2015-2016学年浙江省湖州中学高二(上)数学期中试卷带解析答案
- 格式:doc
- 大小:429.00 KB
- 文档页数:16
2015-2016学年第一学期高二年级期中测试数学学科试题命题人审题人(第一卷)( 满分100分)一、填空题 (本大题共8小题,每小题5分,共40分)1.经过点(2,1),且与直线«Skip Record If...»平行的直线方程是___________________.2.曲线«Skip Record If...»在点«Skip Record If...»处的切线方程为_____ _____.的右焦点为焦点的抛物线方程是.3.顶点在原点且以双曲线«Skip Record If...»4.圆«Skip Record If...»与圆«Skip Record If...»的位置关系是________________.5. 已知函数«Skip Record If...»,其导函数为«Skip Record If...».则«Skip Record If...»=_____________.6.直线«Skip Record If...»被圆«Skip Record If...»:所截得的弦长为.7. 若方程«Skip Record If...»表示椭圆,则实数«Skip Record If...»的取值范围是.8.已知双曲线Γ:«Skip Record If...»的右顶点为«Skip Record If...»,与«Skip Record If...»轴平行的直线交Γ于«Skip Record If...»,«Skip Record If...»两点,记«Skip Record If...»,若Γ的离心率为«Skip Record If...»,则«Skip Record If...»的取值的集合是_________.二、解答题 (本大题共4小题,共计60分)9. (本小题满分14分)已知三角形的顶点«Skip Record If...»,试求:(1)«Skip Record If...»边所在直线的方程;(2)«Skip Record If...»边上的高所在直线的方程.10. (本小题满分14分)已知椭圆«Skip Record If...».左右焦点分别为«Skip Record If...».(1)求椭圆的右焦点«Skip Record If...»到对应准线的距离;(2)如果椭圆上第一象限的点«Skip Record If...»到右准线的距离为«Skip Record If...»,求点«Skip Record If...»到左焦点«Skip Record If...»的距离.11. (本小题满分16分)(1)对于函数«Skip Record If...»,已知«Skip Record If...»如果«Skip Record If...»,求«Skip Record If...»的值;(2)直线«Skip Record If...»能作为函数«Skip Record If...»图象的切线吗?若能,求出切点坐标;若不能,简述理由.12. (本小题满分16分)已知平面直角坐标系«Skip Record If...»,圆«Skip Record If...»是«Skip Record If...»的外接圆.(1)求圆«Skip Record If...»的一般方程;(2)若过点«Skip Record If...»的直线«Skip Record If...»与圆«Skip Record If...»相切,求直线«Skip Record If...»的方程.(第二卷) ( 满分60分)三、填空题 (本大题共6小题,每小题5分,共30分)13.直线«Skip Record If...»经过原点,且经过两条直线«Skip Record If...»的交点,则直线«Skip Record If...»的方程为______________.14. 已知圆心在第一象限的圆过点«Skip Record If...»,圆心在直线«Skip Record If...»上,且半径为5,则这个圆的方程为________________.x=处的切线方程是15.已知偶函数«Skip Record If...»的图象经过点(0,1),且在1f(xy=的解析式为.y x=-,则)216. 已知«Skip Record If...»为正数,且直线«Skip Record If...»与直线«Skip Record If...»互相垂直,则«Skip Record If...»的最小值为 .17.过点«Skip Record If...»作圆«Skip Record If...»:«Skip Record If...»的切线,切点为«Skip Record If...»,如果«Skip Record If...»,那么«Skip Record If...»的取值范围是.18.如图,椭圆,椭圆«Skip Record If...»的左、右焦点分别为«Skip Record If...»过椭圆上一点«Skip Record If...»和原点«Skip Record If...»作直线«Skip Record If...»交圆«Skip Record If...»于«SkipRecord I f...»两点,若«Skip Record If...»,则«Skip Record If...»的值为四、解答题 (本大题共2小题,共计30分)19. (本题满分14分)抛物线«Skip Record If...»在点«Skip Record If...»«Skip Record If...»处的切线«Skip Record If...»分别交«Skip Record If...»轴、«Skip Record If...»轴于不同的两点«Skip Record If...»、«Skip Record If...».(1)如果«Skip Record If...»,求点«Skip Record If...»的坐标:(2)圆心«Skip Record If...»在«Skip Record If...»轴上的圆与直线«Skip Record If...»相切于点«Skip Record If...»,当«Skip Record If...»时,求圆的方程.20. (本题满分16分)已知椭圆C:«Skip Record If...».(1)如果椭圆«Skip Record If...»的离心率«Skip Record If...»,经过点P(2,1).①求椭圆«Skip Record If...»的方程;②经过点P的两直线与椭圆«Skip Record If...»分别相交于A,B,它们的斜率分别为«Skip Record If...».如果«Skip Record If...»,试问:直线AB的斜率是否为定值?并证明.(2) 如果椭圆«Skip Record If...»的«Skip Record If...»,点«Skip Record If...»分别为考试号_______________________班级______________学号_______姓名_________________________ ————————密——————————————————封——————————————线———————椭圆«SKIP RECORD IF...»的上、下顶点,过点«SKIP RECORD IF...»的直线«SKIP RECORD IF...»分别与椭圆«SKIP RECORD IF...»交于«SKIP RECORD IF...»两点. 若△«SKIP RECORD IF...»的面积是△«SKIP RECORD IF...»的面积的«SKIP RECORD IF...»倍,求«SKIP RECORD IF...»的最大值.2015-2016学年第一学期高二年级期中测试数 学 学 科 答 题 纸1. x y -5.2e + (,3)29.解(1)53BC k =-,BC 边所在直线在y 轴上的截距为2, BC 边所在直线方程为52,53603y x x y =-++-=(2)25AC k =,AC 边上的高的斜率为52k =-,AC 边上的高的直线的方程为53(3)2y x +=--,即5290x y +-=10. (本小题满分14分)解(1)右焦点2(3,0)F ,对应右准线253x =.右焦点到对应准线的距离为163. (2)椭圆的离心率为35e =,根据第二定义, 231616535PF ed ==⋅=,根据第一定义12163421055PF a PF =-=-=,点P 到左焦点1F 的距离为345. 11. (本小题满分16分)解(1)17 (2)能切点坐标33(2,)(2,)()33k k k Z ππππ+--∈或 12. (本小题满分16分)解:(1)设圆C 方程为,022=++++F Ey Dx y x则044320623480F D E F D E F ⎧=⎪+++=⎨⎪+++=⎩ 解得D= —8,E=F=0.所以圆C :2280.x y x +-= (2)圆C :22(4)16.x y -+=圆心C(4,0),半径4当斜率不存在时,:0l x =符合题意;当斜率存在时,设直线:43,430,l y kx kx y =+-+=即 因为直线l 与圆C 相切,所以圆心到直线距离为4,2|443|34,1k k k+==+解得所以直线3:43,3120.3l y x x y =-++-=即 故所求直线0,3120.l x x y =+-=为或(第二部分满分60分)三、填空题 (本大题共6小题,每小题5分,共30分)13.20x y -= 14. 22(1)(3)25x y -+-= 15.4259()122f x x x =-+ 16. 25/2. 17.011x -≤≤ 18..6 四、解答题 (本大题共2小题,共计30分) 19. (本题满分14分)解:(1)由抛物线2:C y x =得x y 2=',02|0x y x x ='∴=切线l 的方程为)(2000x x x y y -=- 其中200x y = 令,0=x 得20x y -=;令,0=y 得20x x =;所以)0,2(0x A ,),0(20x B - 22400174x AB x =+=得到2004,2x x ==±,点P 的坐标为(2,4)±(2)设圆心E 的坐标为),0(b ,由题知1-=⋅l PE k k ,即12000-=⋅-x x by , 所以210-=-b y ; 由||||PA PE =得20202020)2()(y x b y x +=-+整理得0134020=--y y 解得10=y 或410-=y (舍去) 所以23=b ,圆E 的圆心E 的坐标为)23,0(,半径=r =||PE 25)(2020=-+b y x 圆E 的方程为45)23(22=-+y x20. (本题满分16分)解(1)①由已知得2c a =,22411a b +=,222a b c =+,联立解得228,2a b ==. 椭圆M 的方程为22182x y +=. ②直线AB 的斜率为定值12由已知直线1:1(2)PA y k x -=-代入椭圆M 的方程消去y 并整理得22111(2)[(14)(288)]0x k x k k -+++-=所以2112188214A k k x k --=+,从而2112144114A k k y k --+=+ 同理2222288214B k k x k --=+,2222244114B k k y k --+=+因为120k k +=所以121222124()(41)(14)(14)A B k k k k y y k k ---==++ 121222128()(41)(14)(14)A B k k k k x x k k ---=++ 12A B AB A B y y k x x -==-为定值(2) 解法一:12TBC S BC t t =⋅=△ ,直线TB 方程为:11y x t =+,联立221411x y y x t ⎧+=⎪⎪⎨⎪=+⎪⎩,得E x =22284,44t t E t t ⎛⎫-- ⎪++⎝⎭ 到:TC 30x ty t --=的距离d ==直线TC 方程为:31y x t =-,联立221431x y y x t ⎧+=⎪⎪⎨⎪=-⎪⎩,得22436F t x t =+,所以=所以S 所以k 令21212t m +=>,则2213k m m m ==+-≤,当且仅当24m =,即t =±=”, 所以k 的最大值为4. 解法二:直线TB 方程为11y x t =+,联立221411x y y x t ⎧+=⎪⎪⎨⎪=+⎪⎩,得E x直线TC 方程为:31y x t =-,联立221431x y y x t ⎧+=⎪⎪⎨⎪=-⎪⎩,得F x =1sin 21sin 2TBC TEFTB TC BTCS TB TC k S TE TF TE TF ETF ⋅⋅∠⋅===⋅⋅⋅∠△△T CT B T E T F x x x x TB TC TE TF x x x x --=⋅=⋅-- 22824436t tt t t t t t =⋅=+-++令21212t m +=>,则22192413k m m m ==+-≤,当且仅当24m =,即t =±=”,所以k 的最大值为43.18解。
2015年秋季学期期中质量调研考试高二数学(理科)试题一、选择题:本大题共8个小题;每小题5分,共40分.在每小题给出的四个选项中,有且只有一项是符合题目要求的. 1.已知集合{2,0,1,4}A =,集合{04,R}=<≤∈B x x x ,集合C A B = .则集合C 可表示为A .{2,0,1,4}B . {1,2,3,4}C .{1,2,4}D . {04,R}x x x <≤∈2.复数z 满足(1i)1z -=(其中i 为虚数单位),则z =A .11i22- B .11i 22+ C .11i 22-+ D .11i 22-- 3.下列函数中,为奇函数的是A .122xx y =+ B .{},0,1y x x =∈C .sin y x x =⋅D .1,00,01,0x y x x <⎧⎪==⎨⎪->⎩4.下面几种推理中是演绎推理....的为A .由金、银、铜、铁可导电,猜想:金属都可导电;B .猜想数列111,,,122334⋅⋅⋅⨯⨯⨯的通项公式为1(1)n a n n =+()n N +∈; C .半径为r 圆的面积2S r π=,则单位圆的面积S π=;D .由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-=5.已知()()32213af x x a x=+-+,若()18f '-=,则()1f -= A .4 B .5 C .2- D .3- 6.“1ω=”是“ 函数()cos f x x ω=在区间[]0,π上单调递减”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 7.如图1,在矩形OABC 内:记抛物线21y x =+ 与直线1y x =+围成的区域为M (图中阴影部分). 则区域M 面积与矩形OABC 面积之比为 A .118 B .112C .16 D .1311+8. 已知可导函数()f x ()x ÎR 满足()()f x f x ¢>,则当0a >时,()f a 和e (0)a f 大小关系为A. ()<e (0)a f a fB. ()>e (0)a f a fC. ()=e (0)a f a fD. ()e (0)a f a f ≤ 二、填空题:本大题共6小题,每小题5分,满分30分. 9.函数f x =()的定义域为 .10.某几何体的三视图如图3所示,其正视图是边长为2 的正方形,侧视图和俯视图都是等腰直角三角形,则此几 何体的体积是 .11.已知双曲线2222:1x y C a b -=与椭圆22194x y+=有相同的焦点,且双曲线C 的渐近线方程为2y x =±,则双曲线C 的方程为 .12. 设实数,x y 满足,102,1,x y y x x ≤⎧⎪≤-⎨⎪≥⎩向量2,x y m =-()a ,1,1=-()b .若// a b ,则实数m 的最大值为 .13.在数列{}n a 中,已知24a =, 315a =,且数列{}n a n +是等比数列,则n a = . 14. 已知111()1()23f n n n+=+++鬃??N ,且27)32(,3)16(,25)8(,2)4(,23)2(>>>>=f f f f f ,推测当2n ≥时,有__________________________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 15.(本小题满分12分)已知函数()sin(2)(0π)f x x ϕϕ=+<<的图像经过点π(,1)12. (1)求ϕ的值;(2)在ABC ∆中,A ∠、B ∠、C ∠所对的边分别为a 、b 、c ,若222a b c ab +-=,且π()212A f +=.求sin B .16.(本小题满分12分)已知数列}{n a 的前n 项和n S 满足:2222n n n na a S a -+=,且0,.n a n +>∈N(1)求123,,;a a a(2)猜想}{n a 的通项公式,并用数学归纳法证明17.