垃圾焚烧电厂烟气系统DOC
- 格式:doc
- 大小:96.00 KB
- 文档页数:15
垃圾焚烧烟气在线系统(MCS100EHW)技术规范书西克麦哈克(北京)仪器有限公司垃圾焚烧行业2009年10月目录一、技术方案说明 (3)1.1系统作用 (3)1.2 系统组成 (3)1.3 系统方案介绍 (4)1.4 各监测子系统的分析原理 (4)二、各仪器设备的技术指标 (10)三、技术要求响应 (15)四、系统维护及寿命预期值 (16)五、MCS100EHW维护周期表 (17)六、本公司及烟气在线监测设备的优特点 (17)七、MSC100EHW设备与其它产品的比较 (18)一、技术方案说明1.1系统作用整个气体分析系统在本项目中起到两个作用:1.1.1酸控制进行电厂脱酸效果的监测与控制,以最大化地减少脱酸剂的使用量,降低生产成本。
垃圾燃烧产生酸性废气有SO2、HCl、HF、NOx。
其中,氯化氢(HCl)是垃圾中有机氯化物燃烧产生,如PVC塑料及漂白纸张为垃圾中含氯最高之物质,为HCl主要来源,由于流化床炉焚烧温度较高,因此HCl炉内生成量约为900mg/Nm3。
氟化物(HF)主要来自含氟碳化物的燃烧,HF其化学特性与HCl类似,形成的机理类同,但炉内生成量少,约为1-50mg/Nm3。
SO2来自垃圾无机硫化物还原和含硫化物的燃烧生成,炉内生成量约为400mg/Nm3。
一般采用半干法酸性气体脱除反应器时,对HCl去除吸收效率达93.9%,半干法酸性气体脱除反应器系统对SO2去除率大于50%,HCl、SO2、HF的最大排放浓度可分别控制在55mg/Nm3、200mg/Nm3、0.5mg/Nm3。
本项目在脱酸控制中可选用的目标监测气体:SO2/HCl。
1.1.2 对电厂烟气的排放总量进行监测鉴于脱酸中目标监测其他不一样,最终对整个配置也是有不同的要求,但是排放总量监测时的要求不变,需要监测的成分不变。
主要监测:HCl、SO2、NO X、CO、HF、H2O、O2,还包括粉尘、流速、温度压力。
1.2 系统组成系统包括:每台炉的烟道/烟囱采用1对1的形式对脱酸效果进行监控,并满足环保监测要求;此时每个烟道/烟囱需要一套脱酸气体监测系统,共2套;烟囱总排放口烟气在线监测系统(简称CEMS)由气态参数(HCl、SO2、NO X、CO、HF、H2O、O2)监测子系统、烟尘监测子系统、烟气排放参数(温度、压力、流量)监测子系统、系统控制及数据采集处理子系统组成。
垃圾焚烧发电厂烟气净化工艺选择SNCR(选择性非催化还原法):旋转喷雾脱酸塔:半干法(Ca(0H))+干法(8aHC03)+活性碳喷射+高效袋式除尘器+SCR(选择性催化还原法)相结合的烟气净化工艺,对垃圾焚烧烟气中污染物质的去除有很好的效果,在生产运行中能实现稳定的达标排放,设备运行稳定。
1、前言随着我国城市化进程的加快,人民生活水平不断提高,垃圾产生量也逐年递增。
为避免环境污染,对垃圾进行综合治理,合理利用,已是刻不容缓的重要课题。
垃圾焚烧是目前发达国家普遍推行的一种垃圾处理方式,可以有效分解垃圾中的有毒有害物质,杀灭各种病原体,焚烧后形成的固体残渣减量可达80%以上,占地少,方便填埋,还能产生电能进行再利用,可以说垃圾焚烧真正实现了垃圾处理的减量化、资源化、无害化。
垃圾焚烧烟气中的污染物可分为颗粒物(粉尘)、酸性气体(SO x、NO x、HCl、HF 等)、重金属(Hg、Pb、Cr、Cu、Ni、Zn、Mn、Sb、Cd、Se等)和有机剧毒污染物(二噁英、呋喃等)四大类。
