2020届江苏省苏州市吴江区高三上学期9月第一次月度质量调研数学试题(解析版)
- 格式:pdf
- 大小:417.67 KB
- 文档页数:18
数学试题2019.9 1.设集合M={﹣1,0,1},N={x|x2+x≤0},则M∩N=.2.复数z=(1﹣2i)(3+i),其中i为虚数单位,则|z|是.3.已知抛物线方程为y=4x2,则抛物线的焦点坐标为.4.函数f(x)的定义域为.5.函数的最小正周期为.6.已知θ是第三象限角,且,则sinθ+cosθ=.7.函数f(x)=log2(﹣x2+2)的值域为.8.已知(4x,2x),(1,),x∈R,若⊥,则.9.在平面直角坐标系中,曲线y=e x+2x+1在x=0处的切线方程是10.在△ABC中,已知C=120°,sin B=2sin A,且△ABC的面积为,则AB 的长为.11.已知函数f(x)是定义R在上的奇函数,当x>0时,f(x)=2x﹣3,则不等式f(x)≤﹣5的解集为.12.已知函数f(x)=sin(2x)(0≤x<π),且f(α)=f(β)(α≠β),则α+β=.13.已知△ABC的三个内角A,B,C的对边依次为a,b,c,外接圆半径为1,且满足,则△ABC面积的最大值为.14.已知函数,,>,若方程f(x)=a有四个不等的实根x1,x2,x3,x4,且满足x1<x2<x3<x4,则(x1+1)(x2+1)(x3+1)(x4+1)的取值范围为.二、解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.(本小题满分14分)已知向量(cosα,﹣1),(2,sinα),其中,,且.(1)求cos2α的值;(2)若sin(α﹣β),且,,求角β.16.(本小题满分14分)如图,在四棱锥P﹣ABCD中,AD∥BC,且AD=2BC,AD ⊥CD,PA=PD,M为棱AD的中点.(1)求证:CD∥平面PBM;(2)求证:平面PAD⊥平面PBM.17.(本小题满分14分)已知定义域为R的函数是奇函数.(1)求实数m的值;(2)解不等式f(x)+f(1+x)>0.18.(本小题满分16分)为解决城市的拥堵问题,某城市准备对现有的一条穿城公路MON进行分流,已知穿城公路MON自西向东到达城市中心点O后转向东北方向(即∠AOB).现准备修建一条城市高架道路L,L在MO上设一出入口A,在ON上设一出入口B.假设高架道路L在AB部分为直线段,且要求市中心O与AB的距离为10km.(1)求两站点A,B之间距离的最小值;(2)公路MO段上距离市中心O30km处有一古建筑群C,为保护古建筑群,设立一个以C为圆心,5km为半径的圆形保护区.则如何在古建筑群C和市中心O之间设计出入口A,才能使高架道路L及其延伸段不经过保护区(不包括临界状态)?19.(本小题满分16分)已知函数f(x)=xlnx﹣(k+1)x,k∈R.(1)若k=﹣1,求f(x)的最值;(2)若对于任意x∈[e,e3],都有f(x)<4lnx成立,求实数k的取值范围;(3)对于任意x∈[2,e2],都有f(x)>﹣2x﹣k成立,求整数k的最大值.20.(本小题满分16分)已知函数f(x)=(x﹣m)lnx(x>0),m>0.(1)当m=1时,求函数f(x)在x=1处的切线方程;(2)当x∈[1,e]时恒有f(x)≤0成立,求满足条件的m的范围;(3)当m=e时,令方程f(x)=t有两个不同的根x1,x2,且满足x1<x2,求证:x2﹣x1.1.由N中不等式变形得:x(x+1)≤0,解得:﹣1≤x≤0,即N=[﹣1,0],∵M={﹣1,0,1},∴M∩N={﹣1,0}.答案:{﹣1,0}.2.复数z=(1﹣2i)(3+i),i为虚数单位,则|z|=|(1﹣2i)|×|(3+i)|=5.答案:5.3.由题意,x2,故其焦点在y轴正半轴上,p.∴焦点坐标为,,答案,.4.由题意,>,解得1<x≤3,答案:(1,3].5.函数的最小正周期为:T3π.答案:3π.6.已知θ是第三象限角,且,所以sinθ<0,cosθ<0,则,解得,所以sinθ+cosθ.答案:.7.∵0<﹣x2+22,∴x=0时,f(x)最大,f(x)=f(0),最大值答案:(﹣∞,].8.∵,∴且2x>0,∴解得2x=1,∴,,,,∴,,∴.答案:2.9.∵y=e x+2x+1,∴f′(x)=e x+2,∴在x=0处的切线斜率k=f′(0)=1+2=3,∴f(0)=1+0+1=2,∴y=e x+2x+1在x=0处的切线方程为:y﹣2=3x,∴y=3x+2,答案:y=3x+2.10.∵sin B=2sin A,由正弦定理可得,b=2a,∴s△ABC2,∴a=2,b=4,由余弦定理可得,c2=a2+b2﹣2ab cos C28,∴c=2,答案:2.11.若x<0,则﹣x>0,∵当x>0时,f(x)=2x﹣3,∴当﹣x>0时,f(﹣x)=2﹣x﹣3,∵f(x)是定义在R上的奇函数,∴f(﹣x)=2﹣x﹣3=﹣f(x),则f(x)=﹣2﹣x+3,x<0,当x>0时,不等式f(x)≤﹣5等价为2x﹣3≤﹣5即2x≤﹣2,无解,不成立;当x<0时,不等式f(x)≤﹣5等价为﹣2﹣x+3≤﹣5即2﹣x≥8,得﹣x≥3,即x≤﹣3;当x=0时,f(0)=0,不等式f(x)≤﹣5不成立,综上,不等式的解为x≤﹣3.故不等式的解集为(﹣∞,﹣3].答案:(﹣∞,﹣3].12.解法一:∵函数f(x)=sin(2x)(0≤x<π),∴2x∈[,).∵f(α)=sin(2α)=f(β)=sin(2β)∈(0,),(α≠β),不妨假设α<β,则2α∈(,π),2β∈(2π,),∴α∈(,),β∈(π,),∴α∈(,),β∈(,),∴α+β∈(,).再根据 sin(2α)﹣sin(2β)=2cos sin2cos(α+β)sin(α﹣β)=0,∴cos(α+β)=0,∴,或,则α+β(舍去)或α+β,答案:.解法二:∵函数f(x)=sin(2x)(0≤x<π),∴2x∈[,).∵f(α)=f(β)(α≠β),则由正弦函数的图象的对称性可得2α2β2•,即α+β,答案:.13.由r=1,利用正弦定理可得:c=2r sin C=2sin C,b=2r sin B=2sin B,∵tan A,tan B,∴,∴sin A cos B=cos A(2sin C﹣sin B)=2sin C cos A﹣sin B cos A,即sin A cos B+cos A sin B=sin(A+B)=sin C=2sin C cos A,∵sin C≠0,∴cos A,即A,∴cos A,∴bc=b2+c2﹣a2=b2+c2﹣(2r sin A)2=b2+c2﹣3≥2bc﹣3,∴bc≤3(当且仅当b=c时,取等号),∴△ABC面积为S bc sin A3,则△ABC面积的最大值为:.答案:.14.不妨设,,>,由题意,g(x)=a有四个不等实根,设为t1,t2,t3,t4,且t1<t2<t3<t4,t1=x1+1,t2=x2+1,t3=x3+1,t4=x4+1,作函数g(x)的图象,由图可知,﹣1<t1<0<t2<1<t3<2<t4,且,,,∴,,∴,设,,函数,则<,∴函数h(m)在(0,1)上为减函数,∴h(m)∈(h(1),h(0))=(﹣4,0),即(x1+1)(x2+1)(x3+1)(x4+1)的取值范围为(﹣4,0).答案:(﹣4,0).15.(1)∵向量(cosα,﹣1),(2,sinα),其中,,且.∴2cosα﹣sinα=0,∴sin2α+cos2α=5cos2α=1,∴cos2α,∴cos2α=2cos2α﹣1.(2)∵cos2α,,,∴cosα,sinα,∵sin(α﹣β),且,,∴sinαcosβ﹣cosαsinβ,∴2cosβ﹣sinβ,∴sinβ=2cos,∴sin2β+cos2β=5cos2β﹣20,解得cosβ或cosβ(舍),∵,,∴β.16.证明:(1)因为AD∥BC,且AD=2BC,所以四边形BCDM为平行四边形,故CD∥BM,又CD⊄平面PBM,BM⊂平面PBM,所以CD∥平面PBM;(6分)(2)因为PA=PD,点M为棱AD的中点,所以PM⊥AD,又AD⊥CD,CD∥BM,故AD⊥BM,而PM∩BM=M,PM、BM⊂平面PBM,所以AD⊥平面PBM,又AD⊂平面PAD,所以平面PAD⊥平面PBM.(本小题满分14分)17.(1)由题意可得,f(﹣1)=﹣f(1),,∴m=2;(2)由(1)可得,f(x),设x1<x2,则f(x2)﹣f(x1)<0 ∴f(x)在R上单调递减∵f(x)+f(1+x)>0,∴f(x)>﹣f(1+x)=f(﹣1﹣x),∴1+x<﹣x,解可得,x<,综上可得,不等式的解集为(﹣∞,)18.(1)过点O作OE⊥AB于点E,则OE=10,设∠AOE=α,则<α<,所以∠BOEα,所以AB=AE+BE=10tanα+1+10tan(α);解得cosαcos(α)sin(2α);所以当α时,AB取得最小值为20(1);(2)以O为原点建立平面直角坐标系,如图所示;则圆C的方程为(x+30)2+y2=25,设直线AB的方程为y=kx+t,(k>0,t>0);∴10,∴5,解得t<20k或t>60k(舍),∴OA<20,又当AB∥ON时,OA→10,所以10<OA<20;综上知,当10<OA<20时,即设计出入口A离市中心O的距离在10km 到20km之间时,才能使高架道路L及其延伸段不经过保护区(不包括临界状态).19.(1)f(x)=xlnx,x>0.则f'(x)=1+lnx.当0<x<e﹣1时,f'(x)<0,f(x)单调递减;当x=e﹣1时,f'(x)=0;当x>e﹣1时,f'(x)>0,f(x)单调递增.所以当x=e﹣1时,f(x)取最小值f(e﹣1)=﹣e﹣1.(2)f(x)<4lnx⇔k+1>(1)lnx.令g(x)=(1)lnx,则g'(x).当x≥e时,x﹣4+4lnx≥e﹣4+4>0,所以g(x)在[e,e3]单调递增,g(x)=g(e3)=3.所以,所以k>31=2.(3)当x∈[2,e2]时,f(x)>﹣2x﹣k⇔k<.令h(x),h'(x).令u(x)=x﹣lnx﹣2,则u'(x)=1.因为x∈[2,e2],所以u'(x)≥1>0,u(x)单调递增,又u(3)=1﹣ln3<0,u(4)=2﹣2ln2>0,所以u(x)存在唯一的零点x0,且3<x0<4.当x∈[2,x0)时,u(x)<0,所以h'(x)<0,h(x)单调递减;当x=x0时,u(x)=0,h'(x)=0;当x∈(x0,e2]时,u(x)>0,所以h'(x)>0,h'(x)单调递增.所以k<,h(x)=h(x)x0∈(3,4),所以整数k的最大值为3.20.(1)解:由题意,当m=1时,f(x)=(x﹣1)lnx,x>0.f′(x)=lnx1,x>0.∵f′(1)=0,f(1)=0.∴函数f(x)在x=1处的切线方程为:y=0.(2)解:由题意,当x∈[1,e]时恒有f(x)≤0成立,即(x﹣m)lnx≤0对任意x∈[1,e]成立.∵当x∈[1,e]时,lnx≥0恒成立,∴x﹣m≤0对任意x∈[1,e]恒成立.∴m≥x max=e.∴m的取值范围为[e,+∞).(3)证明:由题意,当m=e时,f(x)=(x﹣e)lnx,x>0.f′(x)=lnx lnx+1,x>0.①令f′(x)=0,即lnx+1,根据下面图象:根据图,很明显交点的横坐标在1与e之间,设为x0,即f′(x)=0的解为x=x0,(1<x0<e),且lnx0+1.②令f′(x)<0,即lnx+1<,解得0<x<x0;③令f′(x)>0,即lnx+1>,解得x>x0.∴f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,在x=x0处取得极小值.∵f(1)=0,f(e)=0.∴根据题意,画图如下:由图,①设函数f(x)在x=1处的切线为l1,∵f′(1)=1﹣e.∴直线l1的直线方程:y=(1﹣e)(x﹣1),令y=t,解得x31;②设函数f(x)在x=e处的切线为l2,∵f′(e)=1.∴直线l2的直线方程:y=x﹣e,令y=t,解得x4=e+t.∴x2﹣x1≤x4﹣x3=e+t1=e﹣1.。