(本小题满分14分)如图3所示,平面ABCD ⊥平面BCEF ,且四边形ABCD 为 矩形,四边形BCEF 为直角梯形,//BF CE ,BC CE ⊥, 4DC CE ==,2BC BF ==.(1)求证://AF 平面CDE ;(2)求平面ADE 与平面BCEF 所成锐二面角的余弦值; (3)求直线EF 与平面ADE 所成角的余弦值.18.(本小题满分14分)已知数列{}n a 的前n 项和为n S ,且满足24(1)(1)(2)(N )n n n S n a n *++=+∈. (1)求1a ,2a 的值; (2)求n a ; (3)设1n n n b a +=,数列{}n b 的前n 项和为n T ,求证:34n T <.19.(本小题满分14分)设双曲线C :12222=-by a x (a >0,b >0)的一个焦点坐标为(3,0),离心率e =A 、B 是双曲线上的两点,AB 的中点M (1,2).(1)求双曲线C 的方程; (2)求直线AB 方程;(3)如果线段AB 的垂直平分线与双曲线交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆?为什么?20.(本小题满分14分)设函数3211()(0)32a f x x x ax a a -=+-->. (1)若函数)(x f 在区间(-2,0)内恰有两个零点,求a 的取值范围; (2)当a =1时,求函数)(x f 在区间[t ,t +3]上的最大值.ADBCFE图3参考答案9. {2}x x ≥; 10. 83; 11.2214y x -=; 12.6;13.123n n -⋅-; 14.2(2)2n n f +>;三、解答题15.解:(1)由题意可得π()112f =,即πsin()16ϕ+=. ……………………………2分0πϕ<< ,ππ7π666ϕ∴<+<, ππ62ϕ∴+=, π3ϕ∴=. ……………5分(2)222a b c ab +-= ,2221cos 22a b c C ab +-∴==, (7)分sin C ∴==. …………………………………………8分 由(1)知π()sin(2)3f x x =+,π(+)sin()cos 2122A f A A π∴=+==()0,A π∈ , sin A ∴==, ……………………………10分 又sin sin(π())sin()B A C A C =-+=+ ,1sin sin cos cos sin 2B A C A C ∴=+==12分 16. (1)1111112a a S a ==+-,所以,11a =-?,又∵0n a >,所以11a =.221221=12a S a a a +=+-, 所以2a =, 3312331=12a S a a a a ++=+- 所以3a =(2)猜想n a =证明: 1o 当1n =时,由(1)知11a =成立.2o 假设()n k k +=?N 时,k a =成立1+11111=(1)(1)22k k k k k k ka a a S S a a +++-=+--+- 1112k k a a ++=+-所以21120k k a +++-=1k a +=所以当1n k =+时猜想也成立.综上可知,猜想对一切n +ÎN 都成立.17.解:(法一)(1)取CE 中点为G ,连接DG 、FG ,//BF CG 且BF CG =,∴ 四边形BFGC 为平行四边形,则//BC FG 且BC FG =. ∴ …………2分四边形ABCD 为矩形, //BC AD ∴且BC AD =,//FG AD ∴且FG AD =,∴四边形AFGD 为平行四边形,则//AF DG . DG ⊂ 平面CDE ,AF ⊄平面CDE ,//AF ∴平面CDE . ……………………………………………………4分(2)过点E 作CB 的平行线交BF 的延长线于P ,连接FP ,EP ,AP ,////EP BC AD ,∴A ,P ,E ,D 四点共面.四边形BCEF 为直角梯形,四边形ABCD 为矩形,∴EP CD ⊥,EP CE ⊥,又 CD CE C = ,EP ∴⊥平面CDE ,∴EP DE ⊥,又 平面ADE 平面BCEF EP =,∴DEC ∠为平面ADE 与平面BCEF 所成锐二面角的平面角.……………………7分4DC CE ==,∴cos CE DEC DE ∠==. 即平面ADE 与平面BCEF . ……………………9分 (3)过点F 作FH AP ⊥于H ,连接EH ,根据(2)知A ,P ,E ,D 四点共面,////EP BC AD ,∴BC BF ⊥,BC AB ⊥,AD BC FEP又 AB BF B = , BC ∴⊥平面ABP , ∴BC FH ⊥,则FH EP ⊥.又 FH AP ⊥, FH ∴⊥平面ADE .∴直线EF 与平面ADE 所成角为HEF ∠. ……………………………11分4DC CE ==,2BC BF ==,∴0sin 45FH FP ==EF ==HE =,∴cos HE HEF EF ∠===. 即直线EF 与平面ADE. ……………………………14分 (法二)(1) 四边形BCEF 为直角梯形,四边形∴BC CE ⊥,BC CD ⊥, 又 平面ABCD ⊥平面BCEF ,且 平面ABCD 平面BCEF BC =,DC ∴⊥平面BCEF .以C 为原点,CB 所在直线为x 轴,CE 所在直线为y CD 所在直线为z 轴建立如图所示空间直角坐标系.根据题意我们可得以下点的坐标:(2,0,4)A ,(2,0,0)B ,(0,0,0)C ,(0,0,4)D ,(0,4,0)E ,(2,2,0)F , 则(0,2,4)AF =- ,(2,0,0)CB =. ………………2分BC CD ⊥ ,BC CE ⊥, CB ∴为平面CDE 的一个法向量.又0220(4)00AF CB ⋅=⨯+⨯+-⨯=,//AF ∴平面CDE . …………………………………………………………4分(2)设平面ADE 的一个法向量为1111(,,)n x y z = ,则110,0.AD n DE n ⎧⋅=⎪⎨⋅=⎪⎩(2,0,0)AD =- ,(0,4,4)DE =-,∴11120440x y z -=⎧⎨-=⎩, 取11z =,得1(0,1,1)n = . ……………………………6分 DC ⊥ 平面BCEF ,∴平面BCEF 一个法向量为(0,0,4)CD =,设平面ADE 与平面BCEF 所成锐二面角的大小为α,则cos α= 因此,平面ADE 与平面BCEF. …………………9分 (3)根据(2)知平面ADE 一个法向量为1(0,1,1)n =,(2,2,0)EF =- ,1111cos ,2EF n EF n EF n ⋅∴<>===-⋅,………12分 设直线EF 与平面ADE 所成角为θ,则cos sin ,EF n θ=<因此,直线EF 与平面ADE. ………………………14分 【说明】本题主要考察空间点、线、面位置关系,二面角及三角函数及空间坐标系等基础知识,考查空间想象能力、运算能力和推理论证能力,考查用向量方法解决数学问题的能力.18. 解:(1)当=1n 时,有2114(11)(+1=1+2a a ⨯+)(),解得1=8a .当=2n 时,有21224(21)(1)(22)a a a ⨯+++=+,解得2=27a .……………2分(2)(法一)当2n ≥时,有2(2)4(1)1n n n a S n ++=+, ……………①211(1)4(1)n n n a S n--++=. …………………② ①—②得:221(2)(1)41n n n n a n a a n n-++=-+,即:331(1)=n n a n a n -+.…………5分 ∴1223333===1(1)(1)3n n n a a a a n n n --==+-….∴ 3=(1)n a n + (2)n ≥.………………………………………8分 另解:33333121333121(1)42(1)(1)3n n n n n a a a n n a a n a a a nn ---+=⋅⋅⋅⋅=⋅⋅⋅⋅=+- . 又 当=1n 时,有1=8a , ∴3=(1)n a n +. …………………………8分(法二)根据1=8a ,2=27a ,猜想:3=(1)na n +. ………………………………3分用数学归纳法证明如下:(Ⅰ)当1n =时,有318(11)a ==+,猜想成立. (Ⅱ)假设当n k =时,猜想也成立,即:3=(1)k a k +.那么当1n k =+时,有2114(11)(1)(12)k k k S k a +++++=++,即:211(12)4(1)11k k k a S k +++++=++,………………………①又 2(2)4(1)1kk k a S k ++=+, …………………………②①-②得:22223111(3)(2)(3)(2)(1)4=2121k k k k k a k a k a k k a k k k k ++++++++=--++++, 解,得33+1(2)(11)k a k k =+=++. ∴当1n k =+时,猜想也成立. 因此,由数学归纳法证得3=(1)n a n +成立.………………………………………8分(3) 211111=(1(11n n n b a n n n n n +=<=-+++)), .................................10分 ∴1231=n n n T b b b b b -+++++ (22222)11111=234(1)n n ++++++ (2)11111<22323(1)(1)n n n n +++++⨯⨯-+… 111111111=()()()()4233411n n n n +-+-++-+--+… 1113=4214n +-<+.………………………………………14分19.解:(1)依题意得⎪⎩⎪⎨⎧===33a ce c ,解得a =1. (1分) 所以222312b c a =-=-=, (2分)故双曲线C 的方程为2212y x -=. (3分) (2)设1122(,),(,)A x y B x y ,则有221122221212y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩. 两式相减得:121212121()()()()2x x x x y y y y -+=-+ , (4分) 由题意得12x x ≠,221=+x x ,421=+y y , (5分) 所以1)(221212121=++=--y y x x x x y y ,即1=AB k . (6分)故直线AB 的方程为1y x =+. (7分) (3)假设A 、B 、C 、D 四点共圆,且圆心为P. 因为AB 为圆P 的弦,所以圆心P 在AB 垂直平分线CD 上;又CD 为圆P 的弦且垂直平分AB ,故圆心P 为CD 中点M . (8分) 下面只需证CD 的中点M 满足|MA |=|MB |=|MC |=|MD |即可.由22112y x y x =+⎧⎪⎨-=⎪⎩得:A (-1,0),B (3,4). (9分)由(1)得直线CD 方程:3y x =-+, (10分)由22312y x y x =-+⎧⎪⎨-=⎪⎩得:C (-3+52,6-52),D (-3-52,6+52), (11分)所以CD 的中点M (-3,6). (12分) 因为102364||=+=MA ,102436||=+=MB ,1022020||=+=MC ,1022020||=+=MD , (13分)所以||||||||MD MC MB MA ===,即 A 、B 、C 、D 四点在以点M (-3,6)为圆心,102为半径的圆上. (14分) 20.解:(1)∵3211()(0)32a f x x x ax a a -=+--> ∴()2()1(1)()f x x a x a x x a '=+--=+-, (1分) 令()0f x '=,解得121,0x x a =-=> (2分) 当x 变化时,)(x f ',)(x f 的变化情况如下表:故函数)(x f 的单调递增区间为(-∞,-1),(a ,+∞);单调递减区间为(-1,a );(4分) 因此)(x f 在区间(-2,-1)内单调递增,在区间(-1,0)内单调递减,要使函数)(x f 在区间(2,0)-内恰有两个零点,当且仅当⎪⎩⎪⎨⎧<>-<-0)0(0)1(0)2(f f f , (5分)解得103a <<, 所以a 的取值范围是(0,31). (6分) (2)当a =1时,131)(3--=x x x f . 由(1)可知,函数)(x f 的单调递增区间为(-∞,-1),(1,+∞);单调递减区间为(-1,1);31)1()(-=-=f x f 极大值. (7分)①当t +3<-1,即t <-4时,因为)(x f 在区间[t ,t +3]上单调递增,所以)(x f 在区间[t ,t +3]上的最大值为583311)3()3(31)3()(233max +++=-+-+=+=t t t t t t f x f ; (9分) ②当231≤+≤-t ,即14-≤≤-t 时,因为)(x f 在区间(]1,-∞-上单调递增,在区间[-1,1]上单调递减,在区间[1,2]上单调递增,且31)1()2(-=-=f f ,所以)(x f 在区间(]2,∞-上的最大值为31)1()2(-=-=f f . (10分)由231≤+≤-t ,即14-≤≤-t 时,且-1 [t ,t +3],所以)(x f 在[,3]t t +上的最大值为31)1()(max -=-=f x f ; (11分) ③当t +3>2,即t >-1时, 由②得)(x f 在区间(]2,∞-上的最大值为31)1()2(-=-=f f . 因为)(x f 在区间(1,+∞)上单调递增,所以)2()3(f t f >+,故)(x f 在[],3t t +上的最大值为58331)3()(23max +++=+=t t t t f x f . (13分) 综上所述,当a =1时,)(x f 在[t ,t +3]上的最大值⎪⎪⎩⎪⎪⎨⎧-≤≤--->-<+++=)14(31)14(58331)(23max t t t t t t x f 或. (14分)。
浙江省湖州市高二上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)已知抛物线y2=4x,点P在此抛物线上,则P到直线y=2x+3和y轴的距离之和的最小值是()A .B .C . 2D .2. (2分) (2015高一上·银川期末) 如图,M是正方体ABCD﹣A1B1C1D1的棱DD1的中点,给出下列命题①过M点有且只有一条直线与直线AB、B1C1都相交;②过M点有且只有一条直线与直线AB、B1C1都垂直;③过M点有且只有一个平面与直线AB、B1C1都相交;④过M点有且只有一个平面与直线AB、B1C1都平行.其中真命题是()A . ②③④B . ①③④C . ①②④D . ①②③3. (2分)点P(a,b,c)关于xOy平面的对称点的坐标为()A . (a,b,﹣c)B . (﹣a,b,c)C . (a,﹣b,c)D . (﹣a,﹣b,c)4. (2分)已知双曲线-=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=24x 的准线上,则双曲线的方程为()A .B .C .D .5. (2分)过边长为1的正方形ABCD顶点A,作线段EA⊥平面ABCD,若EA=1,则平面ADE与平面BCE所成二面角的大小为()A . 30°B . 45°C . 60°D . 150°6. (2分)已知相交直线l1、l2的夹角为θ,则方程x2+y2sinθ=1表示的图形是()A . 圆B . 椭圆C . 双曲线D . 圆或椭圆7. (2分) (2016高二下·珠海期末) 已知直线y=k(x-3)与双曲线,有如下信息:联立方程组消去y后得到方程Ax2+Bx+C=0,分类讨论:(1)当A=0时,该方程恒有一解;(2)当时,恒成立。