为防止垃圾焚烧处理过程中对环境产生的二次污染,必须采取严格措施,利用烟气净化系统对焚烧产生的烟气进行处理,达到达标排放的目的。
以刚建成投产的成都市某垃圾焚烧发电厂为例,对垃圾焚烧烟气处理工艺进行分析和探讨。
2、垃圾焚烧发电厂概况该项目垃圾处理规模为2400t/d,焚烧炉处理能力为4x600t/d,选择4MPa,400oC 中温中压蒸汽参数的余热锅炉。
每台焚烧炉配置一套烟气处理系统。
3、烟气净化处理工艺3.1 工艺流程选择SNCR(选择性非催化还原法)+旋转喷雾脱酸塔+半干法(Ca(OH)2)+干法(NaHCO3)+活性碳喷射+高效袋式除尘器+SCR(选择性催化还原法)相结合的烟气净化工艺。
执行《欧盟污染物排放标准》2000/EC/76。
3.2 SNCR系统SNCR系统是把氨水溶液喷射到焚烧炉内,除去焚烧炉内的氮氧化物的设备,化学反应方程式如下:4NH3+4NO+O2——4N2+6H2O通过在锅炉第一烟道喷入雾状氨水溶液,烟气中的氮氧化物浓度从锅炉入口设计值300mg/Nm3被分解到省煤器出口200mg/Nm3之下。
XX生活垃圾焚烧发电厂烟气处理运行规程(第一版)编写:批准:审核:烟气处理系统的运行规程1.概述系统主要组成:石灰粉仓、活性炭仓、喷雾塔、布袋除尘器、引风机、烟囱及烟气管道阀门等。
布袋除尘器图1:烟气处理系统工艺图从焚烧炉完全燃烧后出来的烟气进入半干式喷雾塔顶部的扩散器内,与配置好的下降石灰浆溶剂相遇。
烟气在通过扩散器沿着圆柱-锥形室的轴线在半干式喷雾塔内向下流动。
石灰浆由一个涡轮喷雾器喷射出,石灰浆在重力作用下下落同时撞击在一个以较高的速度旋转的圆盘上,在离开圆盘时,石灰浆的速度(与圆盘的转动速度和直径成比例)大约是160 m/s.此时石灰浆形成大量有序的直径在10斯1左右的小滴.这个组合(扩散体-涡轮)是这个过程的关键. 烟气和石灰浆在这种情况下进行良好的混合、进行化学反应,几乎中和掉大量的S03和HC1。
为了提高效率,同时在喷雾塔前注入活性炭,重金属和二恶英成分被注入活性炭所吸附。
烟气离开半干式喷雾塔后,进入下一级除尘设备一一脉冲清灰布袋除尘器,用来过滤烟气中悬浮颗粒(中和反应产物,剩余反应物和飞灰).布袋除尘器由8个箱室分两列平行布置,由金属结构体支撑。
布袋由P84聚酰亚胺毡制成,为圆袋立式结构。
含尘烟气进入进口封头后,烟气随后折转向上,进入布袋除尘器。
烟气从布袋外表面进入,干净气体从内部流出。
随着除尘器的连续运行,滤袋表面的粉尘增多,气体通过滤料的阻力增大,布袋的透气率下降,需要进行清灰,清灰方式采用差压清灰与定时清灰两种相结合的方式,当压差大于1500Pa时,脉冲控制仪开始工作,一个周期后若差压低于设定值, 则清灰停止,若差压高于设定值,则继续清灰直至低于设定值。
除尘器的底部设锥形灰斗,反应终产物通过回转出灰阀外排。
经过中和反应、吸附、过滤出来的重金属和飞灰分别在半干式喷雾塔和布袋除尘器的下部通过埋刮板输灰机进行收集输送到大灰仓,经过打包填埋。
合格的烟气通过引风机进入烟囱直接排放。
具体反应:垃圾焚烧会产生如下酸性气体:Hydrochloric acid (HC1)盐酸Hydrogen fluoride (HF) 氟化氢), 二氧化硫Sulphur dioxide (S02Sulphur trioxide (S0). 三氧化硫3为了减少这些气体带来的危害性(主要是酸雨),要求对烟气进行处理.通过添加反应物(试剂)来对酸性气体(HC1和HF)、硫的氧化物(S02和S03)进行处理.作为半干式方法,基本反应物是悬浮状态的:石灰浆。