江苏省苏州市2020~2021学年第一学期高三期初调研试卷数学试题2020.9一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上)1.集合A ={}2230x x x --≤,B ={}1x x >,A B =A .(1,3)B .(1,3]C .[﹣1,+∞)D .(1,+∞)2.复数z 满足(1+i)z =2+3i ,则z 在复平面表示的点所在的象限为A .第一象限B .第二象限C .第三象限D .第四象限3.421(2)x x -的展开式中x 的系数为 A .﹣32 B .32 C .﹣8 D .84.已知随机变量ξ服从正态分布N(1,2σ),若P(ξ<4)=0.9,则P(﹣2<ξ<1)为A .0.2B .0.3C .0.4D .0.65.在△ABC 中,AB AC 2AD +=,AE 2DE 0+=,若EB AB AC x y =+,则A .y =2xB .y =﹣2xC .x =2yD .x =﹣2y6.大西洋鲑鱼每年都要逆流而上,游回到自己出生的淡水流域产卵,记鲑鱼的游速为v (单位:m /s ),鲑鱼的耗氧量的单位数为Q .科学研究发现v 与3Q log 100成正比,当v =1m /s 时,鲑的耗氧量的单位数为900.当v =2m /s 时,其耗氧量的单位数为A .1800B .2700C .7290D .81007.如图,正方体ABCD —A 1B 1C 1D 1的棱长为1,则下列四个命题不正确的是A .直线BC 与平面ABC 1D 1所成的角等于4πB .点C 到面ABC 1D 1的距离为2C .两条异面直线D 1C 和BC 1所成的角为4πD .三棱柱AA 1D 1—BB 1C 18.设a >0,b >0,且2a +b =1,则12a a a b ++ A .有最小值为4 B .有最小值为221+C .有最小值为143D .无最小值 二、 多项选择题(本大题共4小题,每小题5分, 共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上)9.A ,B 是不在平面α内的任意两点,则A .在α内存在直线与直线AB 异面 B .在α内存在直线与直线AB 相交C .存在过直线AB 的平面与α垂直D .在α内存在直线与直线AB 平行10.水车在古代是进行灌溉引水的工具,亦称“水转简车”,是一种以水流作动力,取水灌田的工具.据史料记载,水车发明于隋而盛于唐,距今已有1000多年的历史,是人类的一项古老的发明,也是人类利用自然和改造自然的象征,如图是一个半径为R 的水车,一个水斗从点A(3,33-)出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时120秒.经过t 秒后,水斗旋转到P 点,设点P 的坐标为(x ,y ),其纵坐标满足()R y f t == sin()t ωϕ+(t ≥0,ω>0,2πϕ<),则下列叙述正确的是 A .3πϕ=-B .当t ∈(0,60]时,函数()y f t =单调递增C .当t ∈(0,60]时,()f t 的最大值为33D .当t =100时,PA 6=11.把方程1x x y y +=表示的曲线作为函数()y f x =的图象,则下列结论正确的有A .()y f x =的图象不经过第三象限B .()f x 在R 上单调递增C .()y f x =的图象上的点到坐标原点的距离的最小值为1D .函数()()g x f x x =+不存在零点12.数列{}n a 为等比数列A .{}1n n a a ++为等比数列B .{}1n n a a +为等比数列C .{}221n n a a ++为等比数列D .{}n S 不为等比数列(n S 为数列{}n a 的前n 项和三、填空题(本大题共4小题, 每小题5分,共计20分.请把答案填写在答题卡相应位置上)13.已知tan 2α=,则cos(2)2πα+= .14.已知正方体棱长为2,以正方体的一个顶点为球心,以为半径作球面,则该球面被正方体表面所截得的所有的弧长和为 .15.直线40kx y ++=将圆C :2220x y y +-=分割成两段圆弧之比为3:1,则k = .16.已知各项均为正数的等比数列{}n a ,若4321228a a a a +--=,则872a a +的最小值为 .四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为S .现在以下三个条件:①(2c +b)cosA +acosB =0;②sin 2B +sin 2C ﹣sin 2A +sinBsinC =0;③a 2﹣b 2﹣c 2S .请从以上三个条件中选择一个填到下面问题中的横线上,并求解.已知向量m =(4sin x ,,n =(cos x ,sin 2x ),函数()23f x m n =⋅-,在△ABC。
2019-2020年高三9月调研考试数学试题含答案注意事项:1 .本试卷共3页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本 试卷满分为160分,考试时间为120分钟.2 •答题前,请务必将自己的姓名、学校写在答题卡上•试题的答案写在答 .题卡上对应题目的答案空格内.考试结束后,交回答题卡.一、填空题:本大题共 14小题,每小题5分,共70分•请把答案填写在答 题卡相应位置上. 1 .函数f(x)= cos 2x — sin 2x 的最小正周期为▲12. 已知复数z = 1 + i ,其中i 是虚数单位,则|z|=▲3.某学校高一、高二、高三年级的学生人数之比为 4: 3: 3,现用分层抽样的方法从该校高 4. 从甲、乙、丙、丁 4位同学中随机选出 2名代表参加学校会议,则甲被选中的概率是▲5. 已知向量 a = (2 , 1), b = (0, — 1).若(a + ?b)丄 a , 则实数X=▲.2 27. 已知双曲线 为一y 2= 1(a >0, b > 0)的渐近线方程为y =± 3x ,则该双曲线的离心率为 ▲&已知圆锥的侧面展开图是一个半径为2的半圆,则这个圆锥的高是 _______ ▲. 9.设f(x)=x 2— 3x + a .若函数f(x)在区间(1, 3)内有零点,贝U 实数a 的取值范围为▲10. 在△ ABC 中,角A , B , C 所对边的长分别为 a , b , c .已知a + 2c = 2b , sinB = 2sinC ,则 cosA =▲中三个年级的学生中抽取容量为 80的样本,则应从高一年级抽取11.若 f(x) = x.—x + 3a , x > 1,X V 1 是R 上的单调函数,则实数a 的取值范围为▲ 名学生.(第6题图)6. 右图是一个算法流程图,则输出S的值是▲12. 记数列{a n}的前n 项和为S n•若a i= 1, S n = 2佝 + a n)(n》2, n€ N*),则S n = ▲- 13. 在平面直角坐标系xOy中,已知圆C: x2+ y2—6x+ 5 = 0,点A, B在圆C上,且AB= 2 3, 则I"O A + 75B I的最大值是▲.x14. 已知函数f(x)= x—1 —(e—1)1 nx,其中e为自然对数的底,则满足f(e )< 0的x的取值范围为▲二、解答题:本大题共6小题,共计90分.请在答.题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15. (本小题满分14分)n已知函数f(x) = 2sin(2x+妨(0 <X 2力的图象过点(;,一2).(1)求$的值;(2)若◎=5, -n< a< 0,求sin(2 a— j的值.16. (本小题满分14分)如图,三棱柱ABC —A1B1C1中,M , N分别为AB, B1C1的中点.(1)求证:MN //平面AA1C1C ;(2)若CC1= CB1, CA = CB,平面CC1B1B丄平面ABC,求证:AB_平面CMN .(第16题图)17. (本小题满分14分)已知{a n}是等差数列,其前n项的和为S n, {b n}是等比数列,且a i = b i= 2, a4+ b4= 21, S4+ b4= 30.(1) 求数列{a n}和{b n}的通项公式;(2) 记C n= a n b n, n € N* ,求数列g}的前n项和.18. (本小题满分16分)2 2给定椭圆C: X2+ y z = 1(a>b>0),称圆C1:x2+ y2= a2+ b2为椭圆C的“伴随圆”.已知a b椭圆C的离心率为j,且经过点(0, 1).(1)求实数a, b的值;(2)若过点P(0, m)(m>0)的直线I与椭圆C有且只有一个公共点,且I被椭圆C的伴随圆C1所截得的弦长为2 2,求实数m的值.19. (本小题满分16分)如图(示意),公路AM、AN围成的是一块顶角为a的角形耕地,其中tan a=—2 .在该块土地中P 处有一小型建筑,经测量,它到公路AM , AN的距离分别为3km , 5km .现要过点P修建一条直线公路BC,将三条公路围成的区域ABC建成一个工业园.为尽量减少耕地占用,问如何确定B点的位置,使得该工业园区的面积最小?并求最小面积.(第19题图)20. (本小题满分16分)已知函数f(x)= ax3+ |x—a|, a€ R.(1)若 a =—1,求函数y= f(x)(x€,都存在10.厶211. [;, )12. 2 —2n—113. 8 14. (0, 1)二、解答题:本大题共6小题,共计90分.15. (本小题满分14分)解:(1)因为函数f(x)= 2sin(2x+枷0v X 2"的图象过点(才,—2),所以f(;)= 2sin( n+ 閒=—2,即sin ©= 1. ........................................................... 4 分因为0v(V 2 n所以0= n ........................................................... 6分(2)由(1)得,f(x)= 2cos2x. ...................................................... 8 分因为f(;)= 5 所以cos a= 5 .由条件a 4+ b 4= 21, S 4+ b 4= 30,得方程组{8:3d : 2q 3=31,解得<d =1,& = 2.n4又因为-2V a 0,所以sin — 5.所以 sin2a 2sin 处。
2020届高三数学上学期9月第一次质量检测试题文(含解析)本试卷共4页,22小题,满分150分.考试用时120分钟.一、选择题:本大题共12小题,每小题5分,共60分.1.已知集合,则().A. B. C. D.【答案】D【解析】【分析】求解出集合,根据并集的定义求得结果.【详解】本题正确选项:【点睛】本题考查集合运算中的并集运算,属于基础题.2.设复数z满足,则().A. B. 1 C. D. 2【答案】B【解析】【分析】利用复数除法运算求得,根据模长定义求得结果.【详解】由题意得:本题正确选项:【点睛】本题考查复数模长的求解,关键是能够利用复数的除法运算整理出复数.3.为弘扬中华民族传统文化,某中学学生会对本校高一年级1000名学生课余时间参加传统文化活动的情况,随机抽取50名学生进行调查,将数据分组整理后,列表如下:估计该校高一学生参加传统文化活动情况正确的是().A. 参加活动次数是3场的学生约为360人B. 参加活动次数是2场或4场的学生约为480人C. 参加活动次数不高于2场的学生约为280人D. 参加活动次数不低于4场的学生约为360人【答案】D【解析】【分析】根据样本中的百分比代替总体中的百分比,从而可计算求得各选项中的学生数.【详解】参加活动场数为场学生约有:人,错误参加活动场数为场或场的学生约有:人,错误参加活动场数不高于场的学生约有:人,错误参加活动场数不低于场的学生约有:人,正确本题正确选项:【点睛】本题考查利用样本的数据特征估计总体的数据特征,属于基础题.4.已知双曲线,直线与C的两条渐近线的交点分别为M,N,O为坐标原点.若为直角三角形,则C的离心率为().A. B. C. 2 D.【答案】A【解析】【分析】由双曲线的对称性可得渐近线方程,从而得到关系,进而求得关系,利用求得结果.【详解】为直角三角形,结合对称性可知,双曲线的渐近线为:即本题正确选项:【点睛】本题考查双曲线离心率的求解,关键是能够根据双曲线的对称性得到渐近线方程.5.已知数列中,,.若数列为等差数列,则( )A. B. C. D.【答案】C【解析】【分析】由已知条件计算出等差数列的公差,然后再求出结果【详解】依题意得:,因为数列为等差数列,所以,所以,所以,故选C.【点睛】本题考查了求等差数列基本量,只需结合题意先求出公差,然后再求出结果,较为基础6.已知,且,则( )A. B. C. D.【答案】C【解析】【分析】解法一:由题意求出的值,然后代入求出结果;解法二:由两角差的余弦公式求出结果【详解】解法一:由,且得,,代入得,=,故选C.解法二:由,且得,,所以,故选C.【点睛】本题考查了运用两角差的余弦公式来求出三角函数值,较为基础7.如图,线段MN是半径为2圆O的一条弦,且MN的长为2.在圆O内,将线段MN绕N点按逆时针方向转动,使点M 移动到圆O上的新位置,继续将线段绕点按逆时针方向转动,使点N移动到圆O上的新位置,依此继续转动……点M的轨迹所围成的区域是图中阴影部分.若在圆内随机取一点,则此点取自阴影部分内的概率为().A. B. C. D.【答案】B【解析】【分析】求解出阴影部分的面积,根据几何概型中面积型问题的求解方法求得结果.【详解】由题意得:阴影部分的面积:本题正确选项:【点睛】本题考查几何概型中面积型问题的求解,关键是能够准确求解出阴影部分的面积,属于常考题型.8.