在满足所提供信息的前提下,双曲线离心率的取值范围是()A .B . (1,9]C . (1,2]D .8. (2分)已知正方体ABCD﹣A1B1C1D1中,点H是棱B1C1中点,则四边形BDD1H是()A . 平行四边形B . 矩形C . 空间四边形D . 菱形二、填空题 (共7题;共7分)9. (1分)(2017·郴州模拟) 设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B 两点,|AB|为C的实轴长的2倍,则C的离心率为________.10. (1分)(2016·四川模拟) 某几何体的三视图如图所示,其中左视图为半圆,则主视图中α角的正切值为________.11. (1分)已知双曲线E的中心为原点,F(3,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为________12. (1分) (2016高二上·陕西期中) 已知圆C:(x﹣1)2+(y﹣1)2=2经过椭圆Γ:(a>b >0)的右焦点F和上顶点B,则椭圆Γ的离心率为________.13. (1分) (2016高二下·六安开学考) 已知离心率为e的双曲线和离心率为的椭圆有相同的焦点F1 ,F2 , P是两曲线的一个公共点,若∠F1PF2=60°,则e=________.14. (1分)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北的方向上,行驶600m后到达B处,测得此山顶在西偏北的方向上,仰角为,则此山的高度________ m.15. (1分)(2017·南通模拟) 在平面直角坐标系xOy中,直线2x+y=0为双曲线 =1(a>0,b>0)的一条渐近线,则该双曲线的离心率为________.三、解答题 (共5题;共40分)16. (5分)如图,在三棱柱ABC﹣A1B1C1中,已知侧棱与底面垂直,∠CAB=90°,且AC=1,AB=2,E为BB1的中点,M为AC上的一点, = .(Ⅰ)证明:CB1∥平面A1EM;(Ⅱ)若A1A的长度为,求三棱锥E﹣C1A1M的体积.17. (10分) (2016高二上·长春期中) 已知抛物线C:y2=8x的焦点为F,过F作倾斜角为60°的直线l.(1)求直线l的方程;(2)求直线l被抛物线C所截得的弦长.18. (10分) (2016高二上·杭州期末) 已知圆C:(x﹣1)2+(y﹣1)2=2经过椭圆Γ: + =1(a >b>0)的右焦点F和上顶点B.(1)求椭圆Γ的方程;(2)过原点O的射线l与椭圆Γ在第一象限的交点为Q,与圆C的交点为P,M为OP的中点,求•的最大值.19. (5分) (2017高三上·珠海期末) 如图,四边形ABCD与BDEF均为菱形,∠DAB=∠DBF=60°,且FA=FC.(Ⅰ)求证:AC⊥平面BDEF;(Ⅱ)求证:FC∥平面EAD;(Ⅲ)求二面角A﹣FC﹣B的余弦值.20. (10分)(2018·延边模拟) 已知中心在原点,焦点在x轴上的椭圆C的离心率为,且经过点M(1,),过点P(2,1)的直线l与椭圆C相交于不同的两点A,B.(1)求椭圆C的方程;(2)是否存在直线l,满足?若存在,求出直线l的方程;若不存在,请说明理由.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共7题;共7分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、三、解答题 (共5题;共40分)16-1、17-1、17-2、18-1、18-2、20-1、20-2、第11 页共11 页。
2015-2016学年浙江省普通高中高二(上)学业水平测试数学试卷一、选择题(本大题共18小题,每小题3分,共54分.每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.(3分)函数f(x)=3的定义域为()A.(﹣∞,0)B.[0,+∞)C.[2,+∞)D.(﹣∞,2)2.(3分)下列数列中,构成等比数列的是()A.2,3,4,5 B.1,﹣2,﹣4,8 C.0,1,2,4 D.16,﹣8,4,﹣2 3.(3分)任给△ABC,设角A,B,C所对的边分别为a,b,c,则下列等式成立的是()A.c2=a2+b2+2abcosC B.c2=a2+b2﹣2abcosCC.c2=a2+b2+2absinC D.c2=a2+b2﹣2absinC4.(3分)如图,某简单组合体由一个圆锥和一个圆柱组成,则该组合体三视图的俯视图为()A. B.C.D.5.(3分)要得到余弦曲线y=cosx,只需将正弦曲线y=sinx向左平移()A.个单位B.个单位C.个单位D.个单位6.(3分)在平面直角坐标系中,过点(0,1)且倾斜角为45°的直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.(3分)已知平面向量=(1,x),=(y,1).若∥,则实数x,y一定满足()A.xy﹣1=0 B.xy+1=0 C.x﹣y=0 D.x+y=08.(3分)已知{a n}(n∈N*)是以1为首项,2为公差的等差数列.设S n是{a n}的前n项和,且S n=25,则n=()A.3 B.4 C.5 D.69.(3分)设抛物线y2=2px(p>0)的焦点为F.若F到直线y=x的距离为,则p=()A.2 B.4 C.2 D.410.(3分)在空间直角坐标系Oxyz中,若y轴上点M到两点P(1,0,2),Q (1,﹣3,1)的距离相等,则点M的坐标为()A.(0,1,0)B.(0,﹣1,0)C.(0,0,3)D.(0,0,﹣3)11.(3分)若实数x,y满足,则y的最大值为()A.B.1 C.D.12.(3分)设a>0,且a≠1,则“a>1”是“log a<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件13.(3分)如图,在正方体ABCD﹣A1B1C1D1中,M为棱D1C1的中点.设AM与平面BB1D1D的交点为O,则()A.三点D1,O,B共线,且OB=2OD1B.三点D1,O,B不共线,且OB=2OD1C.三点D1,O,B共线,且OB=OD1D.三点D1,O,B不共线,且OB=OD114.(3分)设正实数a,b满足a+λb=2(其中λ为正常数).若ab的最大值为3,则λ=()A.3 B.C.D.15.(3分)在空间中,设l,m为两条不同直线,α,β为两个不同的平面,则下列命题正确的是()A.若l⊂α,m不平行于l,则m不平行于αB.若l⊂α,m⊂β,且α,β不平行,则l,m不平行C.若l⊂α,m不垂直于l,则m不垂直于αD.若l⊂α,m⊂β,l不垂直于m,则α,β不垂直16.(3分)设a,b,c∈R,下列命题正确的是()A.若|a|<|b|,则|a+c|<|b+c|B.若|a|<|b|,则|a﹣c|<|b﹣c|C.若|a|<|b﹣c|,则|a|<|b|﹣|c|D.若|a|<|b﹣c|,则|a|﹣|c|<|b| 17.(3分)已知F1,F2分别是双曲线﹣=1(a,b>0)的左、右焦点,l1,l2为双曲线的两条渐近线.设过点M(b,0)且平行于l1的直线交l2于点P.若PF1⊥PF2,则该双曲线的离心率为()A.B.C.D.18.(3分)如图,在菱形ABCD中,∠BAD=60°,线段AD,BD的中点分别为E,F.现将△ABD沿对角线BD翻折,则异面直线BE与CF所成角的取值范围是()A.(,) B.(,]C.(,]D.(,)二、填空题(本大题共4小题,每空3分,共15分)19.(6分)设,为平面向量.若=(1,0),=(3,4),则||=,•=.20.(3分)设全集U={2,3,4},集合A={2,3},则A的补集∁U A=.21.(3分)在数列{a n}(n∈N*)中,设a1=a2=1,a3=2.若数列{}是等差数列,则a6=.22.(3分)已知函数f(x)=,g(x)=ax+1,其中a>0.若f(x)与g(x)的图象有两个不同的交点,则a的取值范围是.三、解答题(本大题共3小题,共31分)23.(10分)已知函数f(x)=2sinxcosx,x∈R.(Ⅰ)求f()的值;(Ⅱ)求函数f(x)的最小正周期;(Ⅲ)求函数g(x)=f(x)+f(x+)的最大值.24.(10分)设F1,F2分别是椭圆C:+y2=1的左、右焦点,过F1且斜率不为零的动直线l与椭圆C交于A,B两点.(Ⅰ)求△AF1F2的周长;(Ⅱ)若存在直线l,使得直线F2A,AB,F2B与直线x=﹣分别交于P,Q,R 三个不同的点,且满足P,Q,R到x轴的距离依次成等比数列,求该直线l的方程.25.(11分)已知函数f(x)=ax++,a∈R.(Ⅰ)判断函数f(x)的奇偶性,并说明理由;(Ⅱ)当a<2时,证明:函数f(x)在(0,1)上单调递减;(Ⅲ)若对任意的x∈(0,1)∪(1,+∞),不等式(x﹣1)[f(x)﹣]≥0恒成立,求a的取值范围.2015-2016学年浙江省普通高中高二(上)学业水平测试数学试卷参考答案与试题解析一、选择题(本大题共18小题,每小题3分,共54分.每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.(3分)函数f(x)=3的定义域为()A.(﹣∞,0)B.[0,+∞)C.[2,+∞)D.(﹣∞,2)【解答】解:要使函数f(x)=3有意义,可得x﹣2≥0,解得x≥2.函数的定义域为:[2,+∞).故选:C.2.(3分)下列数列中,构成等比数列的是()A.2,3,4,5 B.1,﹣2,﹣4,8 C.0,1,2,4 D.16,﹣8,4,﹣2【解答】解:由等比数列的定义以及性质可知,A,B,C都不是等比数列.故选:D.3.(3分)任给△ABC,设角A,B,C所对的边分别为a,b,c,则下列等式成立的是()A.c2=a2+b2+2abcosC B.c2=a2+b2﹣2abcosCC.c2=a2+b2+2absinC D.c2=a2+b2﹣2absinC【解答】解:式子c2=a2+b2﹣2abcosC符合余弦定理,正确;故选:B.4.(3分)如图,某简单组合体由一个圆锥和一个圆柱组成,则该组合体三视图的俯视图为()A. B.C.D.【解答】解:简单组合体由一个圆锥和一个圆柱组成,左侧是圆锥,右侧是圆柱,俯视图为:三角形与矩形组成,故选:D.5.(3分)要得到余弦曲线y=cosx,只需将正弦曲线y=sinx向左平移()A.个单位B.个单位C.个单位D.个单位【解答】解:∵cosx=sin(x﹣)∴余弦函数y=cosx的图象可看作正弦y=sinx图象向左平移个单位得到.故选:A6.(3分)在平面直角坐标系中,过点(0,1)且倾斜角为45°的直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:过点(0,1)且倾斜角为45°的直线为y﹣1=x,即x﹣y+1=0,当x=0时,y=1,当y=0时,x=﹣1,所以直线x﹣y+1=0过第一,二,三象限,不过第四象限,故选:D.7.(3分)已知平面向量=(1,x),=(y,1).若∥,则实数x,y一定满足()A.xy﹣1=0 B.xy+1=0 C.x﹣y=0 D.x+y=0【解答】解:平面向量=(1,x),=(y,1).若∥,则xy=1.即xy﹣1=0.故选:A.8.(3分)已知{a n}(n∈N*)是以1为首项,2为公差的等差数列.设S n是{a n}的前n项和,且S n=25,则n=()A.3 B.4 C.5 D.6【解答】解:S n=25=n+,化为n2=25,解得n=5.故选:C.9.(3分)设抛物线y2=2px(p>0)的焦点为F.若F到直线y=x的距离为,则p=()A.2 B.4 C.2 D.4【解答】解:抛物线y2=2px(p>0)的焦点为F(,0).F到直线y=x的距离为,可得:=,解得p=4.故选:B.10.(3分)在空间直角坐标系Oxyz中,若y轴上点M到两点P(1,0,2),Q (1,﹣3,1)的距离相等,则点M的坐标为()A.(0,1,0)B.(0,﹣1,0)C.(0,0,3)D.(0,0,﹣3)【解答】解:根据题意,设点M(0,y,0),∵|MP|=|MQ|,∴=,即y2+5=y2+6y+11,∴y=﹣1,∴点M(0,﹣1,0).故选:B.11.(3分)若实数x,y满足,则y的最大值为()A.B.1 C.D.【解答】解:做出直线y=x,y=x与圆(x﹣1)2+y2=1的图象,得出不等式组对应的可行域,如图阴影部分所示,根据题意得:y的最大值为1,故选:B.12.(3分)设a>0,且a≠1,则“a>1”是“log a<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解答】解:∵log a<1=log a a,当a>1时,函数是一个增函数,不等式成立,当0<a<1时,函数是一个减函数,根据函数的单调性有a<,综上可知a的取值是(0,)∪(1,+∞),故“a>1”是“log a<1”的充分不必要条件,故选:A.13.(3分)如图,在正方体ABCD﹣A1B1C1D1中,M为棱D1C1的中点.设AM与平面BB1D1D的交点为O,则()A.三点D1,O,B共线,且OB=2OD1B.三点D1,O,B不共线,且OB=2OD1C.三点D1,O,B共线,且OB=OD1D.三点D1,O,B不共线,且OB=OD1【解答】解:【解法一】如图1,连接AD1,BC1,利用公理2可直接证得,并且由D1M∥AB且D1M=AB,∴OD1=BO,∴D1,O,B三点共线,且OB=2OD1.【解法二】以正方体ABCD﹣A1B1C1D1的顶点D为坐标原点,DA所在的直线为x 轴,DC所在的直线为y轴,DD1所在的直线为z轴建立空间直角坐标系,如图所示,设正方体的棱长为1,则A(1,0,0),B(1,1,0),D1(0,0,1),M(0,,1);设点O(x,x,z),∴=(x﹣1,x,z),=(﹣1,,1);又与共线,∴=λ,∴(x﹣1,x,z)=(﹣λ,λ,λ),即,解得,∴点O(,,);∴=(﹣,﹣,),又=(﹣1,﹣1,1),∴=,∴D1,O,B三点共线,且OB=2OD1.故选:A.14.(3分)设正实数a,b满足a+λb=2(其中λ为正常数).若ab的最大值为3,则λ=()A.3 B.C.D.【解答】解:设正实数a,b满足a+λb=2(其中λ为正常数)若ab的最大值为3,则2≤2,当ab=3时:=1,解得:λ=,故选:D.15.(3分)在空间中,设l,m为两条不同直线,α,β为两个不同的平面,则下列命题正确的是()A.若l⊂α,m不平行于l,则m不平行于αB.若l⊂α,m⊂β,且α,β不平行,则l,m不平行C.若l⊂α,m不垂直于l,则m不垂直于αD.若l⊂α,m⊂β,l不垂直于m,则α,β不垂直【解答】解:若l⊂α,m不平行于l,则m⊂α,m平行于α,m与α相交都有可能,故不正确;若l⊂α,m⊂β,且α,β不平行,则l,m可以与交线平行,故不正确;若l⊂α,m不垂直于l,则m不垂直于α,利用反证法可得正确;若l⊂α,m⊂β,l不垂直于m,α,β垂直时也成立,故不正确.故选:C.16.(3分)设a,b,c∈R,下列命题正确的是()A.若|a|<|b|,则|a+c|<|b+c|B.若|a|<|b|,则|a﹣c|<|b﹣c|C.若|a|<|b﹣c|,则|a|<|b|﹣|c|D.若|a|<|b﹣c|,则|a|﹣|c|<|b|【解答】解:根据不等式的基本性质,对各选项考察如下:对于A选项:若|a|<|b|,不一定有|a+c|<|b+c|成立,如a=﹣2,b=3,c=﹣1,此时|a+c|>|b+c|,故A不正确;对于B选项:若|a|<|b|,不一定有|a﹣c|<|b﹣c|成立,如a=﹣2,b=3,c=1,此时|a﹣c|>|b﹣c|,故B不正确;对于C选项:若|a|<|b﹣c|,不一定有|a|<|b|﹣|c|,如a=2,b=2,c=﹣3,此时|a|>|b|﹣|c|,故C不正确;对于D选项:若|a|<|b﹣c|,则必有|a|﹣|c|<|b|成立,因为,|a|<|b﹣c|≤|b|+|c|,所以,|a|﹣|c|<|b|,故D正确.故答案为:D.17.(3分)已知F1,F2分别是双曲线﹣=1(a,b>0)的左、右焦点,l1,l2为双曲线的两条渐近线.设过点M(b,0)且平行于l1的直线交l2于点P.若PF1⊥PF2,则该双曲线的离心率为()A.B.C.D.【解答】解:根据题意可得F1(﹣c,0)、F2(c,0),双曲线的渐近线为:y=x,直线PM的方程为:y=﹣(x﹣b),联立,可得x=,∴P(,)∴=(+c,),=(﹣c,)∵PF1⊥PF2,∴•=0,∴(+c,)•(﹣c,)=0∴=0∴b2=4a2,∴c2=5a2,∴e==,故选:B.18.(3分)如图,在菱形ABCD中,∠BAD=60°,线段AD,BD的中点分别为E,F.现将△ABD沿对角线BD翻折,则异面直线BE与CF所成角的取值范围是()A.(,) B.(,]C.(,]D.(,)【解答】解:可设菱形的边长为1,则BE=CF=,BD=1;线段AD,BD的中点分别为E,F;∴,=;∴===;∴=;由图看出;∴;∴;即异面直线BE与CF所成角的取值范围是.故选:C.二、填空题(本大题共4小题,每空3分,共15分)19.(6分)设,为平面向量.若=(1,0),=(3,4),则||=1,•= 3.【解答】解:||==1,•=1×3+0×4=3.故答案1,3.20.(3分)设全集U={2,3,4},集合A={2,3},则A的补集∁U A={4} .【解答】解:∵全集U={2,3,4},集合A={2,3},∴∁U A={4},故答案为:{4}21.(3分)在数列{a n}(n∈N*)中,设a1=a2=1,a3=2.若数列{}是等差数列,则a6=120.【解答】解:∵数列{}是等差数列,∴公差d=.则.则,….累积得:,∴a6=120.故答案为:120.22.(3分)已知函数f(x)=,g(x)=ax+1,其中a>0.若f(x)与g(x)的图象有两个不同的交点,则a的取值范围是(0,1).【解答】解:f(x)=,(1)若a<0,作出f(x)和g(x)的图象如图,显然f(x)与g(x)只有一个交点.(2)若a=0,作出f(x)和g(x)的图象如图,显然f(x)与g(x)只有一个交点.(3)若a>1,作出f(x)和g(x)的图象如图,显然f(x)与g(x)只有一个交点.(4)若0<a<1,作出f(x)和g(x)的图象如图,显然f(x)与g(x)有两个交点.(5)若a=1,作出f(x)和g(x)的图象如图,显然f(x)与g(x)只有一个交点.综上,a的取值范围是(0,1).故答案为(0,1).三、解答题(本大题共3小题,共31分)23.(10分)已知函数f(x)=2sinxcosx,x∈R.(Ⅰ)求f()的值;(Ⅱ)求函数f(x)的最小正周期;(Ⅲ)求函数g(x)=f(x)+f(x+)的最大值.