LDO的基本原理
- 格式:doc
- 大小:129.50 KB
- 文档页数:7
LDO基本原理:LDO的低压差线性稳压器的结构主要包括启动电路、恒流源偏置单元、使能电路、调整元件、基准源、误差放大器、反馈电阻网络,保护电路等.基本工作原理是这样的:系统加电,如果使能脚处于高电平时,电路开始启动,恒流源电路给整个电路提供偏置,基准源电压快速建立,输出随着输入不断上升,当输出即将达到规定值时,由反馈网络得到的输出反馈电压也接近于基准电压值,此时误差放大器将输出反馈电压和基准电压之间的误差小信号进行放大,再经调整管放大到输出,从而形成负反馈,保证了输出电压稳定在规定值上;同理如果输入电压变化或输出电流变化,这个闭环回路将使输出电压保持不变,即:Vout=(R1+R2)/R2*Vref噪声会改变振荡器的相频和幅频特性,同时振荡器环路也会进一步放大噪声,可能对载波产生调制。
LDO输出噪声受其内部设计和外部旁路、补偿电路的影响。
如图是线性稳压器的简单框图。
导致LDO输出噪声的主要来源是基准。
电源抑制比PSRR:Power supply ripple rejection ratio (PSRR)是反应LDO输出对输入纹波抑制的一个交流参数,输出和输入的频率是一样的。
和噪声(Nosie)不同,噪声一般为在10Hz至100kHz频率范围内一定输入电压下其输出噪声电压的均方值,PSRR的单位是dB,一般PSRR>=60dB。
PSRR=20*lg(△Vin/△Vout)LDO需要增加外部输入和输出电容器。
利用较低ESR的大电容器一般可以全面提高电源抑制比(PSRR)、噪声以及瞬态性能。
陶瓷电容器通常是首选,因为它们价格低而且故障模式是断路,相比之下钽电容器比较昂贵且其故障模式是短路。
输出电容器的等效串联电阻(ESR)会影响其稳定性,陶瓷电容器具有较低的ESR,大概为10m Ω量级采用陶瓷电容时,建议使用X5R和X7R电介质材料,这是因为它们具有较好的温度稳定性。
下图为X5R的ESR和频率曲线:如图为输出电容对PSRR的影响。
LDO原理与应用1.工作原理LDO是阻性电源产品,通过内部MOSFET的开关,只能进行降压输出,输出电压一定比输入电压要低。
如图LDO基本电路,主要由MOSFET、反馈分压电阻Rs和Rf、误差比较放大器组成。
通过此误差放大器向输出晶体管提供必要的门极电压,控制MOS管的通断。
基本工作原理是这样的:系统加电,如果使能脚处于高电平时,电路开始启动,恒流源电路给整个电路提供偏置,基准源电压快速建立,输出随着输入不断上升,当输出即将达到规定值时,由反馈网络得到的输出反馈电压也接近于基准电压值,此时误差放大器将输出反馈电压和基准电压之间的误差小信号进行放大,再经调整管放大到输出,从而形成负反馈,保证了输出电压稳定在规定值上;同理如果输入电压变化或输出电流变化,这个闭环回路将使输出电压保持不变,即:V OUT =(Rf+Rs)/Rs * Vref产生压差的主要原因是,在调整元件中有一个P沟道的MOS管。
当LDO工作时MOS管道通等效为一个电阻,RDS(ON),V dropout= V IN - V OUT = R DS(ON) x I OUTR.由此得出低压差线性稳压器(LDO)的一个重要特性,在输入电压大于最小工作电压和输出电压其标称值范围内,负载电流为零时,输出电压随输入电压的变化而变化,这就是LDO的跟随特性,待输出电压达到其标称值后不随输入而变化,从而达到稳压的目的,这就是LDO的稳压特性。
具体负反馈实现过程:取样电压加在比较器A的同相输入端,与加在反相输入端的基准电压Uref相比较,两者的差值经放大器A放大后,控制MOSFET的压降,从而稳定输出电压。
当输出电压Uout降低时,基准电压与取样电压的差值增加,比较放大器的输出就控制MOSFET的导通程度变大,所以MOS管上压降减小,从而使输出电压升高。
相反,若输出电压Uout超过所需要的设定值,比较放大器的输出控制MOSFET的导通程度变小,MOS管上压降减大,从而使输出电压降低。
什么是LDO?什么是 LDO? LDO 是一种线性稳压器。