在边长为等边中,点满足,则( )A. B. C. D.【答案】D【解析】【分析】结合题意线性表示向量,然后计算出结果【详解】依题意得:,故选D.【点睛】本题考查了向量之间的线性表示,然后求向量点乘的结果,较为简单9.若函数,当时,不等式恒成立,则实数的取值范围是( )A. B. C. D.【答案】B【解析】【分析】先判断函数的单调性,然后解答不等式,在恒成立的条件下求出结果【详解】依题意得:函数在上单调递减,因为,所以,即,在上恒成立,所以,即,故选B.【点睛】本题考查了函数的单调性的应用,结合函数的单调性求解不等式,需要掌握解题方法10.设函数在R上可导,其导函数为,且函数在处取得极小值,则函数的图像可能是()、A. B.C. D.【答案】C【解析】试题分析:函数f(x)在x=﹣2处取得极小值,所以时,;时,.所以时,;时,;时,.选C.考点:导数及其应用.11.已知过抛物线焦点F的直线与抛物线交于点A,B,,抛物线的准线l与x轴交于点C,于点M,则四边形AMCF的面积为()A. B. C. D.【答案】A【解析】【分析】过作于,作于,设,,根据抛物线定义和长度关系可求得,进而得到,利用求得梯形的上下底边长和高,利用梯形面积公式求得结果.【详解】过作于,过作于设,,则,,本题正确选项:【点睛】本题考查抛物线中四边形面积的求解问题,关键是能够灵活运用抛物线的定义,得到图形中的等量关系,进而求得所需的线段长度.12.若关于的方程没有实数根,则实数的取值范围是( )A. B. C. D.【答案】A【解析】【分析】方程化为,令,求出函数的值域,只需令属于所求值域的补集即可得结果.【详解】因为不满足方程,所以原方程化为化为,,令,时,;时,,令,+递增当,即时,,综上可得,的值域为,要使无解,则,即使关于的方程没有实数根的实数的取值范围是,故选A.【点睛】本题主要考查利用导数研究方程的根,以及转化与划归思想的应用,属于难题. 已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.二、填空题:本大题4小题,每小题5分,共20分.13.若实数满足约束条件,则的最小值等于_____.【答案】【解析】【分析】先画出可行域,改写目标函数,然后求出最小值【详解】依题意,可行域为如图所示的阴影部分的三角形区域,目标函数化为:,则的最小值即为动直线在轴上的截距的最大值.通过平移可知在点处动直线在轴上的截距最大.因为解得,所以的最小值.【点睛】本题考查了线性规划的简单应用,一般步骤:画出可行域,改写目标函数,求出最值14.已知长方体的外接球体积为,且,则直线与平面所成的角为_____.【答案】【解析】【分析】先求出外接球的半径,结合题意找出线面角的平面角,然后计算出结果【详解】设长方体的外接球半径为,因为长方体的外接球体积为,所以, 即,因为,所以.因为平面,所以与平面所成的角为,在中,因为,所以,所以.【点睛】本题考查了求线面角的平面角,通常要先找出线面角的平面角,然后结合题意解三角形求出角的大小,需要掌握解题方法15.将函数的图象向左平移个单位长度,得到一个偶函数图象,则________.【答案】【解析】分析】根据平移后关于轴对称可知关于对称,进而利用特殊值构造方程,从而求得结果.【详解】向左平移个单位长度后得到偶函数图象,即关于轴对称关于对称即:本题正确结果:【点睛】本题考查根据三角函数的对称轴求解参数值的问题,关键是能够通过平移后的对称轴得到原函数的对称轴,进而利用特殊值的方式来进行求解.16.已知数列的前项和为,,且(为常数).若数列满足,且,则满足条件的的取值集合为________.【答案】【解析】【分析】利用可求得;利用可证得数列为等比数列,从而得到,进而得到;利用可得到关于的不等式,解不等式求得的取值范围,根据求得结果.【详解】当时,,解得:当且时,,即:数列是以为首项,为公比的等比数列,解得:又或满足条件的的取值集合为本题正确结果:【点睛】本题考查数列知识的综合应用,涉及到利用与的关系求解通项公式、等比数列通项公式的求解、根据数列的单调性求解参数范围等知识;关键是能够得到的通项公式,进而根据单调性可构造出关于的不等式,从而求得结果.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.在中,角,,的对边分别是,,.已知.(Ⅰ)求角的值;(Ⅱ)若,,求的面积.【答案】(I);(II)【解析】【分析】(Ⅰ)由,利用正弦定理以及两角和与差的正弦公式可得,结合角的范围可得结果;(Ⅱ)由余弦定理可得,求出的值,利用三角形面积公式可得结果.【详解】(Ⅰ)∵,∴由正弦定理可得,,因为,∴,∴.∵,∴.(Ⅱ)∵,∴,∵,∴,∴.【点睛】本题主要考查正弦定理、余弦定理及两角和与差的正弦公式,属于中档题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.18.为了了解我市特色学校的发展状况,某调查机构得到如下统计数据:年份201 4特色学校(百个)0.30(Ⅰ)根据上表数据,计算与的相关系数,并说明与的线性相关性强弱(已知:,则认为与线性相关性很强;,则认为与线性相关性一般;,则认为与线性相关性较弱);(Ⅱ)求关于的线性回归方程,并预测我市2019年特色学校的个数(精确到个).参考公式:,,,,,.【答案】(I)相关性很强;(II),208个.【解析】【分析】(Ⅰ)求得,,利用求出的值,与临界值比较即可得结论;(Ⅱ)结合(Ⅰ)根据所给的数据,利用公式求出线性回归方程的系数,再根据样本中心点一定在线性回归方程上,求出的值,写出线性回归方程;代入线性回归方程求出对应的的值,可预测地区2019年足球特色学校的个数.【详解】(Ⅰ),,,∴与线性相关性很强.(Ⅱ),,∴关于的线性回归方程是.当时,(百个),即地区2019年足球特色学校的个数为208个.【点睛】本题主要考查线性回归方程的求解与应用,属于中档题.求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②求得公式中所需数据;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.19.如图,三棱台的底面是正三角形,平面平面,,.(Ⅰ)求证:;(Ⅱ)若和梯形的面积都等于,求三棱锥的体积.【答案】(I)证明见解析;(II).【解析】【分析】(Ⅰ)取的中点为,连结,可证明四边形为平行四边形,得,由等腰三角形的性质得,可得,由面面垂直的性质可得平面,从而可得结果;(Ⅱ)由三棱台的底面是正三角形,且,可得,由此,.根据面积相等求得棱锥的高,利用棱锥的体积公式可得结果.【详解】(Ⅰ)取的中点为,连结.由是三棱台得,平面平面,∴.∵,∴,∴四边形为平行四边形,∴.∵,为的中点,∴,∴.∵平面平面,且交线为,平面,∴平面,而平面,∴.(Ⅱ)∵三棱台的底面是正三角形,且,∴,∴,∴.由(Ⅰ)知,平面.∵正的面积等于,∴,.∵直角梯形的面积等于,∴,∴,∴.【点睛】本题主要考查面面垂直证明线面垂直、线面垂直证明线线垂直以及棱锥的体积,属于中档题. 解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.20.已知直线与焦点为F的抛物线相切.(Ⅰ)求抛物线C的方程;(Ⅱ)过点F的直线m与抛物线C交于A,B两点,求A,B 两点到直线l的距离之和的最小值.【答案】(Ⅰ)(Ⅱ)【解析】【分析】(Ⅰ)联立和,利用即可求得,从而得到抛物线方程;(Ⅱ)设直线为,与抛物线联立后可利用韦达定理求得,进而得到;由中点坐标公式可求得中点;利用点到距离之和等于点到的距离的倍,可将所求距离变为关于的函数,求解函数的最小值即可得到所求距离之和的最小值.【详解】(Ⅰ)将与抛物线联立得:与相切,解得:抛物线的方程为:(Ⅱ)由题意知,直线斜率不为,可设直线方程为:联立得:设,,则线段中点设到直线距离分别为则当时,两点到直线的距离之和的最小值为:【点睛】本题考查直线与抛物线的综合应用问题,涉及到根据直线与抛物线的位置关系求解抛物线方程、抛物线中的最值问题的求解等知识;求解最值的关键是能够将所求距离之和转变为中点到直线的距离,利用点到直线距离公式得到函数关系,利用函数最值的求解方法求得结果.21.已知函数.(Ⅰ)求的单调区间;(Ⅱ)若对于任意的(为自然对数的底数),恒成立,求的取值范围.【答案】(I)当时,的单调递增区间为,无单调递减区间;当时,的单调递增区间为和,单调递减区间是;(II)【解析】【分析】(Ⅰ)求出,分两种情况讨论,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(Ⅱ)对分四种情况讨论,分别利用导数求出函数最小值的表达式,令最小值不小于零,即可筛选出符合题意的的取值范围.【详解】(Ⅰ)的定义域为..(1)当时,恒成立,的单调递增区间为,无单调递减区间;(2)当时,由解得,由解得.∴的单调递增区间为和,单调递减区间是.(Ⅱ)①当时,恒成立,在上单调递增,∴恒成立,符合题意.②当时,由(Ⅰ)知,在、上单调递增,在上单调递减.(i)若,即时,在上单调递增,在上单调递减,在上单调递增.∴对任意的实数,恒成立,只需,且.而当时,且成立.∴符合题意.(ii)若时,在上单调递减,在上单调递增.∴对任意的实数,恒成立,只需即可,此时成立,∴符合题意.(iii)若,在上单调递增.∴对任意的实数,恒成立,只需,即,∴符合题意.综上所述,实数的取值范围是.【点睛】本题主要考查利用导数研究函数的单调性、求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数恒成立(即可)或恒成立(即可);②数形结合(图象在上方即可);③讨论最值或恒成立;④讨论参数,排除不合题意的参数范围,筛选出符合题意的参数范围.请考生在第22、23题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分,作答时,请用2B铅笔在答题卡上,将所选题号对应的方框涂黑.22.在直角坐标系中,直线的参数方程为(为参数,).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,射线与曲线交于两点,直线与曲线相交于两点.(Ⅰ)求直线的普通方程和曲线C的直角坐标方程;(Ⅱ)当时,求的值.【答案】(Ⅰ),;(Ⅱ)或【解析】【分析】(Ⅰ)将参数方程消去即可得到普通方程;由,根据极坐标和直角坐标互化原则可得的直角坐标方程;(Ⅱ)联立和射线的极坐标方程可得点极坐标,从而得到;将参数方程代入圆的直角坐标方程,利用的几何意义,结合韦达定理构造关于的方程,解方程求得结果.【详解】(1)将直线的参数方程消去,化为普通方程得:由得:整理可得曲线的直角坐标方程为:(2)由得:将直线的参数方程代入得:由得:设两点对应的参数分别为,则:解得:或所求的值为或【点睛】本题考查极坐标与直角坐标的互化、参数方程化普通方程、极径的意义、直线参数方程中参数的几何意义的应用等知识,属于常考题型.23.选修4-5:不等式选讲已知.(1)求的解集;(2)若恒成立,求实数的最大值.【答案】(1) (2)【解析】【分析】(1)先由题意得,进而可得,求解,即可求出结果;(2)先由恒成立,得到恒成立,讨论与,分别求出的范围,即可得出结果.【详解】解:(1)由得,所以,解得,所以,的解集为(2)恒成立,即恒成立.当时,;当时,.因为(当且仅当,即时等号成立),所以,即最大值是.【点睛】本题主要考查含绝对值不等式,熟记含绝对值不等式的解法即可,属于常考题型.2020届高三数学上学期9月第一次质量检测试题文(含解析)本试卷共4页,22小题,满分150分.考试用时120分钟.一、选择题:本大题共12小题,每小题5分,共60分.1.已知集合,则().A. B. C. D.【答案】D【解析】【分析】求解出集合,根据并集的定义求得结果.【详解】本题正确选项:【点睛】本题考查集合运算中的并集运算,属于基础题.2.设复数z满足,则().A. B. 1 C. D. 2【答案】B【解析】【分析】利用复数除法运算求得,根据模长定义求得结果.【详解】由题意得:本题正确选项:【点睛】本题考查复数模长的求解,关键是能够利用复数的除法运算整理出复数.3.为弘扬中华民族传统文化,某中学学生会对本校高一年级1000名学生课余时间参加传统文化活动的情况,随机抽取50名学生进行调查,将数据分组整理后,列表如下:估计该校高一学生参加传统文化活动情况正确的是().A. 参加活动次数是3场的学生约为360人B. 参加活动次数是2场或4场的学生约为480人C. 参加活动次数不高于2场的学生约为280人D. 参加活动次数不低于4场的学生约为360人【答案】D【解析】【分析】根据样本中的百分比代替总体中的百分比,从而可计算求得各选项中的学生数.【详解】参加活动场数为场学生约有:人,错误参加活动场数为场或场的学生约有:人,错误参加活动场数不高于场的学生约有:人,错误参加活动场数不低于场的学生约有:人,正确本题正确选项:【点睛】本题考查利用样本的数据特征估计总体的数据特征,属于基础题.4.