【解答】解:(Ⅰ)由题意得f()=2sin cos=1,(Ⅱ)∵f(x)=sin2x,∴函数f(x)的最小正周期为T==π,(Ⅲ)∵g(x)=sin2x+sin(2x+)=sin2x+cos2x=sin(2x+),∴当x=k,k∈Z时,函数g(x)的最大值为.24.(10分)设F1,F2分别是椭圆C:+y2=1的左、右焦点,过F1且斜率不为零的动直线l与椭圆C交于A,B两点.(Ⅰ)求△AF1F2的周长;(Ⅱ)若存在直线l,使得直线F2A,AB,F2B与直线x=﹣分别交于P,Q,R 三个不同的点,且满足P,Q,R到x轴的距离依次成等比数列,求该直线l的方程.【解答】解:(Ⅰ)因为椭圆的长轴长2a=2,焦距2c=2.又由椭圆的定义得|AF1|+|AF2|=2a所以△AF1F2的周长为|AF1|+|AF2|+|F1F2|=2+2(Ⅱ)由题意得l不垂直两坐标轴,故设l的方程为y=k(x+1)(k≠0)于是直线l与直线x=﹣交点Q的纵坐标为y Q=设A(x1,y1),B(x2,y2),显然x1,x2≠1,所以直线F2A的方程为y=(x﹣1)故直线F2A与直线x=﹣交点P的纵坐标为y P=同理,点R的纵坐标为y R=因为P,Q,R到x轴的距离依次成等比数列,所以|y P|•|y R|=|y Q|2即|×|=整理得9|x1x2+(x1+x2)+1|=|x1x2﹣(x1+x2)+1|.(*)联立y=k(x+1)与椭圆方程,消去y得(1+2k2)x2+4k2x+2k2﹣2=0所以x1+x2=,x1x2=代入(*)化简得|8k2﹣1|=9解得k=±经检验,直线l的方程为y═±(x+1).25.(11分)已知函数f(x)=ax++,a∈R.(Ⅰ)判断函数f(x)的奇偶性,并说明理由;(Ⅱ)当a<2时,证明:函数f(x)在(0,1)上单调递减;(Ⅲ)若对任意的x∈(0,1)∪(1,+∞),不等式(x﹣1)[f(x)﹣]≥0恒成立,求a的取值范围.【解答】(Ⅰ)解:∵f(﹣x)=﹣ax=﹣(ax++)=﹣f(x),又∵f(x)的定义域为{x∈R|x≠﹣1且x≠1},∴函数f(x)为奇函数;(Ⅱ)证明:任取x1,x2∈(0,1),设x1<x2,则f(x1)﹣f(x2)=a(x1﹣x2)+==.∵0<x1<x2<1,∴2(x1x2+1)>2,0<(x12﹣1)(x22﹣1)<1,∴>2>a,∴a﹣<0.又∵x1﹣x2<0,∴f(x1)>f(x2).∴函数f(x)在(0,1)上单调递减;(Ⅲ)解:∵(x﹣1)[f(x)﹣]=(x﹣1)[ax]==.∴不等式(x﹣1)[f(x)﹣]≥0恒成立化为不等式ax2(x2﹣1)+2≥0对任意的x∈(0,1)∪(1,+∞)恒成立.令函数g(t)=at2﹣at+2,其中t=x2,t>0且t≠1.①当a<0时,抛物线y=g(t)开口向下,不合题意;②当a=0时,g(t)=2>0恒成立,∴a=0符合题意;③当a>0时,∵g(t)=a(t﹣)2﹣+2.∴只需﹣+2≥0,即0<a≤8.综上,a的取值范围是0≤a≤8.。
中学部2015-2016学年第一学期高二年级期中测试数 学 学 科 试 题 参 考 答 案(第一部分 满分100分) 一、填空题 (本大题共8小题,每小题5分,共40分)1. 10x y --=2.2y x =3.28y x = 4.相离5.2e +6.47. 55(2,)(,3)228.{0}二、解答题 (本大题共4小题,共计60分) 9. (本小题满分14分)解(1)53BC k =-,BC 边所在直线在y 轴上的截距为2, BC 边所在直线方程为52,53603y x x y =-++-=(2)25AC k =,AC 边上的高的斜率为52k =-,AC 边上的高的直线的方程为53(3)2y x +=--,即5290x y +-=10. (本小题满分14分)解(1)右焦点2(3,0)F ,对应右准线253x =.右焦点到对应准线的距离为163. (2)椭圆的离心率为35e =,根据第二定义, 231616535PF ed ==⋅=, 根据第一定义12163421055PF a PF =-=-=,点P 到左焦点1F 的距离为345. 11. (本小题满分16分)解(1)17 (2)能切点坐标(2(2,)33k k k Z ππππ+-∈或 12. (本小题满分16分)解:(1)设圆C 方程为,022=++++F Ey Dx y x则0443206480F D E F D F ⎧=⎪+++=⎨⎪+++=⎩ 解得D= —8,E=F=0.所以圆C :2280.x y x +-= (2)圆C :22(4)16.x y -+=圆心C(4,0),半径4当斜率不存在时,:0l x =符合题意;当斜率存在时,设直线:0,l y kx kx y =+-+=即因为直线l 与圆C 相切,所以圆心到直线距离为4,4,k ==解得所以直线:120.l y x x =++-=即故所求直线0,120.l x x =-=为或(第二部分满分60分)三、填空题 (本大题共6小题,每小题5分,共30分)13.20x y -= 14. 22(1)(3)25x y -+-= 15.4259()122f x x x =-+ 16. 25/2. 17.011x -≤≤ 18..6 四、解答题 (本大题共2小题,共计30分) 19. (本题满分14分)解:(1)由抛物线2:C y x =得x y 2=',02|0x y x x ='∴= 切线l 的方程为)(2000x x x y y -=- 其中200x y = 令,0=x 得20x y -=;令,0=y 得20x x =;所以)0,2(0x A ,),0(20x B - 22400174x AB x =+=得到2004,2x x ==±,点P 的坐标为(2,4)±(2)设圆心E 的坐标为),0(b ,由题知1-=⋅l PE k k ,即12000-=⋅-x x by ,所以210-=-b y ;由||||PA PE =得20202020)2()(y x b y x +=-+整理得0134020=--y y解得10=y 或410-=y (舍去) 所以23=b ,圆E 的圆心E 的坐标为)23,0(,半径=r =||PE 25)(2020=-+b y x 圆E 的方程为45)23(22=-+y x20. (本题满分16分)解(1)①由已知得c a =,22411a b +=,222a b c =+,联立解得228,2a b ==. 椭圆M 的方程为22182x y +=. ②直线AB 的斜率为定值12由已知直线1:1(2)PA y k x -=-代入椭圆M 的方程消去y 并整理得22111(2)[(14)(288)]0x k x k k -+++-=所以2112188214A k k x k --=+,从而2112144114A k k y k --+=+同理2222288214B k k x k --=+,2222244114B k k y k --+=+因为120k k +=所以121222124()(41)(14)(14)A B k k k k y y k k ---==++121222128()(41)(14)(14)A B k k k k x x k k ---=++12A B ABA B y y k x x -==-为定值 (2) 解法一:12TBC S BC t =⋅=△直线TB 方程为:11y x t =+,联立221411x y y x t ⎧+=⎪⎪⎨⎪=+⎪⎩,得E x 22284,44t t E t t ⎛⎫-- ⎪++⎝⎭到:TC 30x ty t --=的距离d ==直线TC 方程为:31y x t =-,联立221431x y y x t ⎧+=⎪⎪⎨⎪=-⎪⎩,得22436F t x t =+,所以=所以S 所以k 令21212t m +=>,则2213k m m m ==+-≤,当且仅当24m =,即t =±=”, 所以k 的最大值为43.解法二:直线TB 方程为11y x t =+,联立221411x y y x t ⎧+=⎪⎪⎨⎪=+⎪⎩,得E x直线TC 方程为:31y x t =-,联立221431x y y x t ⎧+=⎪⎪⎨⎪=-⎪⎩,得F x =1sin 21sin 2TBC TEFTB TC BTCS TB TC k S TE TF TE TF ETF ⋅⋅∠⋅===⋅⋅⋅∠△△T CT B T E T F x x x x TB TC TE TF x x x x --=⋅=⋅-- 22824436t tt t t t t t =⋅=+-++令21212t m +=>,则22192413k m m ==+-≤,当且仅当24m =,即t =±=”,所以k 的最大值为43.18解。
浙江省湖州市高二上学期数学期中试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)直线(1﹣2a)x﹣2y+3=0与直线3x+y+2a=0垂直,则实数a的值为()A . -B .C .D .2. (2分) (2019高一下·南通月考) 若方程表示一个圆,则的取值范围是()A .B .C .D .3. (2分)曲线的参数方程为(t是参数),则曲线是()A . 线段B . 双曲线的一支C . 圆D . 射线4. (2分)已知0<α<<β<π,又sin α=,cos(α+β)=-,则sin β=()A .B . 0或C . -D . 0或-5. (2分)如图,函数y=f(x)的图象是中心在原点,焦点在x轴上的椭圆的两段弧,则不等式的解集为()A . 或B . 或C .D .6. (2分) (2018高二下·驻马店期末) 若抛物线上一点 ((非原点)到轴的距离是到轴距离的3倍,那么它到抛物线准线的距离是()A .B .C .D .7. (2分) (2016高二下·信宜期末) 直线l:2x﹣y+2=0过椭圆左焦点F1和一个顶点B,则该椭圆的离心率为()A .B .C .D .8. (2分)在平面直角坐标系xOy中,直线与圆相交于A,B两点,则弦AB的长等于()A .B .C .D . 19. (2分) (2016高一下·黑龙江期中) 在△ABC中,a=4,b=5,c=6,则 =()A . 1B . 2C . 3D . 410. (2分)(2018·潍坊模拟) 直线与抛物线交于,两点,为的焦点,若,则的值是()A .B .C . 1D .11. (2分)若以椭圆上一点和两个焦点为顶点的三角形面积的最大值为1,则椭圆长轴的最小值为()A . 1B .C . 2D . 212. (2分) (2016高二上·南昌期中) 已知椭圆的左、右焦点分别为F1、F2 ,点P在椭圆上.若P、F1、F2是一个直角三角形的三个顶点,则点P到x轴的距离为()A .B . 3C .D .二、填空题 (共4题;共4分)13. (1分)(2019·天津模拟) 已知直线为圆的切线,则 ________.14. (1分)在同一平面直角坐标系中,直线x﹣2y=2经过伸缩变换变成直线l,则直线l的方程是________.15. (1分)已知F是抛物线y2=4x上的焦点,P是抛物线上的一个动点,若动点M满足=2,则M 的轨迹方程是________16. (1分)(2018·衡水模拟) 已知双曲线的渐近线方程为,,为双曲线的左,右顶点,为双曲线上异于,的任意一点,且,,与交于点,若点在双曲线上,则双曲线的离心率为________.三、解答题 (共6题;共50分)17. (5分)(2016·江西模拟) 已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标系方程是,正方形ABCD的顶点都在C1上,且A,B,C,D依逆时针次序排列,点A的极坐标为.(1)求点A,B,C,D的直角坐标;(2)设P为C2上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的最大值.18. (10分)(2017·衡水模拟) 已知在平面直角坐标系中,椭圆C的参数方程为(θ为参数).(I)以原点为极点,x轴的正半轴为极轴建立极坐标系,求椭圆C的极坐标方程;(Ⅱ)设M(x,y)为椭圆C上任意一点,求x+2y的取值范围.19. (5分) (2018高二上·桂林期中) 已知椭圆:过点,且离心率为,直线:与椭圆交于、两点.(1)求椭圆方程;(2)若在轴上存在点,使得是正三角形,求 .20. (10分)已知圆C的圆心C在第一象限,且在直线3x﹣y=0上,该圆与x轴相切,且被直线x﹣y=0截得的弦长为2,直线l:kx﹣y﹣2k+5=0与圆C相交.(Ⅰ)求圆C的标准方程;(Ⅱ)求出直线l所过的定点;当直线l被圆所截得的弦长最短时,求直线l的方程及最短的弦长.21. (10分) (2020高二上·黄陵期末) 已知椭圆的离心率为,且经过点(1)求椭圆的方程;(2)是否存在经过点的直线,它与椭圆相交于两个不同点,且满足为坐标原点)关系的点也在椭圆上,如果存在,求出直线的方程;如果不存在,请说明理由.22. (10分) (2017高三上·嘉兴期中) 如图,椭圆的离心率为,其左焦点到点的距离为 .不过原点的直线与相交于两点,且线段被直线平分.(1)求椭圆的方程;(2)求的面积取最大值时直线的方程.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共50分)17-1、17-2、18-1、19-1、19-2、20-1、21-1、第11 页共12 页21-2、22-1、22-2、第12 页共12 页。
2015-2016学年第一学期期中考试高二数学2015.11注意事项:1.本试卷分填空题和解答题两部分,共160分,考试用时120分钟.2.答题前,考生务必将自己的班级、姓名、学号写在答题纸的密封线内.答题时,填空题和解答题的答案写在答题纸对应的位置上,答案写在试卷上无效.........,本卷考试结束后,上交答题纸. 一、填空题(本大题共14小题,每小题5分,共70分) 1. 点(1,1)P -到直线10x y -+=的距离是 ▲ .2. 若三个球的半径之比是1:2:3,则它们的体积之比是 ▲ .3. 过点(1,3)P -且垂直于直线230x y -+=的直线方程为 ▲ .4. 若三条直线两两互相垂直,则下列结论正确的是 ▲ . ①这三条直线共点;②其中必有两条直线是异面直线; ③三条直线不可能在同一平面内;④其中必有两条在同一平面内.5. 方程2222210x y ax ay a a +++++-=表示圆,则a 的取值范围是 ▲ .6. 已知m n 、是不重合的直线,αβ、是不重合的平面,则下列命题中正确的序号为 ▲ . (1)若,//n m n αβ= ,则//,//m m αβ; (2)若,m m αβ⊥⊥,则//αβ; (3)若//,m m n α⊥,则n α⊥;(4)若,m n αα⊥⊂,则.m n ⊥.7. 已知正三棱锥P —ABC 中,侧棱0,30PA a APB =∠=,D 、E 分别是侧棱PB 、PC 上的点,则ADE ∆的周长的最小值是 ▲ .8. 直线l 经过点(2,3),且在两坐标轴上的截距相等,则直线l 的方程是 ▲ . 9. 若,62ππα⎡⎫∈⎪⎢⎣⎭,则直线2x cos α+3y +1=0的倾斜角的取值范围 ▲ .10. 点A ,B 到平面α的距离分别为4cm 和6cm ,则线段AB 的中点M 到α平面的距离为 ▲ .11. 已知球O 的面上有四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC O 的体积等于 ▲ .12. 已知(2,0)A ,(1,2)B --,P 是直线y x =上的动点,则PA PB +的最小值为 ▲ .13. 若圆2221:240C x y mx m +-+-=与圆2222:24480C x y x my m ++-+-=相交,则m 的取值范围是 ▲ .14. 若直线y =x +b 与曲线x b 的取值范围是 ▲ .二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤)15.(本题14分)如图,在平行四边形ABCD中,BD⊥CD,正方形ADEF所在的平面和平面ABCD垂直,点H是BE 的中点,点G是AE、DF的交点.(1)求证:GH∥平面CDE;(2)求证:BD⊥平面CDE.16.(本题满分14分)已知直线1:23160l x y+-=,2:3220l x y-+=.(1)求两直线的交点P;(2)求经过点P且平行于直线230x y+-=的直线方程;(3)求以点P为圆心,且与直线230x y+-=相切的圆的标准方程.17.(本题满分14分)如图,在四棱锥P ABCD-中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,60BAD∠= ,N是PB中点,截面DAN交PC于M,E是AD中点,求证:(1)//AD MN;(2)AD⊥平面PBE;(3)PB⊥平面ADMN.18..(本题满分16分)如图,在四棱锥P ABCD-中,平面PAD⊥平面A B C D,AB DC∥,PAD△是等边三角形,已知4AD=,BD=,28AB CD==.(1)设M是PC上的一点,证明:平面MBD⊥平面PAD;(2)当M点位于线段PC什么位置时,PA∥平面MBD?(3)求四棱锥P ABCD-的体积.19.(本题满分16分)已知圆C:22(1)(3)9x y-+-=,直线:(23)(4)220l m x m y m++++-=.