人教版九年级重点中学数学上册教案
- 格式:doc
- 大小:3.89 MB
- 文档页数:92
人教版数学九年级上册教案优秀6篇中学九年级数学的学习特点和学习重点应该是什么?在这个学习阶段,教案该怎样设计,下面是小编精心为大家整理的人教版数学九年级上册教案优秀6篇,在大家参照的同时,也可以分享一下给您最好的朋友。
新人教版九年级上数学教案篇一1. 各种时态的被动语态结构如下:一般现在时的被动语态:主语+am / is / are (not)+过去分词一般过去时的被动语态:主语+was / were +过去分词现在完成时的被动语态:主语+have / has +been +过去分词一般将来时的被动语态:主语+will +be +过去分词过去将来时的被动语态:主语+would / should + be +过去分词过去进行时的被动语态:主语+was / were + being +过去分词过去完成时的被动语态:主语+had + been +过去分词情态动词的被动语态:情态动词+be+过去分词2. 被动语态的用法(1)不知道或没有必要说明动作的执行者是谁,不用by+动作执行者短语。
Football is played widely all over the world.全世界都广泛地踢足球。
(2)强调动作的承受者。
The bank was robbed yesterday afternoon.昨天下午这家银行遭到抢劫。
(3)作客观说明时,常采用一种被动语态句型。
It is reported that about twenty children have died of flu in the USA.据报道美国大约二十名儿童死于流感。
3. 主动语态的句子变为被动语态的步骤(1)把原句中的宾语变为主语(2)动词改为被动形式,即be+过去分词(3)原来的主语,如果需要的话,放在by后面;如果没必要,可省略。
人教版数学九年级上册教案篇二一、指导思想:以《初中数学新课程标准》为依据,全面推进素质教育。
数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。
人教版九年级上数学教案(6篇)人教版九年级上数学教案(6篇)好的数学教学教案很有意义的。
教案的作用有很多,作为新的老师教案的重要性是不容小觑的,随着教案的完成,对于教材和知识点的把握更有力度,更有利于将来的讲课。
下面小编给大家带来关于人教版九年级上数学教案,希望会对大家的工作与学习有所帮助。
人教版九年级上数学教案【篇1】在初中的数学教学过程中,函数教学是比较难的章节,我们该如何设计我们的教学过程呢?下面我来谈谈我的一些很浅的看法:首先函数是刻画和研究现实世界变化规律的重要模型,也是初中数学里代数领域的重要内容,它在初中数学中具有较强的综合性。
在教学中,学生常常觉得函数抽象深奥,高不可攀,老师也觉得函数难讲,讲了学生也理解不了,理解了也不会解题。
事实果真如此难教又难学吗?下面我谈谈在教学设计方面一些方法和实践。
一、注重类比教学不同的事物往往具有一些相同或相似的属性,人们正是利用相似事物具有的这种属性,通过对一事物的认识来认识与它相似的另一事物,这种认识事物的思维方法就是类比法,利用类比的思想进行教学设计实施教学,可称为类比教学。
在函数教学中我们期望的是通过对前面知识的学习方法的传授,达到对后续知识的学习产生影响,使学生达到举一反三,触类旁通的目的,让学生顺利地由学会到会学,真正实现教是为了不教的目的。
有经验的老师都会发现,初中学习的正比例函数、一次函数、反比例函数、二次函数在概念的得来、图象性质的研究、及基本解题方法上都有着本质上的相似。
因此采用类比的教学方法不但省时、省力,还有助于学生的理解和应用。
是一种既经济又实效的教学方法。
下面我就举例说明如何采用类比的方法实现函数的教学。
首先是正比例函数,它是一次函数特例,也是初中数学中的一种简单最基本的函数。
但是,我们有些教师却因为正比例函数过于简单,而轻视。
匆匆给出概念,然后应用。
等到讲到一次函数、反比例函数、二次函数又感到力不从心,学生接受起来概念模糊,性质混乱,解题方法不明确。
人教版九年级上册数学教学计划(9篇)九年级上册数学教学计划篇1一、指导思想:初三数学是以党和国家的教育教学方针为指导,按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学生都能够在此数学学习过程中获得最适合自己的发展。
通过初三数学的教学,提供参加生产和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决简单的实际问题,培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。
二、教学内容:本学期所教初三数学包括第二十七章圆,第二十八章一元二次方程,第二十九章相似形,第三十章, 反比例函数,第三十一章命题与证明,第三十二章,三角函数,第三十三章频率与概率。
其中圆,证明(二),相似形,这三章是与几何图形有关的。
一元二次方程,反比例函数这两章是与数及数的运用有关的。
频率与概率则是与统计有关。
三、教学目的:在新课方面通过讲授《证明(二)》的有关知识,使学生经历探索、猜测、证明的过程,进一步发展学生的推理论证能力,并能运用这些知识进行论证、计算、和简单的作图。
进一步掌握综合法的证明方法,能证明与三角形、平行四边形、等腰梯形、矩形、菱形、以及正方形等有关的性质定理及判定定理,并能够证明其他相关的结论。