【垃圾焚烧发电】焚烧系统1概述1.1设计依据1)《生活垃圾焚烧处理工程项目建设标准》(建标142-2010)2)《生活垃圾焚烧处理工程技术规范》(CJJ90-2009)3)《生活垃圾焚烧厂评价标准》(CJJ/T137-2019)4)《生活垃圾焚烧炉及余热锅炉》(GB/T 18750-2008)5)《生活垃圾填埋场污染控制标准》(GB16889-2008)6)《火力发电厂与变电站设计防火标准》(GB50229-2019)7)《小型火力发电厂设计规范》GB50049-2011;8)《大中型火力发电厂设计规范》GB50660-2011;9)《火力发电厂职业安全设计规程》DL5053-2012;10)甲方提供的焚烧线基本设计资料;11)国家及行业标准、规范、规程等;1.2焚烧炉炉型选择目前国内外生活垃圾焚烧炉炉型主要有机械炉排炉、流化床焚烧炉、热解焚烧炉、回转窑焚烧炉四类。
而应用较多、技术成熟的生活垃圾焚烧炉炉型主要是机械炉排炉、流化床焚烧炉。
目前国外是以炉排型焚烧炉为主流设备,占有绝对优势;我国以炉排型焚烧炉和流化床焚烧炉为主,且前者更具优势。
以下对这四类焚烧炉作简要介绍和对比。
(1)机械炉排炉机械炉排炉采用层状燃烧技术,具有对垃圾的预处理要求不高、对垃圾热值适应范围广和运行维护简便等优点。
机械炉排炉是目前世界上最常用、处理量最大、适用性最好的城市生活垃圾焚烧炉型,在欧美等发达国家得到广泛使用,其单台最大处理规模可达1200t/d,技术成熟可靠。
垃圾在炉排上通过三个区段:预热干燥段、燃烧段和燃烬段。
垃圾在炉排上着火,热量不仅来自炉膛的辐射和烟气的对流,还来自垃圾层的内部。
炉排上已着火的垃圾通过炉排的往复运动,产生强烈的翻转和搅动,引起底部的垃圾燃烧。
连续的翻转和搅动也使垃圾层松动、透气性加强,有利于垃圾的干燥、着火、燃烧和燃烬。
(2)流化床焚烧炉流化床焚烧炉的焚烧原理与燃煤流化床相似,都是利用床料的热容量来保证垃圾的着火燃烬。
汾阳市生活垃圾焚烧发电项目烟气在线监测系统(CEMS)技术规范书1.总则1.1、本技术规范书仅适用于汾阳市生活垃圾焚烧发电项目烟气排放连续监测系统(CEMS)设备及服务采购招标。
1.2、本技术规范书提出对汾阳生活垃圾焚烧发电厂烟气排放连续监测系(CEMS)设备的功能设计、设备安装、试验、调试、验收等方面的技术要求。
1.3、本技术规范书所提出的是最低限度的技术要求,并未对所有技术细节做出规定,也未具体引述有关标准和规范的条文,投标方应保证提供一套满足本技术规范书和现行工业标准的优质产品及其相应服务。
对国家有关安全、环保等强制性标准,必须满足其要求。
所有提供的设备应有三年CEMS装置安装中使用的成熟经验,不能使用试验性的组件及装置。
所提供的CEMS装置应已经获得中国国家技术监督局计量产品认可和国家环保总局的环保产品认定。
1.4、本技术规范书所使用的标准,如与投标方所执行的标准不一致时,按较高标准执行。
投标方在设备设计和制造中所涉及的各项规程,规范和标准必须遵循现行最新版本的标准。
1.5、如投标方对本技术规范书条文没有异议,则视同为投标方的系统与设备完全符合本规范书的要求;如果有异议,投标方应在技术偏差表中加以详细说明。
1.6、投标方应根据招标方提供的原始数据、技术要求和现场限定的条件,合理选择其供货范围内的设备、工艺方案和材料,保证其性能指标和系统安全可靠地运行,在此基础上应尽可能降低投资、运行经济。