(1)无论m取任何实数,直线l必经过一个定点P,求出定点P的坐标;(2)过点P作圆C的切线,求切线方程;(3)以CP为直径的圆与圆C交于A、B两点,求线段AB的长.20.(本题满分16分)方程2()20f x x ax b=++=的一个根在(0,1)内,另一个根在(1,2)内,求:(1)21ba--的值域;(2)22(1)(2)a b-+-的值域;(3)3a b+-的值域.ACBDMNPECMDCBDHFGEAPA2015-2016学年第一学期期中考试高二数学2015.11一、填空题:本大题共14小题.每小题5分,共70分.1.________________________;2.________________________;3.________________________;4.________________________;5.________________________;6.________________________;7.________________________;8.________________________;9.________________________;10._______________________;11._______________________;12._______________________;13._______________________;14._______________________.二、解答题15.(本题14分)CBDHF G EA16.(本题14分) 17.(本题14分)ACBDMNPE18.(本题16分)19.(本题16分)CMDPA B20.(本题16分)2015-2016学年第一学期期中考试高二数学 (参考答案)2015.11一、填空题(本大题共14小题,每小题5分,共70分)1; 2.1:8:27; 3.210x y +-=; 4.③;5.223a -<<; 6.(2)(4); 7;8.3502x y y x +-==或;9.5,6ππ⎡⎫⎪⎢⎣⎭;10.1cm 或5cm ; 11.92π; 1213.122(,)(0,2)55-- ; 14.(1,1]{-⋃.二、解答题15.(本题满分14分)证明 (1)因为G 是AE 与DF 的交点,所以G 是AE 的中点.…………2分 又H 是BE 的中点,所以在△EAB 中,GH ∥AB . …………4分 因为AB ∥CD ,所以GH ∥CD . …………5分 又CD ⊂平面CDE ,GH ⊄平面CDE , 所以GH ∥平面CDE . …………7分 (2)平面ADEF ⊥平面ABCD ,交线为AD ,因为ED ⊥AD ,ED ⊂平面ADEF , 所以ED ⊥平面ABCD . …………10分 所以ED ⊥BD . …………11分 又BD ⊥CD ,CD ∩ED =D ,所以BD ⊥平面CDE . …………14分16.(本题满分14分)解:(1)由231603220x y x y +-=⎧⎨-+=⎩,得24x y =⎧⎨=⎩,所以()2,4P …………4分 (2)设20x y c ++=,…………5分则8c =-…………6分280x y +-=为所求…………8分(3)d ==10分因为相切,所以半径r 12分 所以圆方程为()()22245x y -+-=…………14分17.(本题满分14分)证明:(1)∵//AD BC ,BC ⊂平面PBC ,∴//AD 平面PBC ,…………2分 ∵AD ⊂平面ADMN ,平面ADMN 平面PBC MN =, ∴//AD MN .…………4分(2)连结BD∵PAD ∆和BAD ∆都是正三角形,∴AD PE ⊥,AD BE ⊥,又PE AE E = ,…………6分 ∴AD ⊥平面PBE ,…………7分(3)又PB ⊂平面PBE ,…………9分∴PB AD ⊥,…………10分 ∵AP AD AB ==,N 是PB 中点, ∴PB AN ⊥,…………12分 又AD AN A = ,∴PB ⊥平面ADMN .…………14分 18.(本题满分16分) 证明:(1)在ABD △中,∵4AD =,BD =,8AB =,∴222AD BD AB +=. ∴AD BD ⊥.…………2分 又 ∵平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD =,BD ⊂平面ABCD , ∴BD ⊥平面PAD . 又BD ⊂平面MBD ,∴平面MBD ⊥平面PAD .…………4分(2)当M 点位于线段PC 靠近C 点的三等分点处时,PA ∥平面MBD .……5分 证明如下:连接AC ,交BD 于点N ,连接MN .AC BMPD∵AB DC ∥,所以四边形ABCD 是梯形. ∵2AB CD =,∴:1:2CN NA =. 又 ∵:1:2CM MP =,∴:CN NA =:CM MP ,∴PA ∥MN .…………7分 ∵MN ⊂平面MBD ,∴PA ∥平面MBD .…………9分 (3)过P 作PO AD ⊥交AD 于O , ∵平面PAD ⊥平面ABCD , ∴PO ⊥平面ABCD .即PO 为四棱锥P ABCD -的高.…………11分又 ∵PAD △是边长为4的等边三角形,∴4PO ==12分在Rt ADB △中,斜边AB =,此即为梯形ABCD 的高.∴梯形ABCD 的面积482ABCD S +=⨯14分故1243P ABCD V -=⨯=.…………16分19.(本题满分16分)解:(1) 直线: :(23)(4)220l m x m y m ++++-=可变形(22)(342)0m x y x y ++++-=…………2分220,23420,2x y x x y y ++==-⎧⎧⎨⎨+-==⎩⎩由解得。
浙江省湖州市高二上学期期中数学试卷姓名:________班级:________成绩:________一、 选择题 (共 8 题;共 16 分)1. (2 分) 直线 A. B. C. D.( 为实常数)的倾斜角的大小是( )2. (2 分) 设 a,b,c∈R+ , 那么三个数 a+ , b+ , c+ ( )A . 都不大于 2B . 都不小于 2C . 至少有一个不小于 2D . 至少有一个不大于 23. (2 分) (2017·临翔模拟) 已知等差数列{an}的公差 d≠0,且 a1 , a3 , a13 成等比数列,若 a1=1,Sn 是数列{an}的前 n 项和,则的最小值为( )A.B.C. D.3 4. (2 分) (2017 高一上·福州期末) 如图矩形 ABCD 的长为 2cm,宽为 1cm,它是水平放置的一个平面图形 的直观图,则原图形的周长是( )第 1 页 共 10 页A . 10cm B . 8cm C. D. 5. (2 分) (2017 高二下·濮阳期末) 如图所示,正方体 ABCD﹣A1B1C1D1 的棱长为 a,M,N 分别为 A1B 和 AC 上的点,A1M=AN= ,则 MN 与平面 BB1C1C 的位置关系为( )A . 相交 B . 平行 C . 垂直 D . 不能确定6.(2 分)(2016 高二下·惠阳期中) 平面 α 截球 O 的球面所得圆的半径为 1,球心 O 到平面 α 的距离为 , 则球 O 的表面积为( )A . 12 π B . 12π C . 8π D . 4π第 2 页 共 10 页7. (2 分) (2020 高三上·天津月考) 在若,,且中, , , 分别为内角 , , 的对边, ,则 ( )A. B.4C. D.5 8. (2 分) 下列图形经过折叠可以围成一个棱柱的是( )A. B.C.D.二、 填空题 (共 7 题;共 9 分)9. (1 分) 经过点 P(﹣2,1)且与直线 2x﹣y+4=0 垂直的直线方程为________. 10. (1 分) (2018·潍坊模拟) 一个几何体的三视图如图所示,则该几何体的外接球的体积为________.第 3 页 共 10 页11. (1 分) (2016 高二下·上海期中) 异面直线 a,b 成 60°,直线 c⊥a,则直线 b 与 c 所成的角的范围为 ________.12. (2 分) (2020 高三上·富阳月考) 过两点.当时,切线长 为________;当上一点作直线与最小时, 的值为________.相切于 ,13. (1 分) (2018·广东模拟) 已知实数 ________.满足则目标函数的最大值为14. (2 分) (2020 高二上·诸暨期末) 已知直线,圆 的方程为:________;,则直线 恒过定点________;若直线与圆相较于 , 两点,则弦长度的最小值15. (1 分) 如果不等式 x2<|x﹣1|+a 的解集是区间(﹣3,3)的子集,则实数 a 的取值范围是________ .三、 解答题 (共 4 题;共 35 分)16. ( 10 分 )(2019 高 一 下 · 广 东 期 中 ) 已 知 函 数(1) 求的递增区间的最小正周期为(2) 在 ABC 中,角 A,B,C 的对边分别为 a,b,c,已知求的大小17. (5 分) (2019 高一下·黄山期中) 已知各项均为正数的等比数列 满足,.(Ⅰ)求数列 的通项公式;(Ⅱ)求.18. (10 分) (2019 高一上·西安月考) 如图 1,在中点,点 F 为线段上的一点,将沿折起到中,,D,E 分别为的的位置,使,如图 2.第 4 页 共 10 页(1) 求二面角(2) 线段上是否存在点 ,使平面?说明理由.19. (10 分) (2017 高二下·杭州期末) 如图,P 是直线 x=4 上一动点,以 P 为圆心的圆 Γ 经定点 B(1,0), 直线 l 是圆 Γ 在点 B 处的切线,过 A(﹣1,0)作圆 Γ 的两条切线分别与 l 交于 E,F 两点.(1) 求证:|EA|+|EB|为定值; (2) 设直线 l 交直线 x=4 于点 Q,证明:|EB|•|FQ|=|BF•|EQ|.第 5 页 共 10 页一、 选择题 (共 8 题;共 16 分)1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、二、 填空题 (共 7 题;共 9 分)9-1、 10-1、 11-1、12-1、 13-1、14-1、参考答案第 6 页 共 10 页15-1、三、 解答题 (共 4 题;共 35 分)16-1、 16-2、17-1、第 7 页 共 10 页18-1、第 8 页 共 10 页18-2、 19-1、第 9 页 共 10 页19-2、第 10 页 共 10 页。
2015-2016学年浙江省湖州中学高三(上)期中数学试卷(理科)一、选择题(本大题共8小题,每小题5分,共40分)1.(5分)设集合A={x|x|x2﹣x﹣2≥0},B={x|x>a},若A∩B={x|x≥2},则所有实数a组成的集合为()A.{a|a≥2}B.{a|a≤2}C.{a|﹣1≤a≤2}D.{a|﹣1≤a<2}2.(5分)若函数f(x)=cos2x,g(x)=sin2x,则“<x<”是“f(x)<g(x)”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)设等差数列{a n}和等比数列{b n}首项都是1,公差和公比都是2,则a+a+a=()A.24 B.25 C.26 D.274.(5分)已知某锥体的正视图和侧视图如图,其体积为,则该锥体的俯视图可以是()A.B. C.D.5.(5分)设函数f(x)=,若f[f(a)]>f[f(a)+1],则实数a的取值范围为()A.(﹣1,0]B.[﹣1,0]C.(﹣5,﹣4]D.[﹣5,﹣4]6.(5分)已知双曲线与抛物线y2=8x有一个公共的焦点F,且两曲线的一个交点为P,若|PF|=5,则双曲线的离心率为()A.2 B.2 C.D.7.(5分)设点p(x,y)是曲线a|x|+b|y|=1(a>0,b>0)上的动点,且满足+≤2,则a+b的取值范围为()A.[2,+∞)B.[1,2]C.[1,+∞)D.(0,2]8.(5分)如图,矩形CDEF所在的平面与矩形ABCD所在的平面垂直,AD=,DE=,AB=4,EG=EF,点M在线段GF上(包括两端点),点N在线段AB上,且=,则二面角M﹣DN﹣C的平面角的取值范围为()A.[30°,45°]B.[45°,60°]C.[30°,90°) D.[60°,90°)二、填空题(本题共有7小题,其中第9题每空2分,第10、11、12题每空3分,第13、14、15题每空4分,共36分)9.(6分)已知x∈[,π],且sin(2x﹣)=,则cos2x=,sinx=,tanx=.10.(6分)已知等差数列{a n}的前n项和为S n,a2+5=2a4,a10=﹣3,则a1=,S8=.11.(6分)已知直线Ax+By+C=0(A2+B2=C2)与圆x2+y2=4交于M,N两点,O 为坐标原点,则|MN|等于,•等于.12.(6分)已知向量,的夹角为,|﹣|=||=5,向量﹣,﹣的夹角为,|﹣|=2,则﹣与﹣的夹角正弦值为,||=.13.(4分)若存在x0∈[1,3],|x02﹣ax0+4|≤3x0,则实数a的取值范围是.14.(4分)已知点A(﹣),在抛物线C:y2=2px(p>0)的准线上,点M,N在抛物线C上,且位于x轴的两侧,O是坐标原点,若=3,则点A到动直线MN的最大距离为.15.(4分)已知A={(x,y)|ax+by=1},B={(x,y)|x≥0,y≥1,x+y≤2},若A∩B≠∅恒成立,则a2+b2+2a+3b的取值范围是.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)设锐角三角形ABC的三内角为A,B,C所对的边分别为a,b,c,函数f(x)=cosxsin(x+)﹣cos2x.(Ⅰ)求f(A)的取值范围;(Ⅱ)若f(A)=,△ABC的面积为,求•的取值范围.17.(15分)已知数列{a n}是公差不为零的等差数列,a1=2,且a2,a4,a8成等比数列.(Ⅰ)求数列{a n}的通项;(Ⅱ)设{b n﹣(﹣1)n a n}是等比数列,且b2=7,b5=71,求数列{b n}的前n项和T n.18.(15分)如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中点.(Ⅰ)求证:平面EAC⊥平面PBC;(Ⅱ)若二面角P﹣AC﹣E的余弦值为,求直线PA与平面EAC所成角的正弦值.19.(15分)如图,中心在坐标原点,焦点分别在x轴和y轴上的椭圆T1,T2都过点M(0,﹣),且椭圆T1与T2的离心率均为.(Ⅰ)求椭圆T1与椭圆T2的标准方程;(Ⅱ)过点M引两条斜率分别为k,k′的直线分别交T1,T2于点P,Q,当k′=4k 时,问直线PQ是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.20.(15分)已知函数f(x)=x2+|x+1﹣a|,其中a为实常数.(Ⅰ)若a=1,判断f(x)在[﹣,]上的单调性;(Ⅱ)若存在x∈R,使不等式f(x)≤2|x﹣a|成立,求a的取值范围.2015-2016学年浙江省湖州中学高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分)1.(5分)设集合A={x|x|x2﹣x﹣2≥0},B={x|x>a},若A∩B={x|x≥2},则所有实数a组成的集合为()A.{a|a≥2}B.{a|a≤2}C.{a|﹣1≤a≤2}D.{a|﹣1≤a<2}【解答】解:由A中不等式变形得:(x﹣2)(x+1)≥0,解得:x≤﹣1或x≥2,即A={x|x≤﹣1或x≥2},∵B={x|x>a},且A∩B={x|x≥2},∴a的范围为{a|﹣1≤a<2},故选:D.2.(5分)若函数f(x)=cos2x,g(x)=sin2x,则“<x<”是“f(x)<g(x)”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:∵<x<,∴,∴cos2x<sin2x,即f(x)<g(x);反之不成立,例如取x=.满足f(x)<g(x).因此“<x<”是“f(x)<g(x)”的充分不必要条件.故选:A.3.(5分)设等差数列{a n}和等比数列{b n}首项都是1,公差和公比都是2,则a+a+a=()A.24 B.25 C.26 D.27【解答】解:等比数列{b n}首项是1,公比是2,∴b2=2,b3=4,b4=8,等差数列{a n}首项是1,公差是2,+a4+a8=3a1+11d=3+11×2=25.∴a+a+a=a故选:B.4.(5分)已知某锥体的正视图和侧视图如图,其体积为,则该锥体的俯视图可以是()A.B. C.D.【解答】解:∵锥体的正视图和侧视图均为边长为2的等边三角形,故锥体的高为,又∵锥体的体积为,故锥体的底面面积为2,A中图形的面积为4,不满足要求;B中图形的面积为π,不满足要求;C中图形的面积为2,满足要求;D中图形的面积为,不满足要求;故选:C.5.(5分)设函数f(x)=,若f[f(a)]>f[f(a)+1],则实数a的取值范围为()A.(﹣1,0]B.[﹣1,0]C.(﹣5,﹣4]D.[﹣5,﹣4]【解答】解:当f(a)≤0,f(a)+1≤0,即a≤﹣5时;f[f(a)]=f(4+a)=8+a,f[f(a)+1]=9+a,故f[f(a)]<f[f(a)+1],故f[f(a)]>f[f(a)+1]不成立;当f(a)≤0,0<f(a)+1≤4,即﹣5<a≤﹣4时,f[f(a)]=8+a,f[f(a)+1]=f(5+a)=(5+a)2,8+a>(5+a)2在(﹣5,﹣4]上显然成立;故结合选项可知,A,B,D一定不正确,故选:C.6.