线性稳压器使用在其线性区域内运行的晶体管或 FET,从应用的输入电压中减去超额的电压,产生经过调节的输出电压。
所谓压降电压,是指稳压器将输出电压维持在其额定值上下 100mV 之内所需的输入电压与输出电压差额的最小值。
正输出电压的 LDO(低压降)稳压器通常使用功率晶体管(也称为传递设备)作为 PNP.这种晶体管允许饱和,所以稳压器可以有一个非常低的压降电压,通常为 200mV 左右;与之相比,使用 NPN 复合电源晶体管的传统线性稳压器的压降为 2V 左右.负输出 LDO 使用 NPN 作为它的传递设备,其运行模式与正输出 LDO 的 PNP设备类似。
摘要:本文论述了低压差线性稳压器(LDO)的基本原理和主要参数,并介绍LDO的典型应用和国内发展概况。
引言便携电子设备不管是由交流市电经过整流(或交流适配器)后供电,还是由蓄电池组供电,工作过程中,电源电压都将在很大范围内变化。
比如单体锂离子电池充足电时的电压为4.2V,放完电后的电压为2。
3V,变化范围很大。
各种整流器的输出电压不仅受市电电压变化的影响,还受负载变化的影响。
为了保证供电电压稳定不变,几乎所有的电子设备都采用稳压器供电.小型精密电子设备还要求电源非常干净(无纹波、无噪声),以免影响电子设备正常工作.为了满足精密电子设备的要求,应在电源的输入端加入线性稳压器,以保证电源电压恒定和实现有源噪声滤波[1]。
一.LDO的基本原理低压差线性稳压器(LDO)的基本电路如图1—1所示,该电路由串联调整管VT、取样电阻R1和R2、比较放大器A组成。
取样电压加在比较器A的同相输入端,与加在反相输入端的基准电压Uref相比较,两者的差值经放大器A放大后,控制串联调整管的压降,从而稳定输出电压。
当输出电压Uout降低时,基准电压与取样电压的差值增加,比较放大器输出的驱动电流增加,串联调整管压降减小,从而使输出电压升高.相反,若输出电压Uout超过所需要的设定值,比较放大器输出的前驱动电流减小,从而使输出电压降低。
ldo工作原理
LDO(Low Drop-Out)是一种电压稳压器,工作原理如下:
1. 电压差:LDO通过一个参考电压和输入电源之间的电压差
来工作。
输入电源电压要高于参考电压。
2. 参考电压:LDO内部包含一个参考电压源,通常为基准二
极管或参考电流源。
参考电压源的输出电压在很大程度上稳定,可提供稳定的参考电压给控制电路使用。
3. 错误放大器:LDO内部还包含一个错误放大器,用于比较
参考电压和反馈电压。
反馈电压来自于输出端的电阻分压。
4. 控制电路:错误放大器将参考电压和反馈电压进行比较,并产生一个误差信号,通过控制电路调整LDO的输出。
控制电
路通常包括一个误差放大器、一个误差电流源和一个输出驱动器。
5. 调整元件:LDO的调整元件可根据误差信号进行调整,以
达到输出电压的稳定。
6. 输出电压:最终,LDO将输入电压通过调整元件和控制电
路转换为稳定的输出电压供给负载使用。
需要注意的是,LDO的输入电压和输出电流之间有一定的电
压差损耗,称为“Drop-Out Voltage”。
在LDO额定电流范围内,Drop-Out Voltage越小,LDO的性能越好。
ldo内部原理
LDO(Low Dropout Regulator)是一种低压差线性稳压器,它通过调整内部晶体管的阻抗来稳定输出电压。
以下是LDO内部原理的简要介绍:
输入电压:LDO的输入电压是经过滤波处理的,以确保其稳定性。
晶体管:LDO内部包含一个或多个晶体管,这些晶体管的阻抗会根据输入电压的变化而调整。
反馈电路:LDO的输出电压通过反馈电路与参考电压进行比较,以调整晶体管的阻抗,从而稳定输出电压。
滤波器:LDO的输出端通常包含一个滤波器,以消除输出电压中的噪声和纹波。
当输入电压发生变化时,LDO内部的晶体管会根据需要调整其阻抗,以保持输出电压的稳定。
同时,反馈电路会不断监测输出电压的变化,并调整晶体管的阻抗,以确保输出电压的稳定性。
此外,LDO还具有一些其他特点,如低功耗、高精度、高可靠性等。