已知双曲线,直线与C的两条渐近线的交点分别为M,N,O为坐标原点.若为直角三角形,则C的离心率为().A. B. C. 2 D.【答案】A【解析】【分析】由双曲线的对称性可得渐近线方程,从而得到关系,进而求得关系,利用求得结果.【详解】为直角三角形,结合对称性可知,双曲线的渐近线为:即本题正确选项:【点睛】本题考查双曲线离心率的求解,关键是能够根据双曲线的对称性得到渐近线方程.5.已知数列中,,.若数列为等差数列,则( )A. B. C. D.【答案】C【解析】【分析】由已知条件计算出等差数列的公差,然后再求出结果【详解】依题意得:,因为数列为等差数列,所以,所以,所以,故选C.【点睛】本题考查了求等差数列基本量,只需结合题意先求出公差,然后再求出结果,较为基础6.已知,且,则( )A. B. C. D.【答案】C【解析】【分析】解法一:由题意求出的值,然后代入求出结果;解法二:由两角差的余弦公式求出结果【详解】解法一:由,且得,,代入得,=,故选C.解法二:由,且得,,所以,故选C.【点睛】本题考查了运用两角差的余弦公式来求出三角函数值,较为基础7.如图,线段MN是半径为2圆O的一条弦,且MN的长为2.在圆O内,将线段MN绕N 点按逆时针方向转动,使点M移动到圆O上的新位置,继续将线段绕点按逆时针方向转动,使点N移动到圆O上的新位置,依此继续转动……点M的轨迹所围成的区域是图中阴影部分.若在圆内随机取一点,则此点取自阴影部分内的概率为().A. B. C. D.【答案】B【解析】【分析】求解出阴影部分的面积,根据几何概型中面积型问题的求解方法求得结果.【详解】由题意得:阴影部分的面积:本题正确选项:【点睛】本题考查几何概型中面积型问题的求解,关键是能够准确求解出阴影部分的面积,属于常考题型.8.在边长为等边中,点满足,则( )A. B. C. D.【答案】D【解析】【分析】结合题意线性表示向量,然后计算出结果【详解】依题意得:,故选D.【点睛】本题考查了向量之间的线性表示,然后求向量点乘的结果,较为简单9.若函数,当时,不等式恒成立,则实数的取值范围是( )A. B. C. D.【分析】先判断函数的单调性,然后解答不等式,在恒成立的条件下求出结果【详解】依题意得:函数在上单调递减,因为,所以,即,在上恒成立,所以,即,故选B.【点睛】本题考查了函数的单调性的应用,结合函数的单调性求解不等式,需要掌握解题方法10.设函数在R上可导,其导函数为,且函数在处取得极小值,则函数的图像可能是()、A. B.C. D.【答案】C【解析】试题分析:函数f(x)在x=﹣2处取得极小值,所以时,;时,.所以时,;时,;时,.选C.考点:导数及其应用.11.已知过抛物线焦点F的直线与抛物线交于点A,B,,抛物线的准线l 与x轴交于点C,于点M,则四边形AMCF的面积为()A. B. C. D.【分析】过作于,作于,设,,根据抛物线定义和长度关系可求得,进而得到,利用求得梯形的上下底边长和高,利用梯形面积公式求得结果.【详解】过作于,过作于设,,则,,本题正确选项:【点睛】本题考查抛物线中四边形面积的求解问题,关键是能够灵活运用抛物线的定义,得到图形中的等量关系,进而求得所需的线段长度.12.若关于的方程没有实数根,则实数的取值范围是( )A. B. C. D.【答案】A【解析】【分析】方程化为,令,求出函数的值域,只需令属于所求值域的补集即【详解】因为不满足方程,所以原方程化为化为,,令,时,;时,,令,+递增当,即时,,综上可得,的值域为,要使无解,则,即使关于的方程没有实数根的实数的取值范围是,故选A.【点睛】本题主要考查利用导数研究方程的根,以及转化与划归思想的应用,属于难题. 已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.二、填空题:本大题4小题,每小题5分,共20分.13.若实数满足约束条件,则的最小值等于_____.【答案】【解析】【分析】先画出可行域,改写目标函数,然后求出最小值【详解】依题意,可行域为如图所示的阴影部分的三角形区域,目标函数化为:,则的最小值即为动直线在轴上的截距的最大值.通过平移可知在点处动直线在轴上的截距最大.因为解得,所以的最小值.【点睛】本题考查了线性规划的简单应用,一般步骤:画出可行域,改写目标函数,求出最值14.已知长方体的外接球体积为,且,则直线与平面所成的角为_____.【答案】【解析】【分析】先求出外接球的半径,结合题意找出线面角的平面角,然后计算出结果【详解】设长方体的外接球半径为,因为长方体的外接球体积为,所以, 即,因为,所以.因为平面,所以与平面所成的角为,在中,因为,所以,所以.【点睛】本题考查了求线面角的平面角,通常要先找出线面角的平面角,然后结合题意解三角形求出角的大小,需要掌握解题方法15.将函数的图象向左平移个单位长度,得到一个偶函数图象,则________.【答案】【解析】分析】根据平移后关于轴对称可知关于对称,进而利用特殊值构造方程,从而求得结果.【详解】向左平移个单位长度后得到偶函数图象,即关于轴对称关于对称即:本题正确结果:【点睛】本题考查根据三角函数的对称轴求解参数值的问题,关键是能够通过平移后的对称轴得到原函数的对称轴,进而利用特殊值的方式来进行求解.。
江苏省苏州市2019—2020学年第一学期高三期中调研试卷数学试题2019.11一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.) 1.已知集合A ={﹣2,﹣1,0,1,2},B ={}0x x >,则A I B = . 答案:{1,2}考点:集合的交集运算解析:∵集合A ={﹣2,﹣1,0,1,2},B ={}0x x >, ∴A I B ={1,2}. 2.已知复数z 满足i 2iz=+(i 为虚数单位),则复数z 的实部为 . 答案:﹣1 考点:复数 解析:∵i 2iz=+ ∴2i(2i)2i i 12i z =+=+=-+,则复数z 的实部为﹣1.3.已知向量a r =(x ,2),b r =(2,﹣1),且a r ⊥b r,则实数x 的值是 .答案:1考点:平面向量数量积坐标运算解析:∵a r =(x ,2),b r=(2,﹣1), ∴a r ·b r=2x ﹣2 ∵a r ⊥b r∴a r ·b r=2x ﹣2=0,解得x =1. 4.函数y =的定义域为 . 答案:(1,2)考点:函数的定义域 解析:由题意得:1020x x ->⎧⎨->⎩,解得1<x <2,即原函数定义域为(1,2).5.等比数列{}n a 中,11a =,48a =,n S 是{}n a 的前n 项和,则5S = . 答案:31考点:等比数列前n 项和 解析:由题意,341881a q a ===,解得q =2, ∴55213121S -==-. 6.已知tan 2α=,则sin cos 2sin ααα+的值为 .答案:25考点:同角三角函数关系式解析:sin sin tan 22cos cos 2sin cos 2sin 12tan 1225cos αααααααααα====++++⨯. 7.“2x >”是“1x >”的 条件.(在“充分不必要、必要不充分、充要、既不充分又不必要”选一填写.) 答案:充分不必要考点:充分条件、必要条件、充要条件的判断解析:因为“2x >”一定能推出“1x >”,但“1x >”不能推出“2x >”, 故“2x >”是“1x >”的充分不必要条件. 8.已知函数sin 2y x =的图象上每个点向左平移ϕ(π02ϕ<<)个单位长度得到函数y =πsin(2)6x +的图象,则ϕ的值为 .答案:12π 考点:三角函数的图像与性质解析:函数sin 2y x =的图象上每个点向左平移ϕ(π02ϕ<<)个单位 则得sin 2()y x ϕ=+,即sin 2()y x ϕ=+=πsin(2)6x +求得12πϕ=.9.设函数,0()21,0x e x f x x x ⎧≥=⎨+<⎩,则不等式2(2)()f x f x +>的解集为 .答案:(﹣1,2)考点:函数的单调性解析:根据题意可得函数()f x 是R 上的单调递增函数,又2(2)()f x f x +>22x x +>,220x x --<,解得﹣1<x <2,∴原不等式解集为(﹣1,2). 10.已知函数()ln mf x x x=-的极小值大于0,则实数m 的取值范围为 . 答案:(-∞,1e-) 考点:利用导数研究函数极值解析:∵函数()ln m f x x x=-, ∴221()m x mf x x x x+'=+=, 当m ≥0时,()f x '>0,()f x 在(0,+∞)单调递增;当m <0时,当x =﹣m 时,()f x 有极小值()ln()10f m m -=-+>, 解得:1m e<-. 11.已知各项都为正数的等差数列{}n a 中,53a =,则37a a 的最大值为 . 答案:9考点:等差数列的性质,基本不等式解析:∵各项都为正数的等差数列{}n a 中,53a =, ∴37526a a a +==∴23737()92a a a a +≤=,当且仅当37a a ==3时取“=”. 12.已知菱形ABCD 的棱长为3,E 为棱CD 上一点且满足CE 2ED =u u u r u u u r ,若AE EB 6⋅=-u u u r u u u r,则cosC = . 答案:13考点:平面向量数量积解析:∵AE EB 6⋅=-u u u r u u u r,∴(AD DE)(CB CE)6+⋅-=-u u u r u u u r u u u r u u u r12(CB CD)(CB CD)633--⋅-=-u u u r u u u r u u u r u u u r,2221CB CD CB CD 693-++⋅=-u u u r u u u r u u u r u u u r,∵菱形ABCD 的棱长为3,求得CB CD ⋅u u u r u u u r =3,∴CB CD 31cos C 93CB CD ⋅===u u u r u u u ru u u r u u u r .13.若方程π3cos(2)65x -=在(0,π)的解为1x ,2x ,则12cos()x x -= . 答案:35-考点:三角函数的图像与性质,诱导公式 解析:根据题意,令函数()cos(2)6f x x π=-,当3()5f x =时,在(0,π)上有两个零点1x ,2x ,一方面13cos(2)65x π-=,另一方面可得两个零点1x ,2x 关于直线12x π=对称,则2176x x π=-,则1211177cos()cos[()]cos(2)66x x x x x ππ-=--=- 113cos(2)cos(2)665x x πππ=--=--=-.14.已知函数23()3f x x x =-,1()ln x g x ea x -=--,若对于任意1x ∈(0,3),总是存在两个不同的2x ,3x ∈(0,3),使得123()()()f x g x g x ==,则实数a 的取值范围为 . 答案:[1,2ln34e --) 考点:函数与不等式解析:根据23111()3f x x x =-,1x ∈(0,3),求得1()f x 的值域为(0,4], 1()ln x g x ea x -=--,11()x g x ex-'=-,可以判断()g x '在(0,3)上单调递增 又(1)0g '=,故当0<x <1时,()g x '<0,()g x 在(0,1)单调递减 当1<x <3时,()g x '>0,()g x 在(0,1)单调递增 计算得(1)1g a =-,2(3)ln 3g e a =--,要使任意1x ∈(0,3),总是存在两个不同的2x ,3x ∈(0,3),使得123()()()f x g x g x ==,则210ln 34a e a -≤⎧⎨-->⎩,求得1≤a <2ln34e --.二、解答题(本大题共6小题,共计90分.请在答题纸指定区域.......内作答,解答应写出文字说明,证明过程或演算步骤.) 15.(本题满分14分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,C =120°,c =7,a ﹣b =2. (1)求a ,b 的值; (2)求sin(A +C)的值.16.(本题满分14分)已知向量a r =(cos x ,3cos x ),b r=(cos x ,sin x ).(1)若a r ∥b r ,x ∈[0,2π],求x 的值;(2)若()f x a b =⋅r r ,x ∈[0,2π],求()f x 的最大值及相应x 的值.17.(本题满分14分)已知等比数列{}n a 满足22a =,且2a ,31a +,4a 成等差数列. (1)求数列{}n a 的通项公式;(2)设21n n b a n =-+,求数列{}n b 的前n 项和为n T .18.