(5分)已知双曲线与抛物线y2=8x有一个公共的焦点F,且两曲线的一个交点为P,若|PF|=5,则双曲线的离心率为()A.2 B.2 C.D.【解答】解:∵抛物线y2=8x的焦点坐标F(2,0),p=4,∵抛物线的焦点和双曲线的焦点相同,∴p=2c,c=2,∵设P(m,n),由抛物线定义知:|PF|=m+=m+2=5,∴m=3.∴P点的坐标为(3,)∴|解得:,c=2则双曲线的离心率为2,故选:A.7.(5分)设点p(x,y)是曲线a|x|+b|y|=1(a>0,b>0)上的动点,且满足+≤2,则a+b的取值范围为()A.[2,+∞)B.[1,2]C.[1,+∞)D.(0,2]【解答】解:由a|x|+b|y|=1(a>0,b>0).分类讨论:当x,y≥0时,化为ax+by=1;当x≥0,y≤0时,化为ax﹣by=1;当x≤0,y≥0时,化为﹣ax+by=1;当x≤0,y≤0时,化为﹣ax﹣by=1.画出图象:其轨迹为四边形ABCD.+≤2,变形为+,上式表示点M(0,1),N(0,﹣1)与图象上的点P的距离之和≤2.∴,化为,a≥1.∴a+b≥1+=2,同理b≥1时也成立.其取值范围为[2,+∞),故选:A.8.(5分)如图,矩形CDEF所在的平面与矩形ABCD所在的平面垂直,AD=,DE=,AB=4,EG=EF,点M在线段GF上(包括两端点),点N在线段AB上,且=,则二面角M﹣DN﹣C的平面角的取值范围为()A.[30°,45°]B.[45°,60°]C.[30°,90°) D.[60°,90°)【解答】解:以D为原点,DA为x轴,DC为y轴,DE为z轴,建立空间直角坐标系,∵AD=,DE=,AB=4,EG=EF=1,点M在线段GF上(包括两端点),点N在线段AB上,且=,∴0≤AN=EM≤3,D(0,0,0),设N(,a﹣1,0),a∈[1,4],则M(0,a,),=(),=(0,a,),设平面DMN的法向量=(x,y,z),则,取y=1,得=(,1,﹣)平面DNC的法向量=(0,0,1),设二面角M﹣DN﹣C的平面角为θ,则cosθ===∈[,],∴45°≤θ≤60°.∴二面角M﹣DN﹣C的平面角的取值范围为[45°,60°].故选:B.二、填空题(本题共有7小题,其中第9题每空2分,第10、11、12题每空3分,第13、14、15题每空4分,共36分)9.(6分)已知x∈[,π],且sin(2x﹣)=,则cos2x=﹣,sinx=,tanx=﹣.【解答】解:∵x∈[,π],sin(2x﹣)=﹣cos2x=,∴2x﹣∈[,],cos2x=﹣,∴cos2x=1﹣sin2x=,即sin2x=,解得:sinx=,cosx=﹣=﹣,则tanx=﹣.故答案为:﹣;;﹣10.(6分)已知等差数列{a n}的前n项和为S n,a2+5=2a4,a10=﹣3,则a1=15,S8=64.【解答】解:设等差数列{a n}的首项为a1,公差为d,∵a2+5=2a4,a10=﹣3,∴,即,解得a1=15,d=﹣2;∴S8=8×15+×8×7×(﹣2)=64.故答案为:15,64.11.(6分)已知直线Ax+By+C=0(A2+B2=C2)与圆x2+y2=4交于M,N两点,O为坐标原点,则|MN|等于,•等于﹣2.【解答】解:如图,圆心到直线的距离是d=,又A2+B2=C2,∴d==1.又圆的半径是2,∴|MN|=2;sin∠OMN=sin∠ONM=.∴∠OMN=∠ONM=30°,可得∠MON=120°.故•=2×2×cos120°=﹣2.故答案为:,﹣2.12.(6分)已知向量,的夹角为,|﹣|=||=5,向量﹣,﹣的夹角为,|﹣|=2,则﹣与﹣的夹角正弦值为,||=4+或.【解答】解:作=,=,=,则=﹣,向量﹣=,﹣=,由题意可得△OAB为边长为5的等边三角形,向量﹣,﹣的夹角为,可得∠ACB=120°,由∠AOB+∠ACB=180°,可得四点O,A,B,C共圆,在△ABC中,CA=2,AB=5,∠ACB=120°,由正弦定理可得sin∠CBA===,在△OAC中,OA=5,AC=2,∠OCA=60°,由余弦定理可得52=OC2+12﹣2OC•2•,解得OC=4+.当C在△OAB中,同理可得sin∠CBA=,OC=.故答案为:,4+或.13.(4分)若存在x0∈[1,3],|x02﹣ax0+4|≤3x0,则实数a的取值范围是1≤a≤8.【解答】解:命题“存在x0∈[1,3],|x02﹣ax0+4|≤3x0”,的否定是:“任意x∈[1,3],|x2﹣ax+4|>3x”,它等价于x2﹣ax+4>3x①,或x2﹣ax+4<﹣3x②;由①得,a<x+﹣3,且x+在x∈[1,3]上的最小值是2+2=4,∴a<1;由②得,a>x++3,且x+在x∈[1,3]上的最大值为1+4=5,∴a>8;由①②知,a<1或a>8,它的否定是1≤a≤8,∴实数a的取值范围是1≤a≤8.故答案为:1≤a≤8.14.(4分)已知点A(﹣),在抛物线C:y2=2px(p>0)的准线上,点M,N在抛物线C上,且位于x轴的两侧,O是坐标原点,若=3,则点A到动直线MN的最大距离为.【解答】解:抛物线C:y2=2px(p>0)的准线为x=﹣,由题意得﹣=﹣,解得p=1.即有抛物线方程为y2=2x,设直线MN的方程为:x=ty+m,点M(x1,y1),N(x2,y2),直线MN与x轴的交点为D(m,0),x=ty+m代入y2=2x,可得y2﹣2ty﹣2m=0,根据韦达定理有y1•y2=﹣2m,∵•=3,∴x1•x2+y1•y2=3,从而(y1•y2)2+y1•y2﹣3=0,∵点M,N位于x轴的两侧,∴y1•y2=﹣6,故m=3.当y=0时,x=3恒成立,故直线MN所过的定点坐标是D(3,0),当直线MN绕着定点D(3,0)旋转时,AD⊥MN,即有点A到动直线MN的距离最大,且为=.故答案为:.15.(4分)已知A={(x,y)|ax+by=1},B={(x,y)|x≥0,y≥1,x+y≤2},若A∩B≠∅恒成立,则a2+b2+2a+3b的取值范围是.【解答】解:如图1所示,集合B表示的图形如△ABC.若A∩B=∅,则,或,.作出可行域如图2,利用补集的思想可得:由于A∩B≠∅恒成立,则表示的点集为去掉虚线表示的部分,由于(a+1)2+表示点与上述点集的点之间的两点之间的距离的平方.∴a2+b2+2a+3b=(a﹣1)2+﹣≥(1﹣1)2+﹣=,故答案为:.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)设锐角三角形ABC的三内角为A,B,C所对的边分别为a,b,c,函数f(x)=cosxsin(x+)﹣cos2x.(Ⅰ)求f(A)的取值范围;(Ⅱ)若f(A)=,△ABC的面积为,求•的取值范围.【解答】(本题满分为14分)解:(Ⅰ)f(x)=cosxsin(x+)﹣cos2x=cosx(sinx+cosx)﹣=sin2x+(1+cos2x)﹣=sin2x﹣cos2x﹣=sin(2x﹣)﹣,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣6分因为是锐角三角形,所以A∈(0,),所以2A﹣∈(﹣,),所以sin(2A﹣)∈(﹣,1],所以f(A)∈(﹣,];﹣﹣﹣﹣8分(Ⅱ)因为f(A)=,所以sin(2A﹣)=1,又因为:2A﹣∈(﹣,),所以:2A﹣=,即A=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣10分又△ABC的面积为=bcsinA,所以bc=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣12分所以•=bccosA=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣14分.17.(15分)已知数列{a n}是公差不为零的等差数列,a1=2,且a2,a4,a8成等比数列.(Ⅰ)求数列{a n}的通项;(Ⅱ)设{b n﹣(﹣1)n a n}是等比数列,且b2=7,b5=71,求数列{b n}的前n项和T n.【解答】解:(Ⅰ)设数列{a n}的公差为d(d≠0),∵a1=2且a2,a4,a8成等比数列,∴(3d+2)2=(d+2)(7d+2),解得d=2,故a n=a1+(n﹣1)d=2+2(n﹣1)=2n.(Ⅱ)令,设{c n}的公比为q,∵b2=7,b5=71,a n=2n,∴c2=b2﹣a2=7﹣4=3,c5=b5+a5=71+10=81,∴,故q=3,∴,即,∴.T n=b1+b2+b3+…+b n=(30+31+…+3n﹣1)+[﹣2+4﹣6+…+(﹣1)n2n]当n为偶数时,;当n为奇数时,=.∴.18.(15分)如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中点.(Ⅰ)求证:平面EAC⊥平面PBC;(Ⅱ)若二面角P﹣AC﹣E的余弦值为,求直线PA与平面EAC所成角的正弦值.【解答】(Ⅰ)证明:∵PC⊥平面ABCD,AC⊂平面ABCD,∴AC⊥PC,∵AB=2,AD=CD=1,∴AC=BC=,∴AC2+BC2=AB2,∴AC⊥BC,又BC∩PC=C,∴AC⊥平面PBC,∵AC⊂平面EAC,∴平面EAC⊥平面PBC.…(4分)(Ⅱ)如图,以C为原点,取AB中点F,、、分别为x轴、y轴、z轴正向,建立空间直角坐标系,则C(0,0,0),A(1,1,0),B(1,﹣1,0).设P(0,0,a)(a>0),则E(,﹣,),…(6分)=(1,1,0),=(0,0,a),=(,﹣,),取=(1,﹣1,0),则•=•=0,为面PAC的法向量.设=(x,y,z)为面EAC的法向量,则•=•=0,即取x=a,y=﹣a,z=﹣2,则=(a,﹣a,﹣2),依题意,|cos<,>|===,则a=2.…(10分)于是=(2,﹣2,﹣2),=(1,1,﹣2).设直线PA与平面EAC所成角为θ,则sinθ=|cos<,>|==,即直线PA与平面EAC所成角的正弦值为.…(12分)19.(15分)如图,中心在坐标原点,焦点分别在x轴和y轴上的椭圆T1,T2都过点M(0,﹣),且椭圆T1与T2的离心率均为.(Ⅰ)求椭圆T1与椭圆T2的标准方程;(Ⅱ)过点M引两条斜率分别为k,k′的直线分别交T1,T2于点P,Q,当k′=4k 时,问直线PQ是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.【解答】解:(Ⅰ)∵椭圆T1与T2的离心率e==.∴a=b=c∵焦点分别在x轴和y轴上的椭圆T1,T2都过点M(0,﹣),故椭圆T1的b=c=,a=2,椭圆T2的b=c=1,a=,故椭圆T1与椭圆T2的标准方程分别为:,;(Ⅱ)直线MP的方程为,联立椭圆方程得:,消去y得,则P点的横坐标为,则点P的坐标为(,)同理可得点Q的坐标为:(,),故直线PQ的斜率k PQ==﹣,则直线PQ的方程为:y﹣=﹣(x﹣),即y=﹣x+,即当x=0时,y=,故直线PQ过定点(0,).20.(15分)已知函数f(x)=x2+|x+1﹣a|,其中a为实常数.(Ⅰ)若a=1,判断f(x)在[﹣,]上的单调性;(Ⅱ)若存在x∈R,使不等式f(x)≤2|x﹣a|成立,求a的取值范围.【解答】解:(Ⅰ)若a=1,函数f(x)=x2+|x|=,故f(x)在[﹣,0)上是减函数,在[0,]上是增函数.(Ⅱ)先求使不等式f(x)>2|x﹣a|对x∈R恒成立时a的取值范围.①当x≤a﹣1时,不等式化为x2﹣x﹣1+a>2(a﹣x),即x2+x﹣1>a,∴﹣>a,若a ﹣1≥﹣,即a ≥,则由不等式可得a <﹣,矛盾.若a ﹣1<﹣,即a <,则由不等式可得a <(a ﹣1)2+(a ﹣1)﹣1,即a 2﹣2a ﹣1>0,求得a >1+,或a <1﹣,∴a <1﹣.(2)当a ﹣1<x ≤a 时,不等式化为x 2+x +1﹣a >2(a ﹣x ),即﹣>3a ,若a ﹣1<﹣≤a ,即﹣≤a <﹣,此时3a <﹣,a <﹣,结合条件,得﹣≤a <﹣.若a ﹣1≥﹣,即a ≥﹣,3a ≤(a ﹣1)2+3(a ﹣1)+1,即a 2﹣2a ﹣1>0,解得a ≥1+或a ≤1﹣.结合条件及(1),得﹣≤a <1﹣.若a <﹣,3a <a 2+3a +1恒成立. 综合得a <1﹣.(3)当x >a 时,不等式化为x 2+x +1>2(x ﹣a ),即x 2﹣x +1>﹣a ,解得a >﹣. 结合(2)可得﹣<a <1﹣.所以,使不等式使不等式f (x )>2|x ﹣a |恒成立的a 的取值范围是﹣<a <1﹣.故本题所要求的a 的取值范围是a ≥1﹣,或a ≤﹣.赠送—高中数学知识点二次函数(1)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔xy1x 2x 0>a O∙ab x 2-=k 0)(>k f xy1x 2x O∙ab x 2-=k<a 0)(<k f③x 1<k <x 2 ⇔ af (k )<0)(<k f xy1x 2x 0>a O∙kx y1x 2x O∙k<a 0)(>k f④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②02b x a->,则()M f p =(Ⅱ)当0a <时(开口向下)x>O-=f(p) f (q)()2b f a-x>O-=f (p)f (q)()2b f a-xxx x(q)0x①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.x<O-=f (p) f (q) ()2bf a-x<O-=f (p)f(q)()2b f a-x<O-=f (p)f(q)()2bf a-x x<O-=f (p)f (q)()2b f a-x<O-=f (p)f (q)()2b f a-x。
2014-2015学年高二(上)期中数学试卷一、填空题(本大题共14小题,每小题5分,共70分.只填结果,不要过程!)1.过点(﹣2,3)且与直线x﹣2y+1=0垂直的直线的方程为.2.过三点A(﹣4,0),B(0,2)和原点O(0,0)的圆的标准方程为.3.已知△ABC中,A(2,4),B(1,﹣3),C(﹣2,1),则BC边上的高AD的长为.4.已知两条直线l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8.若直线l1与直线l2平行,则实数m= .5.已知l,m是两条不同的直线,α,β是两个不同的平面,下列命题:①若l∥α,m⊂α,则l∥m;②若l⊂α,l∥β,α∩β=m,则l∥m;③若l∥m,m⊂α,则l∥α;④若l⊥α,m∥α,则l⊥m.其中真命题是(写出所有真命题的序号).6.若圆x2+y2=4 与圆x2+y2﹣2mx+m2﹣1=0相外切,则实数m= .7.若x,y满足约束条件,则z=x﹣y的最小值是.8.过平面区域内一点P作圆O:x2+y2=1的两条切线,切点分别为A,B,记∠APB=α,当α最小时,此时点P坐标为.9.如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽为米.10.已知双曲线的一条渐近线经过点(1,2),则该双曲线的离心11.已知点P在抛物线x2=4y上运动,F为抛物线的焦点,点A的坐标为(2,3),若PA+PF的最小值为M,此时点P的纵坐标的值为n,则M+n= .12.在平面直角坐标系xOy中,圆C的方程为(x﹣4)2+y2=1,若直线y=kx﹣3上至少存在一点,使得以该点为圆心,2为半径的圆与圆C有公共点,则k的最大值是.13.已知等腰三角形腰上的中线长为2,则该三角形的面积的最大值是.14.已知椭圆,F1,F2是左右焦点,l是右准线,若椭圆上存在点P,使|PF1|是P到直线l的距离的2倍,则椭圆离心率的取值范围是.二、解答题(共6题,90分,请写出必要的文字说明、证明过程或演算步骤)15.如图,已知斜三棱柱ABC﹣A1B1C1中,AB=AC,D为BC的中点.(1)若AA1⊥AD,求证:AD⊥DC1;(2)求证:A1B∥平面ADC1.16.如图,在四棱锥P﹣ABCD中,AB∥DC,DC=2AB,AP=AD,PB⊥AC,BD⊥AC,E为PD的中点.求证:(1)AE∥平面PBC;(2)PD⊥平面ACE.(2)已知双曲线的渐近线方程为y=±x,准线方程为x=±,求该双曲线的标准方程.18.已知△ABC三个顶点坐标分别为:A(1,0),B(1,4),C(3,2),直线l经过点(0,4).(1)求△ABC外接圆⊙M的方程;(2)若直线l与⊙M相切,求直线l的方程;(3)若直线l与⊙M相交于A,B两点,且AB=2,求直线l的方程.19.已知直线l与圆C:x2+y2+2x﹣4y+a=0相交于A,B两点,弦AB的中点为M(0,1),(1)求实数a的取值范围以及直线l的方程;(2)若圆C上存在四个点到直线l的距离为,求实数a的取值范围;(3)已知N(0,﹣3),若圆C上存在两个不同的点P,使PM=PN,求实数a的取值范围.20.在平面直角坐标系xOy中,已知椭圆C:=1(a>b>0)的离心率e=,且椭圆C上的点到点Q(0,2)的距离的最大值为3.