例如,低功耗使得LDO在电池供电的应用中具有较高的优势;高精度使得LDO能够提供稳定的输出电压;高可靠性使得LDO能够在恶劣的工作环境下正常工作。
总之,LDO是一种常用的线性稳压器,其内部原理是通过对晶体管阻抗的调整和反馈电路的监控来稳定输出电压。
LDO的原理和应用1. 什么是LDO?LDO(Low Dropout)是一种低压差稳压器件,用于将高电压转换为较低电压。
它能够在输入电压与输出电压之间产生非常低的压降,并提供稳定的输出电压。
2. LDO的工作原理LDO的核心部分是差分放大器和功率晶体管。
差分放大器用于控制功率晶体管的导通和截断,通过调整功率晶体管的开启程度来控制输出电压的稳定性。
当输入电压高于输出电压时,差分放大器将关闭功率晶体管,以防止输出电压过高。
当输入电压接近输出电压时,差分放大器打开功率晶体管,以保持输出电压稳定。
3. LDO的优点•低压差: LDO具有非常低的压降,因此能够提供准确且稳定的输出电压。
•低噪音: LDO的设计使其能够提供较低的输出噪音水平,适用于对噪音敏感的应用。
•简单可靠: LDO是一种相对简单的稳压器件,具备较高的可靠性和稳定性。
•快速响应: LDO能够快速响应输入电压的变化,并迅速调整输出电压以保持稳定。
4. LDO的应用LDO在各种电子设备中广泛应用,以下是一些常见的应用场景:4.1 手机和平板电脑LDO在手机和平板电脑中用于稳定供电给各个部件,如处理器、存储器和无线通信模块。
其低噪音和快速响应特性使得手机和平板电脑能够提供高质量的信号处理和数据传输。
4.2 电源管理LDO用于电源管理系统,例如将高电压降至适合模拟和数字电路的工作电压。
其低压差和稳定性使用于各种应用,如笔记本电脑、服务器和工业自动化设备等。
4.3 汽车电子LDO在汽车电子系统中用于稳定供电给各个电子模块,如发动机控制单元(ECU)、信息娱乐系统和驾驶辅助系统。
其可靠性和稳定性使LDO成为在恶劣环境下可靠工作的理想选择。
4.4 照明和LED驱动LDO用于照明和LED驱动应用中,通过稳定的电压提供可靠的光照和控制。
其低噪音特性对于要求高质量光照的应用非常重要。
5. 总结LDO是一种常见且有广泛应用的稳压器件。
它具有低压差、低噪音、快速响应和可靠性等优点。
LDO的基本原理与测试LDO是低压差稳压器的英文缩写,全称为Low Dropout Voltage Regulator。
它是一种电源管理器件,用于将高压输入稳定为低压输出。
LDO的基本原理和测试方法如下:一、LDO的基本原理:1.参考电压源:产生稳定的参考电压,用于和输出电压进行比较,从而控制输出电压的稳定性。
2.误差放大器:比较参考电压和输出电压,并将比较结果反馈给功率晶体管的控制端,以调整输出电压。
当输出电压下降时,误差放大器会发出信号,使功率晶体管提供更多电流来提高输出电压;当输出电压上升时,误差放大器会减小控制信号,使功率晶体管减小输出电流,以维持稳定的输出电压。
3.功率晶体管:根据误差放大器的控制信号,调节输出电流。
功率晶体管与误差放大器形成一个负反馈控制回路,通过提供或减小输出电流,使输出电压稳定在设定的值。
二、LDO的测试:LDO的测试主要包括静态参数测试和动态响应测试。
1.静态参数测试:(1)零负载测试:在无负载的情况下测量LDO的输出电压和电流。
这样可以得到静态的输出电压和输出电流参数。
(2)输出电压调整测试:在满载情况下,通过改变LDO的输入电压和输出电流,观察LDO的输出电压的变化,并记录输出电流的最大和最小值。
(3)输出噪声测试:在负载条件下,测量LDO输出电压的噪声水平。
可以使用频谱分析仪来进行测试,得到噪声功率谱密度。
2.动态响应测试:(1)输入抑制测试:在负载条件下,改变LDO的输入电压的幅度和频率,观察LDO输出电压的变化。
这样可以测试LDO对输入电源纹波的抑制能力。
(2)负载调整测试:在静态负载状态下,改变LDO的负载电流,观察LDO输出电压的变化。
这样可以测试LDO对负载变化的响应速度。
(3)短路保护测试:通过短接输出端口,观察LDO的工作状态,测试其短路保护功能是否正常。