1.7、在签订合同之后,按本技术规范书的要求,投标方应提出汾阳市生活垃圾焚烧发电厂烟气排放在线监测系统(CEMS)的设计、制造、检验/试验、装配、安装、调试、试运、验收、试验、运行和维护等标准清单给招标方,由招标方确认。
所有文件、图纸及通讯,均应使用中文。
1.8、若本技术规范书前后有不一致的地方,应以有利于设备安全运行、工程质量为原则,由招标方确认。
1.9、设备采用的专利、商标涉及到的全部费用均被认为已包含在设备报价中,投标方应保证招标方不承担有关设备专利、商标的一切责任。
垃圾焚烧发电厂烟气处理自动控制系统的设计及应用摘要:该文结合垃圾焚烧发电厂烟气处理系统的设计及应用,介绍了SNCR、石灰浆、活性炭、布袋除尘、飞灰固化等烟气净化系统自动控制设计的主要技术特点及应用成果,为垃圾焚烧发电厂烟气净化处理提供参考。
关键词:垃圾焚烧烟气净化SNCR 石灰浆活性炭布袋除尘飞灰固化1 简述生活垃圾对环境的污染已成为一个严峻的社会问题,对其处理应遵循“减量化、无害化和资源化”原则。
通过焚烧发电处理生活垃圾是目前普遍采用的方法,但焚烧产生的烟气中含有大量的污染物,如不经控制和处理直接排放,会对周围环境造成严重的污染。
因此,生活垃圾焚烧工程的关键是焚烧控制和烟气处理,烟气达标排放是首要任务。
2 控制策略的设计我公司拥有4套处理能力为600t/天的马丁SITY2000垃圾焚烧炉。
其烟气处理系统采用半干式烟气处理装置,包括以下几个部分:SNCR、石灰浆、活性炭、布袋除尘、飞灰固化等。
2.1 SNCR的自动控制SNCR脱硝系统是把尿素稀溶液做为还原剂喷入炉膛温度850-1100℃的区域,还原剂迅速热分解出NH3并与烟气中的NOx进行反应生成N2和H2O,该方法以炉膛为反应器。
主要化学反应为:(NH4)2CO→2NH2+CONH2+NO→N2+H2OCO+NO→N2+CO2整个SNCR脱硝系统是按照如下四个模块进行设计:(1)稀释水模块。
(2)计量混合模块。
(3)喷射模块。
(4)控制模块。
还原剂的需要量取决于在连续反应温度下需要去除的NOx的数量。
在自动模式下,还原剂量设定值通过氮氧化合物控制器实现。
该控制器由平行连接的两个P调节器组成,一个P调节器平均每半小时接收氮氧化合物,另一个P调节器平均每天接收氮氧化合物,这些平均值均为实际值。
除氮氧化合物的平均值外,两个调节器均还会收到设定值,设定值为要得到的氮氧化合物值的90%左右。
两平均值每三分钟更新一次,P调节器显示的是所要达到的氮氧化合物设定值的最大偏值,用作计算还原剂量的依据。
1.工程概况1.1 工程名称:1.2 业主单位:1.3 设计单位:1.4 工程地点:1.5 工程质量:1.6工程简介XX垃圾焚烧发电厂烟气净化系统由XX环保设备工程有限公司设计,整个净化系统每台包括净化塔+连接弯头(17吨),烟气加热器(7.7吨),旁路烟道(9吨),钢框架(42.5吨),添加剂筒(0.55吨),吸收剂斗(0.75吨),石灰粉斗(0.75吨)及石灰储仓(2.02吨)。
两台总重量约158吨。
该系统工艺先进,是整个热电厂实现达标排放的核心装置。
其中主要大件吊装有净化塔+弯头吊装和烟气加热器的吊装。
本安装工程的钢结构制作及非标设备制作量大,质量与技术要求高,而且业主要求的工期比较紧。
因此施工难度比较大。
其中,净化塔与与烟气加热器设备高度大,内部防腐要求高,是整个工程的核心内容。
此外,由于钢架的高度高而且投影面积较小,因此保证钢架的垂直度及其它主要偏差项目也是较有难度,需要采取针对性措施的工作。