(本题满分16分)如下图所示,某窑洞窗口形状上部是圆弧CD,下部是一个矩形ABCD,圆弧CD所在圆的圆心为O.经测量AB=4米,BC=3米,∠COD=120°,现根据需要把此窑洞窗口形状改造为矩形EFGH,其中E,F在边AB上,G,H在圆弧CD上.设∠OGF=θ,矩形EFGH 的面积为S.(1)求矩形EFGH的面积S关于变量θ的函数关系式;(2)求cosθ为何值时,矩形EFGH的面积S最大?19.(本题满分16分)已知函数()f x x x=(1)求()f x 的图像在1x =处的切线方程;(2)求函数()()F x f x x =-的极大值;(3)若()ln af x x ≤对x ∈(0,1]恒成立,求实数a 的取值范围.20.(本题满分16分)已知数列{}n a 满足11(1)n n n a na a +-=-,n *∈N .(1)证明:数列{}n a 为等差数列;(2)设数列{}n a 的前n 项和为n S ,若211a a -=,且对任意的正整数n ,都有1113S <2311143n S S S +++⋅⋅⋅+<,求整数1a 的值; (3)设数列{}n b 满足310n n b a =+,若2115a a -=,且存在正整数s ,t ,使得s ta b +是整数,求1a 的最小值.附加题(共40分)21.【选做题】本题包括A、B、C三小题,请选定其中两题,在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A .(本题满分10分)已知二阶矩阵13a M b ⎡⎤=⎢⎥⎣⎦的特征值1λ=-所对应的一个特征向量为13-⎡⎤⎢⎥⎣⎦. (1)求矩阵M ;(2)设曲线C 在变换矩阵M 作用下得到的曲线C '的方程为2y x =,求曲线C 的方程.B .(本题满分10分)已知曲线C 的极坐标方程为2cos 23sin ραα=+(α为参数),直线l 的参数方程为1cos sin x t y t ββ=+⎧⎨=⎩(t 为参数,π02β<<),若曲线C 被直线l 截得的弦长为13,求β的值.C .(本题满分10分)设正数,,a b c 满足1a b c ++=,求证:32a b c b c c a a b ++≥+++.22.(本题满分10分)某射击小组有甲、乙、丙三名射手,已知甲击中目标的概率是34,甲、丙二人都没有击中目标的概率是112,乙、丙二人都击中目标的概率是14.甲乙丙是否击中目标相互独立. (1)求乙、丙二人各自击中目标的概率;(2)设乙、丙二人中击中目标的人数为X ,求X 的分布列和数学期望.23.(本题满分10分)如图,在直三棱柱111ABC A B C -中,90BAC ∠=︒,AB AC a ==,1AA b =,点E ,F 分别在棱1BB ,1CC 上,且113BE BB =,1113C F CC =.设b a λ=. (1)当3λ=时,求异面直线AE 与1A F 所成角的大小;(2)当平面AEF ⊥平面1A EF 时,求λ的值.。
2020届江苏省苏州市上学期期末学业质量阳光指标调研高三数学试题一、填空题1.已知集合A={1,3,5},B={3,4},则集合A B=_______.2.复数(i是虚数单位)的虚部是_______.3.某班级50名学生某次数学考试成绩(单位:分)的频率分布直方图如图所示,则成绩在60~80分的学生人数是_______.4.连续抛掷2颗骰子,则出现朝上的点数之和等于8的概率为.π-)的值是_______.5.已知,则tan(α6.如图所示的流程图中,若输入的a,b分别为4,3,则输出的n的值为_______.7.在平面直角坐标系xOy中,中心在原点,焦点在y轴上的双曲线的一条渐近线经过点(﹣3,1),则该双曲线的离心率为_______.8.曲线在处的切线与两坐标轴围成的三角形面积为_______.9.如图,某种螺帽是由一个半径为2的半球体挖去一个正三棱锥构成的几何体,该正三棱锥的底面三角形内接于半球底面大圆,顶点在半球面上,则被挖去的正三棱锥体积为_______.10.在平面直角坐标系xOy中,过点A(1,3),B(4,6),且圆心在直线上的圆的标准方程为_______.11.设是等比数列的前n项和,若,则=_______.12.设函数,若方程有三个相异的实根,则实数k的取值范围是_______.13.如图,在边长为2的正方形ABCD中,M,N分别是边BC,CD上的两个动点,且BM+DN=MN,则的最小值是_______.14.设函数,若对任意(,0),总存在[2,),使得,则实数a的取值范围_______.二、解答题15.如图,在直三棱柱ABC—A1B1C1中,已知AB⊥BC,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F//平面ABE.16.在△ABC中,角A,B,C所对的边为a,b,c,已知2bcosA=2c﹣a.(1)求B;(2)设函数,求的最大值.17.如图,在平面直角坐标系xOy中,已知焦点在x轴上,离心率为的椭圆E的左顶点为A,点A到右准线的距离为6.(1)求椭圆E的标准方程;(2)过点A且斜率为的直线与椭圆E交于点B,过点B与右焦点F的直线交椭圆E于M点,求M点的坐标.18.如图,长途车站P与地铁站O的距离为千米,从地铁站O出发有两条道路l1,l2,经测量,l1,l2的夹角为45°,OP与l1的夹角满足tan=(其中0<θ<),现要经过P 修条直路分别与道路l1,l2交汇于A,B两点,并在A,B处设立公共自行车停放点.(1)已知修建道路PA,PB的单位造价分别为2m元/千米和m元/千米,若两段道路的总造价相等,求此时点A,B之间的距离;(2)考虑环境因素,需要对OA,OB段道路进行翻修,OA,OB段的翻修单价分别为n元/千米和n元/千米,要使两段道路的翻修总价最少,试确定A,B点的位置.19.已知函数(a,b R).(1)当a=b=1时,求的单调增区间;(2)当a≠0时,若函数恰有两个不同的零点,求的值;(3)当a=0时,若的解集为(m,n),且(m,n)中有且仅有一个整数,求实数b的取值范围.20.定义:对于任意,仍为数列中的项,则称数列为“回归数列”.(1)己知(),判断数列是否为“回归数列”,并说明理由;(2)若数列为“回归数列”,,,且对于任意,均有成立.①求数列的通项公式;②求所有的正整数s,t,使得等式成立.21.选修4—2:矩阵与变换:已知矩阵M=的逆矩阵M-1=,求实数m,n.22.选修4—4:坐标系与参数方程:在极坐标系中,圆C的方程为,在以极点为原点,极轴为x轴正半轴的平面直角坐标系中,直线l的参数方程是(t为参数).若直线l与圆C相切,求实数m的值.23.选修4—5:不等式选讲: 设a,b,c都是正数,求证:24.已知知正四棱锥S-ABCD的底面边长和高均为2,从其五个顶点中任取三个,记这三个顶点围成的三角形的面积为。
江苏省苏州市2019-2020学年高三9月调研考试数学试卷一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置.......上.1.已知集合,集合,则______.2.命题:“”的否定是__________.3.写出命题“若,则或”的否命题为__________.4.命题“”是“”的__________条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)5.已知函数f(x)=的图象一定过点P,则P点的坐标是__________.6.函数f(x)= 的值域是____________7.函数的单调增区间为 _________.8.用“”将,,从小到大排列是__________.9. 方程的解在区间(k,k 1)()上,则k =_______.10.已知函数,则曲线在点处切线的倾斜角为__________.11.已知函数,则_____.12. 已知奇函数满足的值为___________ 。
13.定义在R上的偶函数f(x), 当x≥0时,f(x)为减函数。
若f(1-m)<f(m),则实数m的取值范围是________.14已知二次函数f (x )=ax 2+bx+1的导函数为f ′(x ),f ′(0)>0,f (x )与x 轴恰有一个交点,则的最小值为 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在直三棱柱ABC -A 1B 1C 1中,AB =AC ,E 是BC 的中点,求证: (1)平面AB 1E ⊥平面B 1BCC 1; (2)A 1C //平面AB 1E .16.(本小题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,cos B =45.(1)若c =2a ,求sin Bsin C的值; (2)若C -B =π4,求sin A 的值.17.(本小题满分14分)某工厂有100名工人接受了生产1000台某产品的总任务,每台产品由9个甲型装置和3个乙型装置配套组成,每个工人每小时能加工完成1个甲型装置或3个乙型装置.现将工人分成两组分别加工甲型和乙型装置.设加工甲型装置的工人有x 人,他们加工完甲型装置所需时间为t 1小时,其余工人加工完乙型装置所需时间为t 2小时.设f (x )=t 1+t 2.A 1B 1C 1ABCE(第15题)(1)求f (x )的解析式,并写出其定义域; (2)当x 等于多少时,f (x )取得最小值?18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且过点(1,32).过椭圆C 的左顶点A 作直线交椭圆C 于另一点P ,交直线l :x =m (m >a )于点M .已知点B (1,0),直线PB 交l 于点N . (1)求椭圆C 的方程;(2)若MB 是线段PN 的垂直平分线,求实数m 的值.19.(本小题满分16分)已知函数f (x )=2x 3-3(a +1)x 2+6ax ,a ∈R .(1)曲线y =f (x )在x =0处的切线的斜率为3,求a 的值;(2)若对于任意x ∈(0,+∞),f (x )+f (-x )≥12ln x 恒成立,求a 的取值范围; (3)若a >1,设函数f (x )在区间[1,2]上的最大值、最小值分别为M (a )、m (a ),yxBAMNOP(第18题)l记h(a)=M(a)-m(a),求h(a)的最小值.20.(本小题满分16分)已知数列{a n}的各项均为正数,记数列{a n}的前n项和为S n,数列{a n2}的前n项和为T n,且3T n=S n2+2S n,n∈N*.(1)求a1的值;(2)求数列{a n}的通项公式;(3)若k,t∈N*,且S1,S k-S1,S t-S k成等比数列,求k和t的值.江苏省苏州市2019-2020学年高三9月调研考试数学试卷数学附加题21.【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.请在答卷..卡指定区域内......作答.解答应写出文字说明、证明过程或演算步骤.A.选修4—1:几何证明选讲如图,CD是圆O的切线,切点为D,CA是过圆心O的割线且交圆O于点B,DA=DC.求证: CA=3CB.DA B COB .选修4—2:矩阵与变换设二阶矩阵A =⎣⎢⎡⎦⎥⎤1234.(1)求A -1;(2)若曲线C 在矩阵A 对应的变换作用下得到曲线C :6x 2-y 2=1,求曲线C 的方程.C .选修4—4:坐标系与参数方程 在平面直角坐标系xOy 中,直线l的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =t (t为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =a +cos ,y =2a +sin (θ为参数).若直线l 与圆C 相切,求实数a 的值.D .选修4—5:不等式选讲解不等式:|x -2|+|x +1|≥5.【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内........作答.解答应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AB ⊥AD ,AD ∥BC ,AP =AB =AD=1.(1)若直线PB 与CD 所成角的大小为π3,求BC 的长; (2)求二面角B -PD -A 的余弦值.CDPBA23.(本小题满分10分)袋中有形状和大小完全相同的四种不同颜色的小球,每种颜色的小球各有4个,分别编号为1,2,3,4.现从袋中随机取两个球. (1)若两个球颜色不同,求不同取法的种数;(2)在(1)的条件下,记两球编号的差的绝对值为随机变量X ,求随机变量X 的概率分布与数学期望.江苏省苏州市2019-2020学年高三9月调研考试数学试卷数学参考答案及评分标准一、填空题(本大题共14小题,每小题5分,计70分.) 1.;2.; 3.若,则且; 4.