在LDO测试中,需要使用示波器、多用表、频谱分析仪等测试设备。
测试时需要注意输入电压的稳定性、负载电流的准确设置和测试环境的干扰等因素。
介绍LDO的工作原理LDO是“线性低压差稳压器(Linear Low Drop-Out regulator)”的缩写。
它是一种常见的稳压器,用于将不稳定的输入电压转换为稳定的输出电压,以供给各种电子设备和电路使用。
LDO的工作原理如下:当输入电压超过稳压器的正常工作要求时,LDO器件的内部功率晶体管将打开,通过有源调节控制电路将调整过的电压输出到负载电路上。
而当输入电压低于稳压器的正常工作要求时,内部功率晶体管关闭,由控制电路切断输出,以保护稳压器和负载电路。
LDO主要由以下几个组成部分构成:1. 电压参考源(Voltage Reference):它是LDO的核心部件,为稳压器提供一个稳定的基准电压。
通常使用基准电流源、电阻分压器、电压比较器等组成来实现。
2. 误差放大器(Error Amplifier):它与电压参考源相连,用于通过比较输出电压与基准电压之间的差异来产生误差信号。
误差放大器将误差信号放大,并通过反馈回路调节功率晶体管的导通。
3. 反馈回路(Feedback Loop):它由稳压器的输出到误差放大器之间的电阻网络组成,用于将输出电压与参考电压比较,以产生误差信号。
4. 输出级(Output Stage):它通过功率晶体管将调节过的电压输出到负载电路上。
功率晶体管的导通和截止通过误差放大器的调节来实现。
LDO的主要工作过程如下:1.当输入电压高于稳压器所需的输出电压时,误差放大器将产生一个正的误差信号。
此时,反馈回路通过将误差信号反馈给误差放大器,调节功率晶体管的导通,使其降低输出电压,直到误差信号减少至零。
2.当输入电压低于稳压器所需的输出电压时,误差放大器将产生一个负的误差信号。
此时,反馈回路通过将误差信号反馈给误差放大器,将功率晶体管关闭,以避免输出电压过低。
LDO的优势和特点包括以下几点:1.低压差:LDO可以在输入电压较低的情况下仍能提供稳定的输出电压,因此可以满足低压差、高精度的稳压要求。
LDO工作原理详解LDO(Low Drop Out)是一种线性稳压器件,主要用于在大部分电子设备中提供稳定可靠的电源电压。
它的工作原理是通过在输入电压和输出电压之间产生一个可控的压差来实现稳压功能。
1. 差动放大器(Error Amplifier):差动放大器的作用是将输入电压与参考电压之间的差值转化为一个误差电压信号。
这个误差电压信号被送入误差放大器进行放大和处理。
如果输入电压高于参考电压,误差电压信号将变为正值;如果输入电压低于参考电压,误差电压信号则变为负值。
2. 误差放大器(Error Amplifier):误差放大器接收差动放大器输出的误差电压信号,并对其进行放大和处理,产生一个误差电流信号。
该误差电流信号由一个可调电阻接收,并通过一个电流镜电路将其放大。
最后,放大后的误差电流信号被送入输出级别移位器。
3. 输出级别移位器(Output Level Shifter):输出级别移位器的主要作用是将误差电流信号转化为一个压差信号。
这个压差信号的变化范围与误差电流信号的变化范围相同。
输出级别移位器通过改变输出节点的电流负载来实现。
4. 功率放大器(Power Amplifier):功率放大器接收输出级别移位器输出的压差信号,并将其放大为一个足够大的电流信号。
这个电流信号最终通过一个可调电阻来控制输出电压的大小。
在LDO的工作原理中,反馈回路是至关重要的。
反馈回路通过从输出端测量反馈电压并与参考电压进行比较,来控制电压调节器的输出,以实现稳压功能。
当输入电压变化时,反馈回路会自动调节功率放大器的输出来保持输出电压的稳定性。
另外,LDO还有一些辅助电路,用于保证其正常工作。
例如,过热保护电路可以检测芯片温度,当温度过高时会自动切断输出,以保护芯片免受损坏。
总结起来,LDO工作原理可以简单概括为:通过将输入电压与参考电压相比较,并产生一个误差电流信号,然后通过级联的误差放大器、输出级别移位器和功率放大器来调节输出电压,以实现稳压功能。
