎩⎨⎧+==x y x y{}2,21|),(2+≤≤≤≤-=x y x x y x D …………2分dx x x S )2(212⎰--+=………………………………3分 =29)31221(2132=-+-x x x ………………………4分 dx x dx x V ⎰⎰---+=214212)2(ππ…………………………6分 =ππ572]51)2(31[2153=-+-x x ………………………………8分版权所有,翻版必究、本事。
《高等数学A 单元测验二》试卷
2010.11.16
一、 填空题(每空3分,共36分)
1. 对于函数ln y x =,在区间[1,]e 上满足拉格朗日定理条
件的ξ是1e -。
2. 若1
x y e -=的水平渐近线是1y =,铅直渐近线是0x =。
3. 函数1
()1f x x
=
+的n 阶麦克劳林展式为
2111(1)()n n n x x x R x ---+-+-+ 。
4. 双曲线1xy =在点(1,1)P。
5. 已知
cos x
x
是()f x 的一个原函数,那么()x f x dx '=⎰2cos sin x
x C x
--+。
6. 设
sin arctan(cos )()
x dx x C f x =+⎰,则
()f x dx =⎰3s i n
2
2
4
x x C --
+。
7. 若
34()f x dx x C '=+⎰
,则()f x =22x C +。
8. a =2时,函数1()sin sin 33f x a x x =+在点3
x π
=有极大
9.
2sec tan x dx x
=⎰ln |tan |x C +。
10.
2lnsin sin x dx x
=⎰cot (lnsin 1)x x x C -⋅+-+。
二、 计算下列各题(每小题6分,共36分)
1. 0tan lim sin x x x
x x
→--;
解:0tan lim
sin x x x
x x →--22200sec 1tan lim lim 21cos 2
x x x x x
x →→-===- 2. 2
lim x x xe -→∞
;
解:2
lim x x xe -→∞
2
2
1lim
lim
02x x x x x e
xe
→∞
→∞
===
3. 1
lim tan ()4n n n
π→∞+;
解: 设1()tan ()4x f x x π=+,则1
ln ()ln tan().4f x x x
π=+
1ln tan()
14lim ln ()lim ln tan()lim
14x x x x f x x x x
ππ→∞→∞→∞
+=+
=
2221
11sec ()()4tan()4lim 21
x x x x x
ππ→∞+⋅-+==-
所以2lim ()lim ()x n f x f n e →∞
→∞
==
4.
cos(ln )x dx ⎰;
解: cos(ln )ln cos t
x dx x t t e dt =⋅=⎰⎰
cos t
tde ⎰
cos cos cos sin t t t t te e d t te e tdt =-=+⎰⎰cos sin cos sin cos t t t t t te tde te te te dt
=+=+-⎰⎰cos sin 2t t t e C +=
+cos(ln )sin(ln )
2
x x x C +=+ 5.
;
t =,则6
1x t =-
33
55221166(1)1t t t dt dt t t t ++==++⎰⎰2
22
1116arctan 6(1)21t t d t t +-=+⨯++⎰
226arctan 3(1)3ln(1)t t t C =++-++
6arctan 3(13ln(1C =++-++。
6.
3cos sin .cos sin x x
dx x x -+⎰; 解:3cos sin .cos sin x x dx x x -+⎰cos sin 2(cos sin )cos sin cos sin x x x x dx dx x x x x
'++=+++⎰⎰
2ln |cos sin |x x x C =+++
三、 (7分)证明不等式2
ln(1)(0)2x x x x +>-
>。
证明:设2
()ln(1)(0)2x f x x x x =+-+
>,则
2
1()1011x f x x x x
'=-+=>++
所以()f x 单调增,故()(0)0f x f >=。
即 2
ln(1)(0)2
x x x x +>-
>。
四、 (7分)设在[]b a ,上()0f x ''>,试证a
x a f x f x g --=
)
()()(
在()b a ,内单调增加。
证明:
2
()()()()
()()f x x a f x f a g x x a '--+'=
-
2
()()()()
(,)()f x x a f x a a x x a ξξ''---=
∈-, 2
[()()]()
(,)()
f x f x a a x x a ξξ''--=
∈-, 由()0f x ''>知()f x '单调增,所以()()f x f ξ''>。
于是()0g x '>,即()g x 单增。
五、 (7分)设()f x 在[0,1]连续,在(0,1)可导,且(1)0f =,
求证存在(0,1)ξ∈,使()()0nf f ξξξ'+=。
证明:设()()n g x x f x =,则(0)(1)0g g ==。
函数显然满足罗尔定理的条件,所以存在(0,1)ξ∈,使()0g ξ'=,即
1()()0n n n f f ξξξξ-'+=,故()()0nf f ξξξ'+=。
六、 (7分)设)(x f 的原函数0)(>x F 且0)0(=F ,当0≥x 时
有x x F x f 2sin )()(2
=,求)(x f 。
解:由题意()()F x f x '=,于是2
()()sin 2F x F x x '=,所以
2
()()sin
2F x F x dx xdx '=⎰⎰
2()1cos 422F x x dx -=⎰sin 428
x x
C =-+ 又知0)0(=F ,得0C =,所以,
()F x ==,故
()()f x F x ''===。