充分不必要5、P(-1,4);6、; 7、; 8、9、2; 10、; 11、1; 12、;13、; 14、2二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题卡的指定区域内) 15.(本小题满分14分)证明:(1)在直三棱柱ABC -A 1B 1C 1中,CC 1平面ABC . 因为AE 平面ABC ,所以CC 1AE . ……………2分 因为AB =AC ,E 为BC 的中点,所以AE BC . 因为BC 平面B 1BCC 1,CC 1平面B 1BCC 1,且BC ∩CC 1=C ,所以AE 平面B 1BCC 1. ………………5分 因为AE 平面AB 1E ,所以平面AB 1E 平面B 1BCC 1. ……………………………7分 (2)连接A 1B ,设A 1B ∩AB 1=F ,连接EF .在直三棱柱ABC -A 1B 1C 1中,四边形AA 1B 1B 为平行四边形,所以F 为A 1B 的中点. ……………………………9分A 1B 1C 1 A BC E(第15题) F又因为E是BC的中点,所以EF∥A1C.……………………………11分因为EF平面AB1E,A1C平面AB1E,所以A1C∥平面AB1E. ……………………………14分16.(本小题满分14分)解:(1)解法1在△ABC中,因为cos B=45,所以a2+c2-b22ac=45.………………………2分因为c=2a,所以(c2)2+c2-b22c×c2=45,即b2c2=920,所以bc=3510.……………………………4分又由正弦定理得sin Bsin C=bc,所以sin Bsin C=3510.……………………………6分解法2因为cos B=45,B∈(0,),所以sin B=1-cos2B=35.………………………2分因为c=2a,由正弦定理得sin C=2sin A,所以sin C=2sin(B+C)=65cos C+85sin C,即-sin C=2cos C.………………………4分又因为sin2C+cos2C=1,sin C>0,解得sin C=25 5,所以sin Bsin C=3510.………………………6分(2)因为cos B=45,所以cos2B=2cos2B-1=725.…………………………8分又0<B<π,所以sin B=1-cos2B=3 5,所以sin2B=2sin B cos B=2×35×45=2425.…………………………10分因为C-B=π4,即C=B+π4,所以A=π-(B+C)=3π4-2B,所以sin A=sin(3π4-2B)=sin 3π4cos2B-cos3π4sin2B ………………………………12分=22×725-(-22)×2425=31250.…………………………………14分17.(本小题满分14分)解:(1)因为t1=9000x,………………………2分t 2=30003(100-x)=1000100-x,………………………4分所以f(x)=t1+t2=9000x+1000100-x,………………………5分定义域为{x|1≤x≤99,x∈N*}.………………………6分(2)f(x)=1000(9x+1100-x)=10[x+(100-x)](9x+1100-x)=10[10+9(100-x)x+x100-x].………………………10分因为1≤x≤99,x∈N*,所以9(100-x)x>0,x100-x>0,所以9(100-x)x+x100-x≥29(100-x)xx100-x=6,…………………12分当且仅当9(100-x)x=x100-x,即当x=75时取等号.…………………13分答:当x=75时,f(x)取得最小值.………………………14分18.(本小题满分16分) 解:(1)因为椭圆C 的离心率为32,所以a 2=4b 2. ………………………2分 又因为椭圆C 过点(1,32),所以1a 2+34b 2=1, ………………………3分解得a 2=4,b 2=1.所以椭圆C 的方程为x 24+y 2=1. ………………………5分 (2)解法1设P (x 0,y 0),-2<x 0<2, x 0≠1,则x 024+y 02=1.因为MB 是PN 的垂直平分线,所以P 关于B 的对称点N (2-x 0,-y 0), 所以2-x 0=m . ………………………7分 由A (-2,0),P (x 0,y 0),可得直线AP 的方程为y =y 0 x 0+2(x +2),令x =m ,得y =y 0(m +2) x 0+2,即M (m ,y 0(m +2)x 0+2).因为PB ⊥MB ,所以k PB ·k MB =-1,所以k PB ·k MB =y 0x 0-1·y 0(m +2)x 0+2 m -1=-1, ………………………10分即y 02(m +2)(x 0-1)( x 0+2)( m -1)=-1. 因为x 024+y 02=1.所以( x 0-2)(m +2)4(x 0-1) ( m -1)=1. ………………………12分因为x 0=2-m ,所以化简得3m 2-10m +4=0, 解得m =5±133. ………………………15分 因为m >2,所以m =5+133. ………………………16分 解法2①当AP 的斜率不存在或为0时,不满足条件. ………………………6分 ②设AP 斜率为k ,则AP :y =k (x +2),联立⎩⎪⎨⎪⎧x 24+y 2=1,y =k (x +2),消去y 得(4k 2+1)x 2+16k 2x +16k 2-4=0.因为x A =-2,所以x P =-8k 2+24k 2+1,所以y P=4k 4k 2+1, 所以P (-8k 2+24k 2+1,4k4k 2+1). ………………………8分因为PN 的中点为B ,所以m =2--8k 2+24k 2+1=16k 24k 2+1.(*) ……………………10分因为AP 交直线l 于点M ,所以M (m ,k (m +2)),因为直线PB 与x 轴不垂直,所以-8k 2+24k 2+1≠1,即k 2≠112,所以k PB =4k4k 2+1-8k 2+24k 2+1-1=-4k 12k 2-1,k MB=k (m +2)m -1. 因为PB ⊥MB ,所以k PB ·k MB =-1, 所以-4k 12k 2-1·k (m +2)m -1=-1.(**) ………………………12分 将(*)代入(**),化简得48k 4-32k 2+1=0,解得k 2=4±1312,所以m =16k 24k 2+1=5±133. ………………………15分又因为m >2,所以m =5+133. ………………………16分 19.(本小题满分16分)解:(1)因为f (x )=2x 3-3(a +1)x 2+6ax ,所以f ′(x )=6x 2-6(a +1)x +6a ,所以曲线y =f (x )在x =0处的切线斜率k =f ′(0)=6a ,所以6a =3,所以a =12. ………………………2分(2)f (x )+f (-x )=-6(a +1)x 2≥12ln x 对任意x ∈(0,+∞)恒成立,所以-(a +1)≥2ln xx 2. ………………………4分令g (x )=2ln xx 2,x >0,则g (x )=2(1-2ln x )x 3.令g(x )=0,解得x =e .当x ∈(0,e)时,g(x )>0,所以g (x )在(0,e)上单调递增; 当x ∈(e ,+∞)时,g(x )<0,所以g (x )在(e ,+∞)上单调递减.所以g (x )max =g (e)=1e , ………………………6分所以-(a +1)≥1e ,即a ≤-1-1e,所以a 的取值范围为(-∞,-1-1e ]. ………………………8分(3)因为f (x )=2x 3-3(a +1)x 2+6ax ,所以f ′(x )=6x 2-6(a +1)x +6a =6(x -1)(x -a ),f (1)=3a -1,f (2)=4. 令f ′(x )=0,则x =1或a . ………………………10分 f (1)=3a -1,f (2)=4.①当1<a ≤53时,当x ∈(1,a )时,f (x )<0,所以f (x )在(1,a )上单调递减; 当x ∈(a ,2)时,f (x )>0,所以f (x )在(a ,2)上单调递增. 又因为f (1)≤f (2),所以M (a )=f (2)=4,m (a )=f (a )=-a 3+3a 2, 所以h (a )=M (a )-m (a )=4-(-a 3+3a 2)=a 3-3a 2+4. 因为h (a )=3a 2-6a =3a (a -2)<0, 所以h (a )在(1,53]上单调递减,所以当a ∈(1,53]时,h (a )最小值为h (53)=827.………………………12分②当53<a <2时,当x ∈(1,a )时,f (x )<0,所以f (x )在(1,a )上单调递减; 当x ∈(a ,2)时,f (x )>0,所以f (x )在(a ,2)上单调递增.又因为f (1)>f (2),所以M (a )=f (1)=3a -1,m (a )=f (a )=-a 3+3a 2, 所以h (a )=M (a )-m (a )=3a -1-(-a 3+3a 2)=a 3-3a 2+3a -1. 因为h (a )=3a 2-6a +3=3(a -1)2≥0. 所以h (a )在(53,2)上单调递增,所以当a∈(53,2)时,h(a)>h(53)=827.………………………14分③当a≥2时,当x∈(1,2)时,f (x)<0,所以f(x)在(1,2)上单调递减,所以M(a)=f(1)=3a-1,m(a)=f(2)=4,所以h(a)=M(a)-m(a)=3a-1-4=3a-5,所以h(a)在[2,+∞)上的最小值为h(2)=1.综上,h(a)的最小值为827.………………………16分20.(本小题满分16分)解:(1)由3T1=S12+2S1,得3a12=a12+2a1,即a12-a1=0.因为a1>0,所以a1=1.………………………2分(2)因为3T n=S n2+2S n,①所以3T n+1=S n+12+2S n+1,②②-①,得3a n+12=S n+12-S n2+2a n+1.因为a n+1>0,所以3a n+1=S n+1+S n+2,③………………………5分所以3a n+2=S n+2+S n+1+2,④④-③,得3a n+2-3a n+1=a n+2+a n+1,即a n+2=2a n+1,所以当n≥2时,an+1an=2.………………………8分又由3T2=S22+2S2,得3(1+a22)=(1+a2)2+2(1+a2),即a22-2a2=0.因为a2>0,所以a2=2,所以a2a1=2,所以对n∈N*,都有an+1an=2成立,所以数列{a n}的通项公式为a n=2n-1,n∈N*.………………………10分(3)由(2)可知S n=2n-1.因为S1,S k-S1,S t-S k成等比数列,所以(S k-S1)2=S1(S t-S k),即(2k-2)2=2t-2k,………………………12分所以2t=(2k)2-32k+4,即2t-2=(2k-1)2-32k-2+1(*).由于S k-S1≠0,所以k≠1,即k≥2.当k=2时,2t=8,得t=3.………………………14分当k≥3时,由(*),得(2k-1)2-32k-2+1为奇数,所以t-2=0,即t=2,代入(*)得22k-2-32k-2=0,即2k=3,此时k无正整数解.综上,k=2,t=3.………………………16分江苏省苏州市2019-2020学年高三9月调研考试数学试卷数学附加题参考答案及评分标准21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答题卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.A .选修4—1:几何证明选讲 证明:连接OD ,因为DA =DC ,所以∠DAO =∠C .………………………2分在圆O 中,AO =DO ,所以∠DAO =∠ADO ,所以∠DOC =2∠DAO =2∠C .………………………5分因为CD 为圆O 的切线,所以∠ODC =90°, 从而DOC +C =90°,即2C +C =90°, 故∠C =30°, ………………………7分 所以OC =2OD =2OB ,所以CB =OB ,所以CA =3CB . ………………………10分 B .选修4—2:矩阵与变换解:(1)根据逆矩阵公式,可得A-1=⎣⎢⎡⎦⎥⎤-2132-12. ………………………4分 (2)设曲线C 上任意一点P (x ,y )在矩阵A 对应的变换作用下得到点P(x,y),则⎣⎢⎡⎦⎥⎤xy =⎣⎢⎡⎦⎥⎤1234 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y 3x +4y ,所以⎩⎪⎨⎪⎧x=x +2y ,y =3x +4y .