ldo的基本原理LDO的基本原理LDO,即低压差线性稳压器(Low Drop Out Linear Regulator)是一种常见的电压稳压器件。
它的基本原理是通过降低输入输出之间的电压差,实现电压稳定输出。
LDO的工作原理相对简单,但它在电子设备中扮演着重要的角色。
一、基本原理LDO的基本原理是通过控制管内功耗来实现电压稳定输出。
简单来说,LDO中的输出端被连接到负载电阻上,输入端连接到电源,通过内部的稳压电路,将输入电压调整为稳定的输出电压,并将稳定的电压提供给负载电阻。
二、内部稳压电路LDO内部的稳压电路通常由参考电压源、误差放大器、功率晶体管和反馈网络组成。
参考电压源提供一个稳定的参考电压,误差放大器将输出电压与参考电压进行比较,产生误差信号。
功率晶体管根据误差信号的大小调整管内的电流,从而控制输出端的电压。
反馈网络用于将输出电压与误差放大器进行连接,形成闭环控制。
三、电压差和负载能力LDO的一个重要指标是电压差,即输入电压和输出电压之间的差值。
电压差越小,LDO的效果越好,因为输出电压更稳定。
一般来说,LDO的电压差在几百毫伏至数伏之间。
另一个重要指标是负载能力,即LDO能够提供的最大负载电流。
负载能力越大,LDO可以连接的负载越重,从而适用范围更广。
四、优点和应用LDO具有以下优点:1. 稳定性高:LDO通过负反馈控制输出电压,使其稳定性高,适用于对电压要求严格的应用场景。
2. 噪声低:LDO内部的稳压电路可以降低输入输出之间的噪声传导,提供更干净的电源。
3. 快速响应:LDO的输出电压变化能够快速响应负载的需求变化,提供稳定的电压输出。
4. 低功耗:LDO内部功耗较低,能够提供高效能力。
基于以上优点,LDO广泛应用于各种电子设备中,如移动通信设备、计算机和工业控制系统等。
在这些应用中,LDO可以提供稳定的电源,确保设备正常运行。
五、注意事项在使用LDO时,需要注意以下几点:1. 输入电压不能超过LDO的额定电压,否则可能导致稳压电路无法正常工作。
一.LDO的基本原理
低压差线性稳压器(LDO)的基本电路如图所示,该电路由串联调整管VT、取样电阻R1和R2、比较放大器A组成。
取样电压加在比较器A的同相输入端,与加在反相输入端的基准电压Uref相比较,两者的差值经放大器A放大后,控制串联调整管的压降,从而稳定输出电压。
当输出电压Uout降低时,基准电压与取样电压的差值增加,比较放大器输出的驱动电流增加,串联调整管压降减小,从而使输出电压升高。
相反,若输出电压Uout超过所需要的设定值,比较放大器输出的前驱动电流减小,从而使输出电压降低。
供电过程中,输出电压校正连续进行,调整时间只受比较放大器和输出晶体管回路反应速度的限制。
应当说明,实际的线性稳压器还应当具有许多其它的功能,比如负载短路保护、过压关断、过热关断、反接保护等,而且串联调整管也可以采用MOSFET。
二.低压差线性稳压器的主要参数
1.输出电压(Output Voltage)
输出电压是低压差线性稳压器最重要的参数,也是电子设备设计者选用稳压器时首先应考虑的参数。
低压差线性稳压器有固定输出电压和可调输出电压两种类型。
固定输出电压稳压器使用比较方便,而且由于输出电压是经过厂家精密调整的,所以稳压器精度很高。
但是其设定的输出电压数值均为常用电压值,不可能满足所有的应用要求,但是外接元件数值的变化将影响稳定精度。
LDO基本原理、参数及典型应用
一.LDO的基本原理
低压差线性稳压器(LDO)的基本电路如图所示,该电路由串联调整管VT、取样电阻R1和R2、比较放大器A组成。
取样电压加在比较器A的同相输入端,与加在反相输入端的基准电压Uref相比较,两者的差值经放大器A 放大后,控制串联调整管的压降,从而稳定输出电压。
当输出电压Uout降低时,基准电压与取样电压的差值增加,比较放大器输出的驱动电流增加,串联调整管压降减小,从而使输出电压升高。
相反,若输出电压Uout超过所需要的设定值,比较放大器输出的前驱动电流减小,从而使输出电压降低。