2.编制依据2.1XX环保设备工程有限公司为XX市垃圾焚烧热电厂设计的施工图以及其它相关设计文件。
2.2 国家颁发的有关规范、规程和标准。
2.3 本公司发布的质量体系文件及相关的技术管理标准。
3. 施工部署3.1 施工组织机构图3. 2 施工管理人员表3.3劳动力投入计划:3.4 施工临时设施:3.4.1施工现场平面布置:(我方已在现场搭设完毕)。
(1)临时设施区设安全总配电箱一只,安全配电箱二只,电源由业主指定的电源接入,施工总用电量为400KVA。
设自来水龙头五只,水源由业主指定的接水口接入。
(2)临时设施区附近搭设男、女厕所各一间,以保持良好的卫生环境。
(3)现场的搭设材料仓库一间,面积120平方米;临时房间10间,每间面积16平方米;厨房两间,面积共50平方米。
3.4.2各单位工程施工地点设安全配电箱一只,电源接入及临时占用场地和建筑物,均需经业主或监理工程师同意后办理。
3.4.3各单位工程施工区,在工程完工后要及时清理场地,清退材料、设备、施工机具和施工所产生的垃圾,并恢复构筑物和场地的原貌。
第四篇烟气净化系统第一章烟气净化系统第一节烟气净化系统简介一锅炉出口烟气成分及有关参数二烟气净化系统的功能几净化目标三烟气净化系统的组成第二节烟气净化系统性能计算一酸性气体的净化原理及计算二烟气中有毒有害物的净化原理三烟气中粉尘的去除四管道系统及有关计算第二章半干法反应系统第一节半干法反应系统概述一半干法反应法反应系统功能二半干法反应系统组成部分第二节旋转雾化器及其附属系统一旋转雾化器二旋转雾化器附属系统三旋转雾化器及其附属系统的运行维护第三节半干反应塔及其附属设备一半干反应塔及烟气进口蜗壳设计计算(包括CFD)二半干反应塔结构三附属设备及其运行维护(大块破碎器、拌热器)第三章石灰存储和石灰浆制备系统第一节石灰存储仓一社会存储仓组成部分二石灰存储仓功能及运行维护第二节石灰浆制备系统一石灰浆制备系统组成部分二石灰浆制备系统功能三石灰浆制备系统设计计算第三节石灰存储仓和石灰浆制备系统运行维护一石灰存储仓及其附属设备的运行维护二石灰浆制备系统运行维护第四章活性碳存储和计量喷入系统第一节活性碳存储仓一活性碳存储仓组成部分二活性碳存储仓功能第二节活性碳计量和喷入系统一活性碳计量和喷入系统组成部分二活性碳计量和喷入系统功能三活性碳计量和喷入系统计算第三节活性碳存储和计量喷入系统运行维护一活性碳存储仓几其附属设备运行维护二活性碳计量和喷入系统运行维护第五章袋式除尘系统第一节袋式除尘系统概述一袋式除尘系统入口烟气成分及有关参数二垃圾焚烧烟气处理对袋式除尘系统的特殊要求三袋式除尘系统功能及净化目标第二节袋式除尘系统组成部分及其功能一袋式除尘烟气净化系统二压缩空气脉冲喷吹系统三热风循环系统四旁路及气密系统五袋式除尘器出灰第三节袋式除尘器一袋式除尘器工作原理二袋式除尘器计算及参数三袋式除尘器的组成部分及其功能四袋式除尘器的结构特点五袋式除尘器的清灰控制特点第四节袋式除尘系统运行维护一袋式除尘系统运行维护二袋式除尘器运行维护第六章其他第一节恶臭气体的防治一恶臭气体成分和引起原因二恶臭气体防治原理和方法三国家标准第二节噪声的控制一噪声引起原因二噪声防治原理和方法三国家标准第三节烟气污染的防治一烟气污染组成和引起原因二烟气污染防治原则和方法三国家标准第一章烟气净化系统第一节烟气净化系统简介一锅炉出口烟气成分及有关参数可燃的生活垃圾基本上是有机物,由大量的碳、氢、氧元素组成。
烟气净化系统1.主要设计原则烟气净化系统采用“半干法(喷氢氧化钠溶液和冷却水)+干法(喷消石灰粉)+活性炭喷射+布袋除尘”工艺。