(1)求椭圆C的方程;(2)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A,B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.2014-2015学年高二(上)期中数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共70分.只填结果,不要过程!)1.过点(﹣2,3)且与直线x﹣2y+1=0垂直的直线的方程为2x+y+1=0 .考点:直线的一般式方程与直线的垂直关系.专题:直线与圆.分析:根据与已知直线垂直的直线系方程可设与直线x﹣2y+1=0垂直的直线方程为2x+y+c=0,再把点(﹣2,3)代入,即可求出c值,得到所求方程.解答:解:∵所求直线方程与直线x﹣2y+1=0垂直,∴设方程为2x+y+c=0∵直线过点(﹣2,3),∴﹣4+3+c=0,∴c=1∴所求直线方程为2x+y+1=0.故答案为:2x+y+1=0.点评:本题主要考查了互相垂直的两直线方程之间的关系,以及待定系数法求直线方程,属于常规题.2.过三点A(﹣4,0),B(0,2)和原点O(0,0)的圆的标准方程为(x+2)2+(y﹣1)2=5 .考点:圆的标准方程.专题:直线与圆.分析:由条件利用圆的弦的性质求出圆心的坐标,可得圆的半径,从而求得圆的标准方程.解答:解:由于所求的圆经过三点A(﹣4,0),B(0,2)和原点O(0,0),故圆心在直线x=﹣2上,又在y=1上,故圆心的坐标为M(﹣2,1),半径为MO=,故要求的圆的标准方程为(x+2)2+(y﹣1)2=5,故答案:(x+2)2+(y﹣1)2=5.点评:本题主要考查求圆的标准方程,关键在于利用圆的弦的性质求出圆心的坐标,属于基础题.3.已知△ABC中,A(2,4),B(1,﹣3),C(﹣2,1),则BC边上的高AD的长为 5 .考点:直线的一般式方程与直线的垂直关系.专题:直线与圆.分析:由已知条件分别求出直线BC和直线AD所在的方程,联立方程组,求出点D,由此能求出高AD的长.解答:解:∵△ABC中,A(2,4),B(1,﹣3),C(﹣2,1),∴BC边的斜率k BC==﹣,∴BC边上的高AD的斜率k AD=,∴直线AD:y﹣4=,整理,得3x﹣4y+10=0,直线BC:,整理,得4x+3y+5=0,联立,得D(﹣2,1),∴|AD|==5.故答案为:5.点评:本题考查三角形的高的求法,是基础题,解题时要注意直线方程和两点间距离公式的合理运用.4.已知两条直线l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8.若直线l1与直线l2平行,则实数m= ﹣7 .考点:直线的一般式方程与直线的平行关系.专题:直线与圆.分析:对x,y的系数分类讨论,利用两条直线平行的充要条件即可判断出.解答:解:当m=﹣3时,两条直线分别化为:2y=7,x+y=4,此时两条直线不平行;当m=﹣5时,两条直线分别化为:x﹣2y=10,x=4,此时两条直线不平行;当m≠﹣3,﹣5时,两条直线分别化为:y=x+,y=+,∵两条直线平行,∴,≠,解得m=﹣7.综上可得:m=﹣7.故答案为:﹣7.点评:本题考查了分类讨论、两条直线平行的充要条件,属于基础题.5.已知l,m是两条不同的直线,α,β是两个不同的平面,下列命题:①若l∥α,m⊂α,则l∥m;②若l⊂α,l∥β,α∩β=m,则l∥m;③若l∥m,m⊂α,则l∥α;④若l⊥α,m∥α,则l⊥m.其中真命题是②④(写出所有真命题的序号).考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:利用空间中线线、线面、面面间的位置关系求解.解答:解:①若l∥α,m⊂α,则l与m平行或异面,故①错误;②若l⊂α,l∥β,α∩β=m,则由直线与平面平行的性质得l∥m,故②正确;③若l∥m,m⊂α,则l∥α或l⊂α,故③错误;④若l⊥α,m∥α,则由直线与平面垂直的性质得l⊥m,故④正确.故答案为:②④.点评:本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.6.若圆x2+y2=4 与圆x2+y2﹣2mx+m2﹣1=0相外切,则实数m= ±3 .考点:圆与圆的位置关系及其判定.专题:直线与圆.分析:先求出圆的圆心和半径,根据两圆相外切,可得圆心距等于半径之和,求得m的值.解答:解:圆x2+y2=4 的圆心为(0,0)、半径为2;圆x2+y2﹣2mx+m2﹣1=0,即(x﹣m)2+y2=1,表示圆心为(m,0)、半径等于1的圆.根据两圆相外切,可得圆心距等于半径之和,即|m|=2+1=3,求得m=±3,故答案为:±3.点评:本题主要考查圆的标准方程,两个圆相外切的性质,属于基础题.7.若x,y满足约束条件,则z=x﹣y的最小值是﹣3 .考点:简单线性规划.专题:不等式的解法及应用.分析:先根据条件画出可行域,设z=x﹣y,再利用几何意义求最值,将最小值转化为y轴上的截距最大,只需求出直线z=x﹣y,过可行域内的点A(0,3)时的最小值,从而得到z最小值即可.解答:解:设变量x、y满足约束条件,在坐标系中画出可行域三角形,将z=x﹣y整理得到y=x﹣z,要求z=x﹣y的最小值即是求直线y=x﹣z的纵截距的最大值,当平移直线x﹣y=0经过点A(0,3)时,x﹣y最小,且最小值为:﹣3,则目标函数z=x﹣y的最小值为﹣3.故答案为:﹣3.点评:借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.线性规划中的最优解,通常是利用平移直线法确定.8.过平面区域内一点P作圆O:x2+y2=1的两条切线,切点分别为A,B,记∠APB=α,当α最小时,此时点P坐标为(﹣4,﹣2).考点:简单线性规划;直线与圆的位置关系.专题:数形结合;不等式的解法及应用.分析:先依据不等式组,结合二元一次不等式(组)与平面区域的关系画出其表示的平面区域,再利用圆的方程画出图形,确定α最小时点P的位置即可.解答:解:如图阴影部分表示,确定的平面区域,当P离圆O最远时,α最小,此时点P坐标为:(﹣4,﹣2),故答案为::(﹣4,﹣2).点评:本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.9.如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽为2米.考点:抛物线的应用.专题:计算题;压轴题.分析:先建立直角坐标系,将A点代入抛物线方程求得m,得到抛物线方程,再把y=﹣3代入抛物线方程求得x0进而得到答案.解答:解:如图建立直角坐标系,设抛物线方程为x2=my,将A(2,﹣2)代入x2=my,得m=﹣2∴x2=﹣2y,代入B(x0,﹣3)得x0=,故答案为:2.点评:本题主要考查抛物线的应用.考查了学生利用抛物线解决实际问题的能力.10.已知双曲线的一条渐近线经过点(1,2),则该双曲线的离心率的值为.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由题意可得渐近线y=x经过点(1,2),可得b=2a,代入可得离心率e===,化简即可.解答:解:双曲线的渐近线方程为y=x,故y=x经过点(1,2),可得b=2a,故双曲线的离心率e====故答案为:点评:本题考查双曲线的离心率,涉及渐近线的方程,属中档题.11.已知点P在抛物线x2=4y上运动,F为抛物线的焦点,点A的坐标为(2,3),若PA+PF的最小值为M,此时点P的纵坐标的值为n,则M+n= 5 .考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:根据抛物线的标准方程求出焦点坐标和准线方程,利用抛物线的定义可得|PA|+|PF|=|PA|+|PN|=M,由此可得.解答:解:抛物线标准方程 x2=4y,p=2,焦点F(0,1),准线方程为y=﹣1.设p到准线的距离为PN,(即PN垂直于准线,N为垂足),则M=|PA|+|PF|=|PA|+|PN|=4,此时P(2,1),∴n=1,则M+n═5点评:本题考查抛物线的定义、标准方程,以及简单性质的应用,是解题的关键.12.在平面直角坐标系xOy中,圆C的方程为(x﹣4)2+y2=1,若直线y=kx﹣3上至少存在一点,使得以该点为圆心,2为半径的圆与圆C有公共点,则k的最大值是.考点:直线与圆的位置关系.专题:计算题;直线与圆.分析:圆C的方程表示以C(4,0)为圆心,半径等于1的圆.由题意可得,直线y=kx﹣3和圆C′:即(x﹣4)2+y2=9有公共点,由点C′到直线y=kx﹣3的距离为d≤3,求得实数k的最大值.解答:解:圆C的方程为:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx﹣3上至少存在一点,使得以该点为圆心,2为半径的圆与圆C有公共点,∴只需圆C′:(x﹣4)2+y2=9与直线y=kx﹣3有公共点即可.设圆心C(4,0)到直线y=kx﹣3的距离为d,则d=≤3,即7k2﹣24k≤0,∴0≤k≤,∴k的最大值是.故答案为:.点评:本题主要考查直线和圆的位置关系,点到直线的距离公式,体现了等价转化的数学思想,属于中档题.13.已知等腰三角形腰上的中线长为2,则该三角形的面积的最大值是.考点:基本不等式.专题:不等式的解法及应用.分析:建系,设C(m,0),B(﹣m,0),A(0,n),可得D(,),进而由题意可得BD2=()2+()2=4,故三角形的面积S=mn=••≤•=,注意等号成立的条件即可.解答:解:以等腰三角形底边BC的中点为原点,建立如图所示的坐标系,设C(m,0),则B(﹣m,0),A(0,n),由中点坐标公式可得D(,),由题意可得BD2=()2+()2=4,∴三角形的面积S=mn=••≤•=当且仅当=即n=3m时取等号,∴三角形的面积的最大值为故答案为:点评:本题考查基本不等式求最值,建立坐标系是解决问题的关键,属中档题.14.已知椭圆,F1,F2是左右焦点,l是右准线,若椭圆上存在点P,使|PF1|是P到直线l的距离的2倍,则椭圆离心率的取值范围是.考点:椭圆的简单性质.专题:综合题;压轴题.分析:设点P到直线l的距离为d,根据椭圆的定义可知|PF2|比d的值等于c比a的值,由题意知|PF1|等于2d,且|PF1|+|PF2|=2a,联立化简得到:|PF1|等于一个关于a与c的关系式,又|PF1|大于等于a﹣c,小于等于a+c,列出关于a与c的不等式,求出不等式的解集即可得到的范围,即为离心率e的范围,同时考虑e小于1,从而得到此椭圆离心率的范围.解答:解:设P到直线l的距离为d,根据椭圆的第二定义得=e=,|PF1|=2d,且|PF1|+|PF2|=2a,则|PF1|=2a﹣|PF2|=2a﹣=2d,即d=,而|PF1|∈(a﹣c,a+c],即2d=,所以得到,由①得:++2≥0,为任意实数;由②得:+3﹣2≥0,解得≥或≤(舍去),所以不等式的解集为:≥,即离心率e≥,又e<1,所以椭圆离心率的取值范围是[,1).故答案为:[,1)点评:此题考查学生掌握椭圆的定义及椭圆简单性质的运用,是一道中档题.二、解答题(共6题,90分,请写出必要的文字说明、证明过程或演算步骤)15.如图,已知斜三棱柱ABC﹣A1B1C1中,AB=AC,D为BC的中点.(1)若AA1⊥AD,求证:AD⊥DC1;(2)求证:A1B∥平面ADC1.考点:直线与平面平行的判定;空间中直线与直线之间的位置关系.专题:证明题;空间位置关系与距离.分析:(1)证明AD⊥BC,AD⊥CC1,利用线面垂直的判定定理,可得AD⊥平面BCC1B1,即可证明AD⊥DC1;(2)连结A1C,交AC1于点O,连结OD,则O为A1C的中点,证明OD∥A1B,可得A1B∥平面ADC1.解答:证明:(1)因为AB=AC,D为BC的中点,所以AD⊥BC.…(2分)因为AA1⊥AD,AA1∥CC1,所以AD⊥CC1,…(4分)因为CC1∩BC=C,所以AD⊥平面BCC1B1,…(6分)因为DC1⊂平面BCC1B1,所以AD⊥DC1…(7分)(2)连结A1C,交AC1于点O,连结OD,则O为A1C的中点.因为D为BC的中点,所以OD∥A1B …(9分)因为OD⊂平面ADC1,A1B⊄平面ADC1,…(12分)所以A1B∥平面ADC1…(14分)点评:本题考查直线与平面平行的判定、考查线面垂直的判定定理与性质,考查学生分析解决问题的能力,属于中档题.16.如图,在四棱锥P﹣ABCD中,AB∥DC,DC=2AB,AP=AD,PB⊥AC,BD⊥AC,E为PD的中点.求证:(1)AE∥平面PBC;(2)PD⊥平面ACE.考点:直线与平面垂直的判定;直线与平面平行的判定.专题:证明题.分析:(1)要证明线面平行,需要构造线面平行的判定定理的条件﹣﹣在面PBC内找到与AE平行的直线,取PC的中点F利用题目中的平行关系,可证得AE∥BF,即得AE∥BF.(2)由PB⊥AC,BD⊥AC可得AC⊥平面PBD,利用线面垂直的定义得AC⊥PD,然后由AP=AD,E 为PD的中点得到PD⊥AE,由线面垂直的判定定理可得PD⊥平面ACE.解答:证明:(1)取PC中点F,连接EF,BF,∵E为PD中点,∴EF∥DC且EF=.∵AB∥DC且,∴EF∥AB且EF=AB.∴四边形ABFE为平行四边形.∴AE∥BF.∵AE⊄平面PBC,BF⊂平面PBC,∴AE∥平面PBC.(2)∵PB⊥AC,BD⊥AC,PB∩BD=B,∴AC⊥平面PBD.∵PD⊂平面PBD,∴AC⊥PD.∵AP=AD,E为PD的中点,∴PD⊥AE.∵AE∩AC=A,∴PD⊥平面ACE.点评:本题考查了线面平行和线面垂直的判断,考查数形结合、化归与转化的数学思想方法,是个中档题.17.(1)已知椭圆的焦点在x轴上,长轴长为4,焦距为2,求椭圆的标准方程;(2)已知双曲线的渐近线方程为y=±x,准线方程为x=±,求该双曲线的标准方程.考点:双曲线的简单性质;椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(1)利用椭圆的标准方程及其性质即可得出;(2)利用双曲线的标准方程及其性质即可得出.解答:解:(1)设椭圆的标准方程为:,由题意得a=2,c=1,⇒b2=3,∴所求椭圆的标准方程为.(2)由题意知双曲线标准方程为:,(a,b>0).∴,,又c2=a2+b2,解得a=4,b=3,∴所求双曲线标准方程为.点评:本题考查了椭圆与双曲线的标准方程及其性质,属于基础题.18.已知△ABC三个顶点坐标分别为:A(1,0),B(1,4),C(3,2),直线l经过点(0,4).(1)求△ABC外接圆⊙M的方程;(2)若直线l与⊙M相切,求直线l的方程;(3)若直线l与⊙M相交于A,B两点,且AB=2,求直线l的方程.考点:直线和圆的方程的应用;圆的一般方程.专题:综合题;直线与圆.分析:(1)确定△ACB是等腰直角三角形,因而△ACB圆心为(1,2),半径为2,即可求△ABC 外接圆⊙M的方程;(2)当直线l与x轴垂直时,显然不合题意,因而直线l的斜率存在,设l:y=kx+4,由题意知,求出k,即可求直线l的方程;(3)分类讨论,利用勾股定理,可得直线l的方程.解答:解:(1)∵A(1,0),B(1,4),C(3,2),∴=(﹣2,﹣2),=(﹣2,2),∴,则△ACB是等腰直角三角形,因而△ACB圆心为(1,2),半径为2,∴⊙M的方程为(x﹣1)2+(y﹣2)2=4.(2)当直线l与x轴垂直时,显然不合题意,因而直线l的斜率存在,设l:y=kx+4,由题意知,解得k=0或,…(8分)故直线l的方程为y=4或4x﹣3y+12=0.…(10分)(3)当直线l与x轴垂直时,l方程为x=0,它截⊙M得弦长恰为;…(12分)当直线l的斜率存在时,设l:y=kx+4,∵圆心到直线y=kx+4的距离,由勾股定理得,解得,…(14分)故直线l的方程为x=0或3x+4y﹣16=0.…(16分)点评:本题考查直线和圆的方程的应用,考查直线、圆的方程,考查点到直线的距离公式,属于中档题.19.已知直线l与圆C:x2+y2+2x﹣4y+a=0相交于A,B两点,弦AB的中点为M(0,1),(1)求实数a的取值范围以及直线l的方程;(2)若圆C上存在四个点到直线l的距离为,求实数a的取值范围;(3)已知N(0,﹣3),若圆C上存在两个不同的点P,使PM=PN,求实数a的取值范围.考点:直线和圆的方程的应用.专题:综合题;直线与圆.分析:(1)圆的方程化为标准方程,可得实数a的取值范围,利用垂径定理,可求直线l的方程;(2)确定与直线l平行且距离为的直线,即可求实数a的取值范围;(3)利用PM=PN,可得圆的方程,结合两个圆相交,求实数a的取值范围.解答:解:(1)圆…(1分)据题意:…(2分)因为CM⊥AB,⇒k CM•k AB=﹣1,k CM=﹣1,⇒k AB=1所以直线l的方程为x﹣y+1=0…(4分)(2)与直线l平行且距离为的直线为:l1:x﹣y+3=0过圆心,有两个交点,…(6分)l2:x﹣y﹣1=0与圆相交,;…(8分)(3)设…(12分)据题意:两个圆相交:…(14分)且,所以:…(16分)点评:本题考查圆的方程,考查直线和圆的方程的应用,考查学生分析解决问题的能力,属于中档题.20.在平面直角坐标系xOy中,已知椭圆C:=1(a>b>0)的离心率e=,且椭圆C上的点到点Q(0,2)的距离的最大值为3.(1)求椭圆C的方程;(2)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A,B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)由椭圆的离心率得到a2=3b2,设出椭圆上点P的坐标,写出点到直线的距离,然后对b分类求出|PQ|的最大值,由最大值等于3求解b的值,进一步得到a的值,则椭圆方程可求;(2)求出圆心到直线l的距离,由勾股定理得到弦长,代入三角形的面积公式,把面积用含有d 的代数式表示,配方后求出面积的最大值并求得使面积最大时的d值,从而得到m,n的值,则点M的坐标可求.解答:解:(1)∵,∴,于是a2=3b2.设椭圆C上任一点P(x,y),则(﹣b≤y≤b).当0<b<1时,|PQ|2在y=﹣b时取到最大值,且最大值为b2+4b+4,由b2+4b+4=9解得b=1,与假设0<b<1不符合,舍去.当b≥1时,|PQ|2在y=﹣1时取到最大值,且最大值为3b2+6,由3b2+6=9解得b2=1.于是a2=3,椭圆C的方程是.(2)圆心到直线l的距离为,弦长,∴△OAB的面积为,于是.而M(m,n)是椭圆上的点,∴,即m2=3﹣3n2,于是,而﹣1≤n≤1,∴0≤n2≤1,1≤3﹣2n2≤3,∴,于是当时,S2取到最大值,此时S取到最大值,此时,.综上所述,椭圆上存在四个点、、、,使得直线与圆相交于不同的两点A、B,且△OAB的面积最大,且最大值为.点评:本题考查了椭圆方程的求法,考查了函数取得最值的条件,体现了分类讨论的数学思想方法,训练了利用配方法求函数的最值,是压轴题.。