……………………8分因为(x ,y )在曲线C 上,所以6x2-y 2=1,代入6(x +2y )2-(3x +4y )2=1,化简得8y 2-3x 2=1,所以曲线C 的方程为8y 2-3x 2=1. ………………………10分C .选修4—4:坐标系与参数方程 解:由直线l的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =t ,得直线l 的普通方程为x -y +1=0.………………………2分由圆C的参数方程为⎩⎪⎨⎪⎧x =a +cos ,y =2a +sin,得圆C 的普通方程为(x -a )2+(y -2a )2=1.DA B C O (第21A 题)………………………4分因为直线l 与圆C 相切,所以∣a -2a +1∣2=1, ………………………8分 解得a =1±2.所以实数a 的值为1±2. ………………………10分 D .选修4—5:不等式选讲解:(1)当x <-1时,不等式可化为-x +2-x -1≥5,解得x ≤-2;……………………2分(2)当-1≤x ≤2时,不等式可化为-x +2+x +1≥5,此时不等式无解;……………4分 (3)当x >2时,不等式可化为x -2+x +1≥5,解得x ≥3; ……………………6分 所以原不等式的解集为(-∞,-2]∪[3,+∞). …………………………10分【必做题】第22题、第23题,每题10分,共计20分. 22.(本小题满分10分)解:(1)以{→AB ,→AD ,→AP }为单位正交基底,建立如图所示的空间直角坐标系A -xyz . 因为AP =AB =AD =1,所以A (0,0,0),B (1,0,0),D (0,1,0),P (0,0,1). 设C (1,y ,0),则→PB =(1,0,-1),→CD =(-1,1-y ,0).…………………………2分因为直线PB 与CD 所成角大小为π3, 所以|cos <→PB ,→CD >|=|→PB →CD∣→PB ∣∣→CD ∣|=12,即12×1+(1-y )2=12,解得y =2或y =0(舍),所以C (1,2,0),所以BC 的长为2. ………………………5分CDPBA(第22题)xy z(2)设平面PBD 的一个法向量为n 1=(x ,y ,z ).因为→PB =(1,0,-1),→PD =(0,1,-1), 则⎩⎪⎨⎪⎧→PB n 1=0,→PDn 1=0,即⎩⎪⎨⎪⎧x -z =0,y -z =0. 令x =1,则y =1,z =1,所以n 1=(1,1,1). ………………………7分因为平面PAD 的一个法向量为n 2=(1,0,0), 所以cos <n 1,n 2>=n 1n 2∣n 1∣|n 2∣=33, 所以,由图可知二面角B -PD -A 的余弦值为33. ………………………10分23.(本小题满分10分)解:(1)两个球颜色不同的情况共有C2442=96(种). ………………………3分 (2)随机变量X 所有可能的值为0,1,2,3.P (X =0)=4 C 2496=14, ………………………5分 P (X =1)=3C 14C1396=38,P (X =2)=2C14C 1396=14, P (X =3)=C14C 1396=18. 所以随机变量X 的概率分布列为:………………………8分所以E (X )=014+138+214+318=54. ………………………10分 X 0 1 2 3 P14381418。
江苏省苏州市2020届第一学期高三期中调研试卷数学试题一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.) 1.已知集合A ={﹣2,﹣1,0,1,2},B ={}0x x >,则A I B = . 答案:{1,2}考点:集合的交集运算解析:∵集合A ={﹣2,﹣1,0,1,2},B ={}0x x >, ∴A I B ={1,2}. 2.已知复数z 满足i 2iz=+(i 为虚数单位),则复数z 的实部为 . 答案:﹣1 考点:复数 解析:∵i 2iz=+ ∴2i(2i)2i i 12i z =+=+=-+,则复数z 的实部为﹣1.3.已知向量a r =(x ,2),b r =(2,﹣1),且a r ⊥b r,则实数x 的值是 .答案:1考点:平面向量数量积坐标运算解析:∵a r =(x ,2),b r=(2,﹣1), ∴a r ·b r=2x ﹣2 ∵a r ⊥b r∴a r ·b r=2x ﹣2=0,解得x =1.4.函数y =的定义域为 . 答案:(1,2)考点:函数的定义域 解析:由题意得:1020x x ->⎧⎨->⎩,解得1<x <2,即原函数定义域为(1,2).5.等比数列{}n a 中,11a =,48a =,n S 是{}n a 的前n 项和,则5S = .答案:31考点:等比数列前n 项和 解析:由题意,341881a q a ===,解得q =2, ∴55213121S -==-. 6.已知tan 2α=,则sin cos 2sin ααα+的值为 .答案:25考点:同角三角函数关系式解析:sin sin tan 22cos cos 2sin cos 2sin 12tan 1225cos αααααααααα====++++⨯. 7.“2x >”是“1x >”的 条件.(在“充分不必要、必要不充分、充要、既不充分又不必要”选一填写.) 答案:充分不必要考点:充分条件、必要条件、充要条件的判断解析:因为“2x >”一定能推出“1x >”,但“1x >”不能推出“2x >”, 故“2x >”是“1x >”的充分不必要条件. 8.已知函数sin 2y x =的图象上每个点向左平移ϕ(π02ϕ<<)个单位长度得到函数y =πsin(2)6x +的图象,则ϕ的值为 .答案:12π 考点:三角函数的图像与性质解析:函数sin 2y x =的图象上每个点向左平移ϕ(π02ϕ<<)个单位 则得sin 2()y x ϕ=+,即sin 2()y x ϕ=+=πsin(2)6x +求得12πϕ=.9.设函数,0()21,0x e x f x x x ⎧≥=⎨+<⎩,则不等式2(2)()f x f x +>的解集为 .答案:(﹣1,2) 考点:函数的单调性解析:根据题意可得函数()f x 是R 上的单调递增函数,又2(2)()f x f x +> 22x x +>,220x x --<,解得﹣1<x <2,∴原不等式解集为(﹣1,2).10.已知函数()ln mf x x x=-的极小值大于0,则实数m 的取值范围为 . 答案:(-∞,1e-) 考点:利用导数研究函数极值解析:∵函数()ln m f x x x=-, ∴221()m x mf x x x x +'=+=,当m ≥0时,()f x '>0,()f x 在(0,+∞)单调递增;当m <0时,当x =﹣m 时,()f x 有极小值()ln()10f m m -=-+>, 解得:1m e<-. 11.已知各项都为正数的等差数列{}n a 中,53a =,则37a a 的最大值为 . 答案:9考点:等差数列的性质,基本不等式解析:∵各项都为正数的等差数列{}n a 中,53a =, ∴37526a a a +==∴23737()92a a a a +≤=,当且仅当37a a ==3时取“=”. 12.已知菱形ABCD 的棱长为3,E 为棱CD 上一点且满足CE 2ED =u u u r u u u r ,若AE EB 6⋅=-u u u r u u u r,则cosC = . 答案:13考点:平面向量数量积解析:∵AE EB 6⋅=-u u u r u u u r,∴(AD DE)(CB CE)6+⋅-=-u u u r u u u r u u u r u u u r12(CB CD)(CB CD)633--⋅-=-u u u r u u u r u u u r u u u r,2221CB CD CB CD 693-++⋅=-u u u r u u u r u u u r u u u r,∵菱形ABCD 的棱长为3,求得CB CD ⋅u u u r u u u r =3,∴CB CD 31cos C 93CB CD ⋅===u u u r u u u r u u u r u u u r .13.若方程π3cos(2)65x -=在(0,π)的解为1x ,2x ,则12cos()x x -= . 答案:35-考点:三角函数的图像与性质,诱导公式 解析:根据题意,令函数()cos(2)6f x x π=-,当3()5f x =时,在(0,π)上有两个零点1x ,2x ,一方面13cos(2)65x π-=,另一方面可得两个零点1x ,2x 关于直线12x π=对称,则2176x x π=-,则1211177cos()cos[()]cos(2)66x x x x x ππ-=--=- 113cos(2)cos(2)665x x πππ=--=--=-.14.已知函数23()3f x x x =-,1()ln x g x ea x -=--,若对于任意1x ∈(0,3),总是存在两个不同的2x ,3x ∈(0,3),使得123()()()f x g x g x ==,则实数a 的取值范围为 . 答案:[1,2ln34e --) 考点:函数与不等式解析:根据23111()3f x x x =-,1x ∈(0,3),求得1()f x 的值域为(0,4], 1()ln x g x ea x -=--,11()x g x ex-'=-,可以判断()g x '在(0,3)上单调递增 又(1)0g '=,故当0<x <1时,()g x '<0,()g x 在(0,1)单调递减 当1<x <3时,()g x '>0,()g x 在(0,1)单调递增 计算得(1)1g a =-,2(3)ln 3g e a =--,要使任意1x ∈(0,3),总是存在两个不同的2x ,3x ∈(0,3),使得123()()()f x g x g x ==,则210ln 34a e a -≤⎧⎨-->⎩,求得1≤a <2ln34e --.二、解答题(本大题共6小题,共计90分.请在答题纸指定区域.......内作答,解答应写出文字说明,证明过程或演算步骤.) 15.(本题满分14分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,C =120°,c =7,a ﹣b =2. (1)求a ,b 的值;(2)求sin(A +C)的值.16.(本题满分14分)已知向量a r =(cos x ,3cos x ),b r=(cos x ,sin x ).(1)若a r ∥b r ,x ∈[0,2π],求x 的值;(2)若()f x a b =⋅r r ,x ∈[0,2π],求()f x 的最大值及相应x 的值.17.(本题满分14分)已知等比数列{}n a 满足22a =,且2a ,31a +,4a 成等差数列. (1)求数列{}n a 的通项公式;(2)设21n n b a n =-+,求数列{}n b 的前n 项和为n T .18.(本题满分16分)如下图所示,某窑洞窗口形状上部是圆弧CD,下部是一个矩形ABCD,圆弧CD所在圆的圆心为O.经测量AB=4米,BC=3米,∠COD=120°,现根据需要把此窑洞窗口形状改造为矩形EFGH,其中E,F在边AB上,G,H在圆弧CD上.设∠OGF=θ,矩形EFGH的面积为S.(1)求矩形EFGH的面积S关于变量θ的函数关系式;(2)求cosθ为何值时,矩形EFGH的面积S最大?19.(本题满分16分)已知函数()f x x x=-. (1)求()f x 的图像在1x =处的切线方程;(2)求函数()()F x f x x =-的极大值;(3)若()ln af x x ≤对x ∈(0,1]恒成立,求实数a 的取值范围.20.(本题满分16分)已知数列{}n a 满足11(1)n n n a na a +-=-,n *∈N .(1)证明:数列{}n a 为等差数列;(2)设数列{}n a 的前n 项和为n S ,若211a a -=,且对任意的正整数n ,都有1113S <2311143n S S S +++⋅⋅⋅+<,求整数1a 的值; (3)设数列{}n b 满足310n n b a =+,若2115a a -=,且存在正整数s ,t ,使得s ta b +是整数,求1a 的最小值.附加题(共40分)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两题,在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A .(本题满分10分)已知二阶矩阵13a M b ⎡⎤=⎢⎥⎣⎦的特征值1λ=-所对应的一个特征向量为13-⎡⎤⎢⎥⎣⎦. (1)求矩阵M ;(2)设曲线C 在变换矩阵M 作用下得到的曲线C '的方程为2y x =,求曲线C 的方程.B .(本题满分10分)已知曲线C 的极坐标方程为2cos 23ραα=+(α为参数),直线l 的参数方程为1cos sin x t y t ββ=+⎧⎨=⎩(t 为参数,π02β<<),若曲线C 被直线l 13求β的值.C .(本题满分10分)设正数,,a b c 满足1a b c ++=,求证:32a b c b c c a a b ++≥+++.22.(本题满分10分)某射击小组有甲、乙、丙三名射手,已知甲击中目标的概率是34,甲、丙二人都没有击中目标的概率是112,乙、丙二人都击中目标的概率是14.甲乙丙是否击中目标相互独立. (1)求乙、丙二人各自击中目标的概率;(2)设乙、丙二人中击中目标的人数为X ,求X 的分布列和数学期望.23.(本题满分10分)如图,在直三棱柱111ABC A B C -中,90BAC ∠=︒,AB AC a ==,1AA b =,点E ,F 分别在棱1BB ,1CC 上,且113BE BB =,1113C F CC =.设b a λ=. (1)当3λ=时,求异面直线AE 与1A F 所成角的大小;(2)当平面AEF ⊥平面1A EF 时,求λ的值.。