烟气净化设备由每条焚烧线反应塔、袋式除尘器与一套全厂公用的氢氧化钠制备与喷射系统、消石灰、活性炭储存与喷射系统组成。
1.1 烟气指标1)原始烟气参数生活垃圾焚烧量: 500t/d/线烟气流量:88033 Nm3/h/线温度:230℃2)净化后烟气指标注:1)本表规定的各项标准限值,均以标准状态下含11%O 2的干烟气为参考值换算。
2)烟气最高黑度时间,在任何1h 内累计不得超过5min 。
3)在不喷碱液的MCR 工况条件下,石灰消耗量≤15kg/t 垃圾、活性炭消耗量≤0.9 kg/t 垃圾,满足上表格要求。
1.2.公用品及化学原材料 1)压缩空气供应压力0.6~ 0.8 MPa工艺用压缩空气:含油量小于0.1mg/m 3, 含尘粒径小于1μm , 压力露点2 ℃ 仪表用压缩空气:含油量小于0.01 mg/m 3, 含尘粒径小于0.01μm , 压力露点-40℃。
2)消石灰质量指标3)活性炭质量指标4)NaOH质量指标二、安全规则2.1总则在系统平台上工作时,作业人员必须时刻注意可能发生的危险(参见下述列表),作业人员必配带下安全帽、劳动保护服、劳动保护鞋、防毒口罩、安全手套。
2.2吸收剂Ca(OH)2处理的安全规则2.2.1总则眼睛接近石灰时(CaO/Ca(OH)2)必须采取眼睛保护措施。
没有保护措施是不允许搬运生石灰CaO的。
由于熟石灰Ca(OH)2对眼睛和人体软组织有伤害,搬运时必须小心。
搬运所有含石灰质的物料时都必须采取相同的防范措施。
警示:在密闭容器中的生石灰CaO千万不能被水淋洒,如灰仓中的石灰堆。
因为这会反应产生大量热量,沸腾后会引起爆炸。
三、烟气脱酸系统3.1冷却反应塔3.1.1概述冷却反应塔是烟气净化系统的关键组件。
整个冷却反应塔系统包含:一个带有导流板的进口烟道的反应塔体;一个喷洒工艺冷却水及碱液的双相流喷头及阀门组;一个喷射消石灰及活性炭的塔后烟道;一个带有电伴热及破拱空气炮的收集沉下的固体灰渣的底部锥体;相应电气热控仪表。
冷却反应塔的功能是,高温烟气离开锅炉与被双相流喷头增湿雾化的工艺水接触降温,为中和反应提供合适的温度平台。
烟气中的重金属和有害气体成分(HCl, SOx),与冷却反应塔喷入的碱液或塔后烟道喷入的消石灰接触发生中和反应,降低其在烟气中的含量,另外与消石灰一道喷入的活性炭吸附烟气中的汞和二恶英。
大部分固体灰渣混在烟气中一同进入下游的除尘器中并继续进行反应。
小部分灰渣会从烟气中分离出来沉落于冷却反应塔底部,然后经过底部的双层气动插板进入灰渣输送储存系统。
3.2.2过程说明冷却反应塔的主要功能是:1)在烟气通过时,提供充分的滞留时间(大约 4 秒)降低温度,为中和反应提供合适的温度平台2)为酸碱中和反应提供合适的空间条件冷却反应塔入口烟道设有导流片,使得烟气尽可能均匀分布。
烟气方向和双相流喷头方向一致,喷头采用美国喷雾公司FM系列喷头,专为脱硫除酸系统设计,雾化粒径约60微米。
冷却反应塔是由低碳钢制造而成,空塔结构无阻力构件,外部保温,设有人孔进行观察和检修。
反应塔顶部平台有一系列的阀门,用来控制喷入的碱液和冷却工艺水的量。
喷入的工艺冷却水量是根据反应塔出口温度来控制的。
而碱液或消石灰投加量是根据烟气在线监测系统HCl浓度控制。
工艺冷却水的投加量由管路的薄膜调节阀调节,阀前装有过滤器,防止大颗粒或焊渣对喷头堵塞,影响雾化效果。
碱液投加量通过计量泵调节。
工艺冷却水回路的压力由恒压阀来控制,位于回流管上,保证了喷头前液体的压头。