2015-2016学年浙江省湖州中学高二(上)期中数学试卷一、选择题:1.(5分)直线5x﹣2y﹣10=0与两坐标轴围成的三角形面积是()A.B.5 C.10 D.202.(5分)若a>b,c>d,则下列不等关系中不一定成立的是()A.a﹣b>d﹣c B.a﹣c<a﹣d C.c﹣a<c﹣b D.a+d>b+c3.(5分)已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)4.(5分)已知圆C:x2+y2﹣2x=1,直线l:y=k(x﹣1)+1,则l与C的位置关系是()A.一定相离B.一定相切C.相交且一定不过圆心D.相交且可能过圆心5.(5分)圆x2+y2﹣2x﹣1=0关于直线2x﹣y+3=0对称的圆的方程是()A.(x+3)2+(y﹣2)2=B.(x﹣3)2+(y+2)2=C.(x+3)2+(y﹣2)2=2 D.(x﹣3)2+(y+2)2=26.(5分)等比数列{a n}中,,记f(n)=a1•a2…a n,则当f(n)最大时,n的值为()A.7 B.8 C.9 D.107.(5分)已知x,y满足约束条件,若z=ax+y的最大值为4,则a=()A.3 B.2 C.﹣2 D.﹣38.(5分)记方程①:x2+a1x+1=0,方程②:x2+a2x+2=0,方程③:x2+a3x+4=0,其中a1,a2,a3是正实数.当a1,a2,a3成等比数列时,下列选项中,能推出方程③无实根的是()A.方程①有实根,且②有实根B.方程①有实根,且②无实根C.方程①无实根,且②有实根D.方程①无实根,且②无实根二、填空题:9.(4分)不等式x2+4x+4≤0的解集为,不等式的解集为.10.(4分)已知点P(3,4)和圆C:(x﹣1)2+y2=4,则|CP|=,过点P 与圆C相切的直线方程为.11.(4分)函数的最小值为,当且仅当x=时取到此最小值.12.(4分)设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=.13.(4分)若实数x,y满足x2+x+y2+y=0,则x+y的范围是.14.(4分)设等差数列{a n}的前n项和为S n,若S4≥10,S5≤15,则a4的最大值为.15.(4分)如图,圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B (B在A的上方),且|AB|=2.(1)圆C的标准方程为;(2)过点A任作一条直线与圆O:x2+y2=1相交于M,N两点,下列三个结论:①=;②﹣=2;③+=2.其中正确结论的序号是.(写出所有正确结论的序号)四、解答题:第16、17、18、19题每题14分,第20题16分,共72分16.(14分)已知{a n}为等差数列,且a1+a3=8,a2+a4=12.(Ⅰ)求{a n}的通项公式(Ⅱ)记{a n}的前n项和为S n,若a1,a k,S k成等比数列,求正整数k的值.+217.(14分)在平面直角坐标系xOy中,设圆C的方程为(x﹣a)2+(y﹣2a+4)2=1.(Ⅰ)若圆C经过A(3,3)与B(4,2)两点,求实数a的值;(Ⅱ)点P(0,3),若圆C上存在点M,使|MP|=2|MO|,求实数a的取值范围.18.(14分)已知函数f(x)=4x2﹣4ax.(1)若f(x)>1对任意的a∈[﹣1,1]恒成立,求x的取值范围;(2)若对任意的x∈[0,1],|f(x)|≤1,求实数a的取值范围.19.(14分)已知四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是平行四边形,∠BAD=120°,PA=AD=1,AB=2.M、N分别是PD、CD的中点.(I)求证:MN⊥AD;(II)求二面角A﹣MN﹣C的平面角的余弦值.20.(16分)设数列{a n}的前n项和为S n,且a1=1,na n+1=2S n,n∈N*.(1)求a2,a3,a4;(2)求数列{a n}的通项公式;(3)若数列{b n}满足:b1=,试证明:当n∈N*时,必有①;②b n<1.2015-2016学年浙江省湖州中学高二(上)期中数学试卷参考答案与试题解析一、选择题:1.(5分)直线5x﹣2y﹣10=0与两坐标轴围成的三角形面积是()A.B.5 C.10 D.20【解答】解:在直线方程5x﹣2y﹣10=0中令x=0,则y=﹣5,令y=0,则x=2,故直线5x﹣2y﹣10=0与两坐标轴的交点分别为(0,﹣5)、(2,0),故两坐标轴围成的三角形面积=|﹣5|×2=5故选:B.2.(5分)若a>b,c>d,则下列不等关系中不一定成立的是()A.a﹣b>d﹣c B.a﹣c<a﹣d C.c﹣a<c﹣b D.a+d>b+c【解答】解:A.∵a>b,c>d,∴a﹣b>0>d﹣c,故a﹣b>d﹣c成立;B.∵c>d,∴﹣c<﹣d,∴a﹣c<a﹣d.故成立.C.∵a>b,∴﹣a<﹣b,∴c﹣a<c﹣b,因此成立.D.取a=4,b=2,c=5,d=1,满足a>b,c>d,但是4+1>2+5不成立.综上可知:只有D不一定成立.故选:D.3.(5分)已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)【解答】解:∵3a n+a n=0+1∴∴数列{a n}是以﹣为公比的等比数列∵∴a1=4由等比数列的求和公式可得,S10==3(1﹣3﹣10)故选:C.4.(5分)已知圆C:x2+y2﹣2x=1,直线l:y=k(x﹣1)+1,则l与C的位置关系是()A.一定相离B.一定相切C.相交且一定不过圆心D.相交且可能过圆心【解答】解:圆C方程化为标准方程得:(x﹣1)2+y2=2,∴圆心C(1,0),半径r=,∵≥>1,∴圆心到直线l的距离d=<=r,且圆心(1,0)不在直线l上,∴直线l与圆相交且一定不过圆心.故选:C.5.(5分)圆x2+y2﹣2x﹣1=0关于直线2x﹣y+3=0对称的圆的方程是()A.(x+3)2+(y﹣2)2=B.(x﹣3)2+(y+2)2=C.(x+3)2+(y﹣2)2=2 D.(x﹣3)2+(y+2)2=2【解答】解:圆x2+y2﹣2x﹣1=0⇒(x﹣1)2+y2=2,圆心(1,0),半径,关于直线2x﹣y+3=0对称的圆半径不变,排除A、B,两圆圆心连线段的中点在直线2x﹣y+3=0上,C中圆(x+3)2+(y﹣2)2=2的圆心为(﹣3,2),验证适合,故选C6.(5分)等比数列{a n}中,,记f(n)=a1•a2…a n,则当f(n)最大时,n的值为()A.7 B.8 C.9 D.10【解答】解:∵等比数列{a n}中,a1=317,q=﹣,∴a n=317×,显然,当n为奇数时,a n>0,当n为偶数时,a n<0,且数列{|a n|}为递减数列,又|a9|=|317×|=|317×()|>1,|a10|=|317×|=<1,f (n)=a 1•a2…a n,∴f(9)=a1•a2…a8=(a1•a3•a5•a7•a9)•(a2•a4•a6•a8)>0,且|f(9)|>|f(8)|,|f(9)|>|f(10)|,∴当f(n)最大时,n的值为9.故选:C.7.(5分)已知x,y满足约束条件,若z=ax+y的最大值为4,则a=()A.3 B.2 C.﹣2 D.﹣3【解答】解:作出不等式组对应的平面区域如图:(阴影部分).则A(2,0),B(1,1),若z=ax+y过A时取得最大值为4,则2a=4,解得a=2,此时,目标函数为z=2x+y,即y=﹣2x+z,平移直线y=﹣2x+z,当直线经过A(2,0)时,截距最大,此时z最大为4,满足条件,若z=ax+y过B时取得最大值为4,则a+1=4,解得a=3,此时,目标函数为z=3x+y,即y=﹣3x+z,平移直线y=﹣3x+z,当直线经过A(2,0)时,截距最大,此时z最大为6,不满足条件,故a=2,故选:B.8.(5分)记方程①:x2+a1x+1=0,方程②:x2+a2x+2=0,方程③:x2+a3x+4=0,其中a1,a2,a3是正实数.当a1,a2,a3成等比数列时,下列选项中,能推出方程③无实根的是()A.方程①有实根,且②有实根B.方程①有实根,且②无实根C.方程①无实根,且②有实根D.方程①无实根,且②无实根【解答】解:当方程①有实根,且②无实根时,△1=a12﹣4≥0,△2=a22﹣8<0,即a12≥4,a22<8,∵a1,a2,a3成等比数列,∴a22=a1a3,即a3=,则a32=()2=,即方程③的判别式△3=a32﹣16<0,此时方程③无实根,故选:B.二、填空题:9.(4分)不等式x2+4x+4≤0的解集为{﹣2} ,不等式的解集为{x|x ≤﹣2或x>﹣1} .【解答】解:x2+4x+4=(x+2)2≤0,解得:x=2;由≤3得:≥0,解得:x≤﹣2或x>﹣1,故答案为:{﹣2},{x|x≤﹣2或x>﹣1}.10.(4分)已知点P(3,4)和圆C:(x﹣1)2+y2=4,则|CP|=,过点P 与圆C相切的直线方程为x=3或y=.【解答】解:如图∵C(1,0),P(3,4),∴|CP|=;当过点P与圆C相切的直线的斜率不存在时,切线方程为x=3;当过点P与圆C相切的直线的斜率存在时,设切线方程为y﹣4=k(x﹣3),即kx﹣y﹣3k+4=0,由圆心到切线的距离等于圆的半径可得:,解得:k=,∴此时的切线方程为y=.∴过点P与圆C相切的直线方程为x=3或y=.故答案为:,x=3或y=.11.(4分)函数的最小值为3,当且仅当x=2时取到此最小值.【解答】解:∵x>0,∴函数,当x=,即x=2时,函数有最小值3.故答案为:3,2.12.(4分)设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=﹣.=S n+1S n,【解答】解:∵a n+1﹣S n=S n+1S n,∴S n+1∴﹣=1,又∵a1=﹣1,即=﹣1,∴数列{}是以首项是﹣1、公差为﹣1的等差数列,∴=﹣n,∴S n=﹣,故答案为:﹣.13.(4分)若实数x,y满足x2+x+y2+y=0,则x+y的范围是[﹣2,0] .【解答】解:∵实数x,y满足x2+x+y2+y=0,∴(x+)2+(y+)2=,即2(x+)2+2(y+)2=1,令(x+)=cosθ,(y+)=sinθ,∴x=,y=,x+y==sin()﹣1∈[﹣2,0],故x+y的范围是[﹣2,0],故答案为:[﹣2,0]14.(4分)设等差数列{a n}的前n项和为S n,若S4≥10,S5≤15,则a4的最大值为4.【解答】解:∵等差数列{a n}的前n项和为S n,且S4≥10,S5≤15,∴,即∴∴,5+3d≤6+2d,d≤1∴a 4≤3+d≤3+1=4故a4的最大值为4,故答案为:4.15.(4分)如图,圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B (B在A的上方),且|AB|=2.(1)圆C的标准方程为(x﹣1)2+(y﹣)2=2;(2)过点A任作一条直线与圆O:x2+y2=1相交于M,N两点,下列三个结论:①=;②﹣=2;③+=2.其中正确结论的序号是①②③.(写出所有正确结论的序号)【解答】解:(1)∵圆C与x轴相切于点T(1,0),∴圆心的横坐标x=1,取AB的中点E,∵|AB|=2,∴|BE|=1,则|BC|=,即圆的半径r=|BC|=,∴圆心C(1,),则圆的标准方程为(x﹣1)2+(y﹣)2=2,故答案为:(x﹣1)2+(y﹣)2=2.(2)∵圆心C(1,),∴E(0,),又∵|AB|=2,且E为AB中点,∴A(0,﹣1),B(0,+1),∵M、N在圆O:x2+y2=1上,∴可设M(cosα,sinα),N(cosβ,sinβ),∴|NA|=====,|NB|====,∴===,同理可得=,∴=,①成立,﹣=﹣()=2,②正确.+=+()=,③正确.故答案为:①②③.四、解答题:第16、17、18、19题每题14分,第20题16分,共72分16.(14分)已知{a n}为等差数列,且a1+a3=8,a2+a4=12.(Ⅰ)求{a n}的通项公式(Ⅱ)记{a n}的前n项和为S n,若a1,a k,S k成等比数列,求正整数k的值.+2【解答】解:(Ⅰ)设等差数列{a n}的公差等于d,则由题意可得,解得a1=2,d=2.∴{a n}的通项公式a n =2+(n﹣1)2=2n.(Ⅱ)由(Ⅰ)可得{a n}的前n项和为S n ==n(n+1).成等比数列,∴=a1 S k+2 ,∵若a 1,a k,S k+2∴4k2 =2(k+2)(k+3),k=6 或k=﹣1(舍去),故k=6.17.(14分)在平面直角坐标系xOy中,设圆C的方程为(x﹣a)2+(y﹣2a+4)2=1.(Ⅰ)若圆C经过A(3,3)与B(4,2)两点,求实数a的值;(Ⅱ)点P(0,3),若圆C上存在点M,使|MP|=2|MO|,求实数a的取值范围.【解答】解:(Ⅰ)由题意k AB=﹣1,线段AB的中点为,故线段AB的中垂线方程为即y=x﹣1.设圆C的圆心(x,y),则即圆C的圆心满足y=2x﹣4.由,得圆心C(3,2),即a=3.(Ⅱ)点M(x,y),因为|MA|=2|MO|,所以=2,化简得x2+y2+2y﹣3=0,即x2+(y+1)2=4,所以点M在以D(0,﹣1)为圆心,2为半径的圆上所以点M应该既在圆C上又在圆D上,即圆C和圆D有公共点.因此由5a2﹣8a+8≥0得a∈R;由5a2﹣12a≤0得,因此所求实数a的取值范围是.18.(14分)已知函数f(x)=4x2﹣4ax.(1)若f(x)>1对任意的a∈[﹣1,1]恒成立,求x的取值范围;(2)若对任意的x∈[0,1],|f(x)|≤1,求实数a的取值范围.【解答】解:(Ⅰ)令g(a)=﹣4xa+4x2﹣1,若f(x)>1对任意的a∈[﹣1,1]恒成立,则,解的(Ⅱ)若对任意的x∈[0,1],|f(x)|≤1,即对任意的x∈[0,1],﹣1≤4x2﹣4ax≤1恒成立,即,所以3≤4a≤4,即.19.(14分)已知四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是平行四边形,∠BAD=120°,PA=AD=1,AB=2.M、N分别是PD、CD的中点.(I)求证:MN⊥AD;(II)求二面角A﹣MN﹣C的平面角的余弦值.【解答】(Ⅰ)证明:在△ADC中,由余弦定理可得:AC2=12+22﹣2×1×2×cos60°=3,∴AC2+AD2=CD2,∴AC⊥AD.又∵PA⊥平面ABCD,∴PA⊥AC,PA⊥AD.建立如图所示的空间直角坐标系A﹣xyz,则A(0,0,0),C,D(0,1,0),P(0,0,1),M,N.∴,又,∴=0,∴,即MN⊥AD.(Ⅱ)由(Ⅰ)可得:,.设平面AMN的法向量为,则,,可得,令z=,则y=﹣,x=1,∴.同理可得平面CMN的法向量=.∴===.∴二面角A﹣MN﹣C的平面角的余弦值为.20.(16分)设数列{a n}的前n项和为S n,且a1=1,na n+1=2S n,n∈N*.(1)求a2,a3,a4;(2)求数列{a n}的通项公式;(3)若数列{b n}满足:b1=,试证明:当n∈N*时,必有①;②b n<1.【解答】解:(1)由n=1,2,(3分)别代入递推式即可得a2=2,a3=3,a4=4…(3分)=2S n,(n﹣1)a n=2S n﹣1,(2)因为na n+1﹣(n﹣1)a n=2(S n﹣S n﹣1)=2a n即na n+1=(n+1)a n,所以na n+1所以,.…(7分)(3)①由(2)得所以{b n}是正项单调递增数列,…(8分)当n∈N*时,,…(9分)所以,即.…(11分)②由①得,当n≥2时,,,…,所以即…(13分)所以==…(14分)所以,即b n<1(n≥2)又当n=1,…(15分)故当n∈N*时,b n<1.。