江苏省苏州市2020届高三数学上学期期初调研考试试题(含解析)第I 卷(必做题,共160分)一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.)1.已知集合A ={1,3},B ={3,9},则A U B = . 答案:{1,3,9} 考点:集合的运算解析:∵A ={1,3},B ={3,9}, ∴A U B ={1,3,9} 2.如果复数23bii-+(b ∈R)的实部与虚部互为相反数,则b 等于 . 答案:1 考点:复数 解析:263231010bi b b i i --+=-+,由实部与虚部互为相反数得:6321010b b -+=,解得b =1. 3.下表是某同学五次数学附加题测试的得分情况,则这五次测试得分的方差为 .次数 1 2 3 4 5 得分3330272931答案:考点:平均数与方差解析:∵3330272931305x ++++==∴2222221[(3330)(3030)(2730)(2930)(3130)]45S =-+-+-+-+-=.4.已知4瓶饮料中有且仅有2瓶是果汁类饮料,从这4瓶饮料中随机取2瓶,则所取2瓶中至少有一瓶是果汁类饮料的概率为 . 答案:56考点:古典概型解析:4瓶饮料中随机取2瓶共有6种取法,所取2瓶中至少有一瓶是果汁类饮料共有5种取法,所以求得概率为56. 5.根据如图所示的伪代码,当输入的a ,b 分别为2,3时,最后输出的b 的值为 .答案:2考点:算法语言,伪代码解析:求得a =5,b =2,所以最后输出的b 的值为2.6.在平面直角坐标系xOy中,已知双曲线22221 x ya b-=(a>0,b>0)的两条渐近线方程为y=±2x,则该双曲线的离心率为.答案:5考点:双曲线的性质解析:由渐近线方程可得2ba=,所以b2=4a2,即c2﹣a2=4a2,所以225ca=,e=5(负值已舍去).7.如图,在直三棱柱ABC—A1B1C1中,若四边形AA1C1C是边长为4的正方形,且AB=3,BC =5,M是AA1的中点,则三棱锥A1—MBC1的体积为.答案:4考点:棱锥的体积解析:根据A1C1=4,A1B1=AB=3,B1C1=BC=5,可得∠C1A1B1=90°,又∠C1A1A=90°,可得C1A1⊥平面ABB1A1,所以111111234432A MBC C MBAV V==⨯⨯⨯⨯=——.8.已知等差数列{}n a的前n项和为n S,若1530S=,71a=,则10S的值为.答案:﹣5考点:等差数列前n项和解析:由1530S=可得82a=,又71a=,可得6a=,51a=-,所以110105610()5()52a aS a a+==+=-.9.若()y f x=是定义在R上的偶函数,当x∈[0,+∞)时,sin[0, 1)()(1)[1,)x xf xf x x∈⎧=⎨-∈+∞⎩,,,则(5)6fπ--=.答案:12考点:函数的奇偶性、周期性解析:1(5)(5)()sin 66662f f f ππππ--=+===. 10.已知在△ABC 中,AC =1,BC =3,若O 是该三角形内的一点,满足(OA OB)(CA +⋅-u u u r u u u r u u u r CB)u u u r=0,则CO AB ⋅u u u r u u u r= .答案:4考点:平面向量的数量积解析:设AB 的中点为D ,由(OA OB)(CA +⋅-u u u r u u u r u u u r CB)u u u r =0,得DO AB 0⋅=u u u r u u u r所以1CO AB (CD DO)AB CD AB (CA CB)(CA CB)2⋅=+⋅=⋅=+⋅-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r221(CA CB )42=-=u u ur u u u r . 11.已知sin 222cos2αα-=,则2sin sin 2αα+= .答案:1或85考点:同角三角函数关系式,倍角公式 解析:∵sin 222cos2αα-= ∴2sin 222(2cos 1)αα-=- 化简得cos (sin 2cos )0ααα-= 所以cos 0α=或tan 2α= 当cos 0α=,求得2sinsin 2αα+=1当tan 2α=,222222sin 2sin cos tan 2tan 8sin sin 2sin cos tan 15αααααααααα+++===++.12.已知点A 、B 是圆O :224x y +=上任意两点,且满足AB =P 是圆C :(x +4)2+(y +3)2=4上任意一点,则PA PB +u u u r u u u r的取值范围是 .答案:[4,16] 考点:圆的方程解析:取AB 中点C ,可得OC =1,所以动点C 在以O 为圆心,1为半径的圆上PA PB 2PC 2PC +==u u u r u u u r u u u r u u u r,而PC max =5+1+2=8,PC min =5﹣1﹣2=2, PA PB +u u u r u u u r 的最大值为16,最小值为4,取值范围为4≤PA PB +u u u r u u u r≤16.13.设实数a ≥1,若不等式2x x a a -+≥,对任意的实数x ∈[1,3]恒成立,则满足条件的实数a 的取值范围是 .答案:[1,2]U [72,+∞) 考点:函数性质综合解析:①当1≤a ≤2时,显然符合题意 ②当a >2时,2x x a a -+≥,2a x a x--≥ ∴2a x a x--≥或2a x a x --≤-化简得221x a x +≤+或221x a x -≥-恒成立求得221x y x +=+在[1,3]的最小值为32,即a ≤32与a >2矛盾,舍求得221x y x -=-在[1,3]的最大值为72,即a ≥72符合题意综上所述,a 的取值范围为1≤a ≤2或a ≥72. 14.在△ABC 中,若tan A tan Atan B tan C+=3,则sinA 的最大值为 .答案:5考点:基本不等式,正余弦定理解析:222222222222tan A tan A sin A cos B sin A cos C 22tan B tan C sin Bcos A sin cos A 22a c b a b c a aac ab b c a b c a C b cbc bc+-+-+=+=++-+- =222223a b c a =+- 所以2223()5a b c =+ cosA =222222()2522555b c b c a b c bc bc c b ++-==+≥当且仅当b =c 时取“=”所以A 是锐角,且cosA 的最小值为25,此时sinA.二、解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)如图,在直三棱柱ABC —A 1B 1C 1中,AB =BC ,点P 是棱AC 的中点.(1)求证:AB 1∥平面PBC 1;(2)求证:平面PBC 1⊥平面AA 1C 1C .16.(本小题满分14分) 已知函数7()sin()sin()412f x x x ππ=+++. (1)求函数()y f x =的最小正周期和单调递增区间;(2)当x ∈[0,π]时,试求函数()y f x =的最大值,并写出取得最大值时自变量x 的值.17.(本小题满分14分)已知椭圆C:22221x ya b+=(a>b>0)的四个顶点恰好是一边长为2,一内角为60°的菱形的四个顶点.(1)求椭圆C的方程;(2)若直线y=kx交椭圆C于A、B两点,在直线l:x+y﹣3=0上存在点P,使得△PAB为等边三角形,求实数k的值.18.(本小题满分16分)某地举行水上运动会,如图,岸边有A,B两点,∠BAC=30°.小船从A点以v千米/小时的速度沿AC方向匀速直线行驶,同一时刻运动员出发,经过t小时与小船相遇.(水流速度忽略不计)(1)若v=4,AB=2 km,运动员从B处出发游泳匀速直线追赶,为保证在1小时内(含1小时)能与小船相遇,试求运动员游泳速度的最小值;(2)若运动员先从A处沿射线AB方向在岸边跑步匀速行进m(0<m<t)小时后,再游泳匀速直线追赶小船,已知运动员在岸边跑步的速度为4千米/小时,在水中游泳的速度为2千米小时,试求小船在能与运动员相遇的条件下v的最大值.19.(本小题满分16分)已知函数()xf x e =,()lng x x =.(1)设2()()h x g x x =-,求函数()h x 的单调增区间;(2)设01x >,求证:存在唯一的0x ,使得函数()y g x =的图像在点A(0x ,0()g x )处的切线l 与函数()y f x =的图像也相切;(3)求证:对任意给定的正数a ,总存在正数x ,使得不等式()11f x a x--<成立.20.(本小题满分16分)等差数列{}n a 的前n 项和为n S ,数列{}n b 满足:1155b a ==,529a b ==,当n ≥3时,1n S +>n b ,且n S ,1n n S b +-,2n S -成等比数列,n N *∈.(1)求数列{}n a ,{}n b 的通项公式; (2)求证:数列{}n b 中的项都在数列{}n a 中; (3)将数列{}n a 、11n n b b +⎧⎫⎨⎬⎩⎭的项按照:当n 为奇数时,n a 放在前面;当n 为偶数时,11n n b b +放在前面进行“交叉排列”,得到一个新的数列:1a ,121b b ,231b b ,2a ,3a ,341b b ,451b b ,…这个新数列的前n 和为n T ,试求n T 的表达式.第II 卷(附加题,共40分)21.【选做题】本题包括A ,B ,C 三小题,请选定其中两题作答,每小题10分共计20分,解答时应写出文字说明,证明过程或演算步骤. A .选修4—2:矩阵与变换设变换T 是按逆时针旋转2π的旋转变换,对应的变换矩阵是M . (1)求点P(1,1)在T 作用下的点P ′的坐标;(2)求曲线C :y =x 2在变换T 的作用下所得到的曲线C′的方程.B.选修4—4:坐标系与参数方程己知直线的参数方程为11x ty t=+⎧⎨=-⎩(t为参数),圆C的参数方程为cossinx ay aθθ=⎧⎨=⎩(a>0,θ为参数),点P是圆C上的任意点,若点P到直线的距离的最大值为21+,求实数a的值.解:由直线的参数方程为11x ty t=+⎧⎨=-⎩(t为参数)可得2y x=-+由圆C的参数方程为cossinx ay aθθ=⎧⎨=⎩可得圆的标准方程为222x y a+=求得圆心O到直线的距离为2,所以a+2=21+,求得a的值为1.C.选修4—5:不等式选讲已知x、y、z均为正数,求证:111x y zyz zx xy x y z ++≥++.【必做题】第22题、第23题,每题10分,共计20分,解答时应写出文字说明,证明过程或演算步骤.22.(本小题满分10分)袋中装有大小相同的黑球和白球共9个,从中任取2个都是白球的概率为512.现甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取……,每次摸取1个球,取出的球不放回,直到其中有人取到白球时终止.用随机变量X 表示取球终止时取球的总次数.(1)求袋中原有白球的个数;(2)求随机变量X 的概率分布及数学期望E(X).23.(本小题满分10分)设集合M ={﹣1,0,1},集合A n ={}123(,,,,),1,2,,n i x x x x x M i n ∈=L L ,集合A n 中满足条件“1≤12n x x x +++L ≤m ”的元素个数记为n m S .(1)求22S 和42S 的值;(2)当m <n 时,求证:11322n n m n m S ++<+-.。