冷却反应塔的锥底,收集与增湿雾化工艺水碰撞干燥而与烟气分离的大颗粒固体灰渣。
为了避免堵塞,锥底设有伴热和保温,另外还安装了空气炮。
电伴热是有两个独立的电路组成的,各自覆在锥体表面,即使其中之一出现故障,也可以向整个锥体提供必须的最小的加热量。
每个电路都有其各自的温度调节装置,来控制电路。
电路的激活或停止控制是在控制室进行的。
电路出现故障也可在控制室显示出来。
在就地控制盘上,只有运行或错误信号灯亮。
空气锤安装在反应塔锥体中下部,用来处理可能出现的灰渣堵塞现象。
他们是由压缩空气及三通电磁阀来驱动的。
锥体还安装一料位计,当锥体内灰渣过高时就会报警。
锥体出灰有一双层气动翻板阀,保证冷却反应塔的密封。
灰渣出来后直接进入刮板输送机。
在冷却反应塔进口装有一温度传感器,出口安装有三个温度传感器,来监控烟气温度。
出口温度中间值(非平均值)用在控制回路和报警上。
冷却反应塔进出口装有差压传感器,对塔差压进行监控。
3.2.3 操作1)启动前准备●检查冷却反应塔和周围环境是否干净,所有工具和垃圾是否移出;●检查管道连接处和膨胀节的密封性;●关闭所有检修孔和人孔;●所有仪表均已校正并连接到工艺系统中;工艺冷却水泵、碱液计量泵准备就绪,喷头安装就位,压缩空气管路通畅。
2)启动条件1)有阀门处于自动状态,且无故障;2)飞灰输送储存系统就绪且启动;3)至反应塔的烟气温度在 170°C 以上;4)至烟囱的烟气流量至少在 25,000 Nm³/h 以上。
3)启动A.喷头压缩空气电磁阀打开;B.工艺水泵启动,工艺冷却水管路薄膜调节阀启动,控制塔后温度150℃;C.锥体双层气动翻板阀启动自动排灰;D.锥体料位计报警空气炮自动启动;E.锥体温度低电伴热自动启动。
4)关闭冷却反应塔出口温度过低,自动执行关闭程序。
1)工艺冷却水管路薄膜调节阀关闭;2)工艺水泵关闭(长时间停机)3)喷头压缩空气电磁阀关闭(短时间停机不关);4)锥体双层气动插板阀启动排灰,空气炮按程序启动,清灰完毕后关闭;5)锥体电伴热关闭(长时间停机)。
3.2消石灰储存输送系统功能说明3.2.1 概述消石灰,即Ca(OH)2,作为反应物来喷入烟气中,从而除去其中的酸性气体。
整个系统包括以下设备:一个石灰储仓,变频定量给料机,罗茨风机和输送管路。
消石灰是用槽罐车运到现场,并储存在一石灰仓中。
仓顶有除尘器,防止上料及投运时粉尘外溢。
仓上装有高中低及连续料位检查,随时监控石灰的存量。
石灰仓锥斗设有流化板,通过压缩空气流化方便石灰下料。
给料机可根据在线检测HCL数据调整投加量。
石灰通过与活性炭投加共用的罗茨风机输送至冷却反应塔后烟道。
3.2.2 过程说明1)消石灰的上料存储槽罐车运来消石灰通过快速接头与石灰仓上料管连接气力输灰,仓顶除尘器此时需投运。
石灰仓顶设有安全阀,防止意外高压损坏石灰仓。
根据石灰仓上的料位计检测石灰存量情况,高位报警停止上料,低料位报警则需加料。
石灰仓存有石灰时流化板根据程序自动投运。
2)消石灰的输送喷射石灰投加量由在线检测的HCL数据确定,通过变频给料机实现调节。
消石灰下来后被罗茨风机气力输送至冷却反应塔后烟道喷射进去与酸性气体反应。
3.2.3 操作1)石灰仓的装填当槽罐到后,通过快速接头与上料管接起来。
石灰仓装填在就地控制盘操作。