供电过程中,输出电压校正连续进行,调整时间只受比较放大器和输出晶体管回路反应速度的限制。
应当说明,实际的线性稳压器还应当具有许多其它的功能,比如负载短路保护、过压关断、过热关断、反接保护等,而且串联调整管也可以采用MOSFET。
二.低压差线性稳压器的主要参数
1.输出电压(Output Voltage)
输出电压是低压差线性稳压器最重要的参数,也是电子设备设计者选用稳压器时首先应考虑的参数。
低压差线性稳压器有固定输出电压和可调输出电压两种类型。
固定输出电压稳压器使用比较方便,而且由于输出电压是经过厂家精密调整的,所以稳压器精度很高。
但是其设定的输出电压数值均为常用电压值,不可能满足所有的应用要求,但是外接元件数值的变化将影响稳定精度。
2.最大输出电流(Maximum Output Current)
用电设备的功率不同,要求稳压器输出的最大电流也不相同。
通常,输出电流越大的稳压器成本越高。
为了降低成本,在多只稳压器组成的供电系统中,应根据各部分所需的电流值选择适当的稳压器。
3.输入输出电压差(Dropout Voltage)
输入输出电压差是低压差线性稳压器最重要的参数。
在保证输出电压稳定的条件下,该电压压差越低,线性稳压器的性能就越好。
比如,5.0V的低压差线性稳压器,只要输入5.5V电压,就能使输出电压稳定在5.0V。
4.接地电流(Ground Pin Current)
接地电路IGND是指串联调整管输出电流为零时,输入电源提供的稳压器工作电流。
该电流有时也称为静态电流,但是采用PNP晶体管作串联调整管元件时,这种习惯叫法是不正确的。
通常较理想的低压差稳压器的接地电流很小。
5.负载调整率(Load Regulation)
负载调整率可以通过图所示来定义,LDO的负载调整率越小,说明LDO抑制负载干扰的能力越强。
式中
△Vload—负载调整率
Imax—LDO最大输出电流
Vt—输出电流为Imax时,LDO的输出电压
Vo—输出电流为0.1mA时,LDO的输出电压
△V—负载电流分别为0.1mA和Imax时的输出电压之差
6.线性调整率(Line Regulation)
线性调整率可以通过图所示来定义,LDO的线性调整率越小,输入电压变化对输出电压影响越小,LDO的性能越好。
式中
△Vline—LDO线性调整率
Vo—LDO名义输出电压
Vmax—LDO最大输入电压
△V—LDO输入Vo到Vmax'输出电压最大值和最小值之差
7.电源抑制比(PSSR)
LDO的输入源往往许多干扰信号存在。
PSRR反映了LDO对于这些干扰信号的抑制能力。
三.LDO的典型应用
低压差线性稳压器的典型应用如图3-1所示。
图3-1(a)所示电路是一种最常见的AC/DC电源,交流电源电压经变压器后,变换成所需要的电压,该电压经整流后变为直流电压。
在该电路中,低压差线性稳压器的作用是:在交流电源电压或负载变化时稳定输出电压,抑制纹波电压,消除电源产生的交流噪声。
各种蓄电池的工作电压都在一定范围内变化。
为了保证蓄电池组输出恒定电压,通常都应当在电池组输出端接入低压差线性稳压器,如图3-1(b)所示。
低压差线性稳压器的功率较低,因此可以延长蓄电池的使用寿命。
同时,由于低压差线性稳压器的输出电压与输入电压接近,因此在蓄电池接近放电完毕时,仍可保证输出电压稳定。
众所周知,开关性稳压电源的效率很高,但输出纹波电压较高,噪声较大,电压调整率等性能也较差,特别是对模拟电路供电时,将产生较大的影响。
在开关性稳压器输出端接入低压差线性稳压器,如图2-3(c)所示,就可以实现有源滤波,而且也可大大提高输出电压的稳压精度,同时电源系统的效率也不会明显降低。
在某些应用中,比如无线电通信设备通常只有一足电池供电,但各部分电路常常采用互相隔离的不同电压,因此必须由多只稳压器供电。
为了节省共电池的电量,通常设备不工作时,都希望低压差线性稳压器工作于睡眠状态。
为此,要求线性稳压器具有使能控制端。
有单组蓄电池供电的多路输出且具有通断控制功能的供电系统如图3-1(d)所示。