1.当快速接头连接后,石灰仓上料管的开关阀打开2.仓顶除尘器启动3.槽罐车气力输送启动4.槽罐车打空或石灰仓高料位已到停止装填5.石灰仓当顶除尘器关闭,上料管开关阀关闭2)消石灰的输送●消石灰气力输送阀门打开,罗茨风机启动●变频给料机启动●石灰仓流化板按程序启动●石灰仓仓顶除尘器启动3)关闭1)变频给料机关闭2)2)60S后罗茨风机停止3)石灰仓流化板关闭4)石灰仓仓顶除尘器关闭3.3活性炭储存输送系统功能说明3.3.1 概述本系统通过电动葫芦把袋装活性炭提升到活性炭仓顶加料,设有仓顶除尘器防止加料及活性炭输送时扬起。
活性炭输送通过可调螺旋给料机定量,用罗茨风机(与消石灰共用)气力输送至对应冷却反应塔后的烟气管道,吸附烟气中二恶英及重金属等有毒物质。
活性碳仓设有高中低料位计,方便对储存量进行检测。
活性炭仓锥斗还装有振动器帮助破桥。
3.3.2 过程说明1)活性炭的上料存储采购回来的袋装活性炭通过电动葫芦提升至活性炭仓仓顶,仓顶设有人孔门,方便装料及检修。
加料时仓顶除尘器投运,防止活性炭外溢污染环境。
活性炭仓设有高中低料位计,低料位报警需加料,而高料位报警则停止。
2)活性炭的输送喷射活性碳的投加与烟气出口的二噁英及重金属含量的具体数量关系还没有得出,基本采用经验量投加,按每标立方烟气投加100mg活性炭量算,则活性碳耗量为5~6Kg/h,以此作为投料基准量,对活性炭螺旋给料器转速进行调节。
螺旋给料器下来的活性炭通过与消石灰输送共用的罗茨风机喷射至反应塔后烟道。
3.3.3 操作1)活性炭仓的装填1)电动葫芦提升袋装活性炭至仓顶2)顶部人孔门打开,仓顶除尘器启动3)投料至高料位报警停止2)活性炭的输送●输送管路上的阀门打开●输送罗茨风机启动●螺旋给料机启动●锥斗振动器按程序投运3)停止●锥斗振动器停止●螺旋给料机关闭●60S后罗茨风机关闭●输送管路上的阀门关闭(长时间停机)3.4工艺水及碱液系统功能说明3.4.1 概述工艺水系统由工艺水箱与水泵以及管道阀门等组成。
工艺水箱装有多点液位计控制进水管的电磁阀自动补水,两台多级离心水泵(二用一备)把工艺冷却水送至对应冷却反应塔的双相流喷嘴,工艺水管设有回流管,通过回流管的恒压阀保证双相流喷头的供水压力。
并通过压缩空气压力控制良好的雾化力径, 建立合适的反应温度平台, 提高增湿活化功能。
喷水量由塔的出口温度通过PLC来控制冷却水管路薄膜调节阀实现。
碱液系统主要由碱液储罐、碱液稀释罐、搅拌器及上料泵、输送泵等组成。
浓度30%碱液由罐车运抵厂区,通过碱液上料泵打至碱液储罐。
碱液储罐装有四点液位计。
然后再通过碱液输送泵送至碱液稀释罐,在稀释罐里配置成10%浓度稀碱液。
稀释罐装有搅拌器及液位计。
最后通过计量泵打至管道混合器与工艺水混合送至双相流喷头。
碱液计量泵的输送量可由在线监测HCL数据控制。
3.4.2 过程说明1)工艺冷却水系统工艺水箱进水管装有电磁阀,水箱的四点液位计低位时电磁阀打开补水,液位计高位时电磁阀关闭停止供水。
工艺水泵启动后与液位计连锁,低位时水泵关停防止空转。
双相流喷头供水压力由工艺水回流管的恒压阀调节,每次水泵重启后需调整一次。
2)碱液系统碱液稀释罐进水管装有电磁阀及流量计,可以对工艺水流量进行计量,结合碱液输送泵输送量对10%浓度碱液稀释配置成10%浓度稀碱液,同时配有搅拌器均匀搅拌。
碱液计量泵输送量由烟气出口酸浓度控制,并与多点液位计连锁,在低位报警时自动关停。
3.4.3 操作1)工艺水系统启停1)至反应塔的烟气温度在 170°C 以上2)至烟囱的烟气流量至少在 45,000 Nm³/h 以上3)喷头压缩空气电磁阀打开4)工艺水箱低液位有显示5)工艺水管路手动阀门打开,自控阀门就绪6)工艺水泵启动,调节回水管路恒压阀工艺水系统停机只需直接把工艺水泵关停即可。