在《相似形》这一章通过具体活动,积累数学活动经验,进一步增强学生的动手能力发展学生的空间思维。
在《频率与概率》这一章让学生理解频率与概率的关系,进一步体会概率是描述随机现象的数学模型。
在《一元二次方程》和《反比例函数》这两章,让学生了解一元二次方程的各种解法,并能运用一元二次方程和函数解决一些数学问题,逐步提高观察和归纳分析能力,体验数形结合的数学方法。
同时学会对知识的归纳、整理、和运用。
从而培养学生的思维能力和应变能力。
四、教学重点、难点本册教材包括几何部分圆,《证明(二)》,《相似形》。
代数部分《一元二次方程》,《反比例函数》。
以及与统计有关的《频率与概率》。
人教版九年级上册数学教案5篇人教版九年级上册数学教案篇1二次根式的乘除法教学目标1、使学生掌握二次根式的除法运算法则,会用它进行简单的二次根式的除法运算。
2、使学生了解两个二次根式的商仍然是一个二次根式或有理式。
3、使学生会将分母中含有一个二次根式的式子进行分母有理化。
4、经历探索二次根式的除法运算法则过程,培养学生的探究精神和合作交流的习惯。
教学过程一、创设问题情境问题l 上一节课,我们采取什么方法来研究二次根式的乘法法则?问题2 是否也有二次根式的除法法则呢?问题2 两个二次根式相除,怎样进行呢?二、加强合作,探索规律让抽象的问题具体化,这是我们研究抽象问题的一个重要方法、请同学们参考二次根式的乘法法则的研究,分组讨论两个二次根式相除,会有什么结论,并提出你的见解,然后其他小组同学补充,归纳为:提问:1、a和b有没有限制?如果有限制,其取值范围是什么?2、= (a≥0,b0)成立吗?为什么?请举例。
三、范例例1、计算。
教学要求:(1)对于(1)可由教师解答示范;(2)对于(2)可由学生自己计算。
提问:1、除了课本中的解答外,是否还有其他解法?如果有,请给出另外解法。
2、哪种方法更简便?例2、化简:(要求分母不带根号)说明:二次根式的化简要求满足以下两条:(1)被开方数的因数是整数,因式是整式,也就是说“被开方数不含分母”。
(2)被开方数中不含能开得尽的因数或因式,也就是说“被开方数的每一个因数或因式的指数都小于2”。
把一个二次根式化简的具体方法是:化去根号下的分母;并把被开方数中能开得尽方的因数或因式用它的算术平方根代替后移到根号外面。
四、做一做化简:教学要点:(1)叫两位同学板演,其他同学做完练习进行评价、(2)可用提问的方式引导学生探索其他解法。
五、课堂练习P12 练习1、(3)、(4)六、小结本节课,我们学习了二次根式的除法法则,即= (a≥0,b0),并利用它进行计算和化简。
化简要做到“被开方数不含分母”和“被开方数的每一个因数或因式的指数都小于2”。
人教版九年级上册数学教学计划一、学情分析本班学生两极分化比较严重,部分学生数学基础不够好,学习积极性不高,其中女生居多:-等。
部分男生学习习惯不太好,家长也不够重视,如:-等。
由于平时学习不够认真和扎实,我非常担心这些学生对前面所学的一些基础知识记忆不清,掌握不牢。
二、教学内容分析本学期的课本内容只剩下投影和视图这一章,因此在一周内把课本最后一章结束,接下来就是整体初中内容的有计划复习,复习的教学内容大致可分成代数、几何两大部分,其中初中数学教学中的六大版块即:“实数与统计”、“方程与函数”、“解直角三角形”、“三角形”、“四边形”、“圆”是学业考试考中的重点内容。
在《课标》要求下,培养学生创新精神和实践能力是当前课堂教学的目标。
在近几年的中考试卷中逐渐出现了一些新颖的题目,如探索开放性问题,阅读理解问题,以及与生活实际相联系的应用问题。
这些新题型在中考试题中也占有一定的位置,并且有逐年扩大的趋势。
如果想在综合题以及应用性问题和开放性问题中获得好成绩,那么必须具备扎实的基础知识和知识迁移能力。
因此在总复习阶段,必须牢牢抓住基础不放,对一些常见题解题中的通性通法须掌握。
学生解题过程中存在的主要问题:(1)审题不清,不能正确理解题意;(2)解题时自己画几何图形不会画或有偏差,从而给解题带来障碍;(3)对所学知识综合应用能力不够;(4)几何依然对部分同学是一个难点,主要是几何分析能力和推理能力较差。
三、教学计划措施1、认真研读学习课标,紧抓中考方向,了解中考的有关的政策,避免走弯路,走错路。
同时研读《中考说明》,看清范围,研究评分的标准,牢记每一个得分点。
2、扎扎实实打好基础。
重视课本,系统复习。
初中数学基础包括基础知识和基本技能两方面。
现中考仍以基础的为主,有些基础题是课本的原型或改造,后面的大题是教材题目的引伸、变形或组合,复习时应以课本为主。
尤其课后的读一读,想一想,有些中考题就在此基础上延伸的,所以,在做题时注意方法的归纳和总结,做到举一反三。
人教版初三数学上学期的教学计划一、学情分析本学期我担任九年级____班的数学教学,本班现有____名同学,对于数学这一科来说,优等生很少,只有三两个,大部分被学生底子薄,学生相对其他班级稍活跃,但是也有很多学生学习不上进,思维不紧跟老师,本班学生基础差,有部分学生问题严重。
要在本学期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主题的作用,注重方法,培养能力。
二、教学内容本学期所学包括第二十一章《一元二次方程》,第二十二章《二此函数》,第二十三章《旋转》,第二十四章《圆》,第二十五章《概率初步》。
代数三章,几何两张。
三、教学目标本学期的主要教学任务目标:(2)形成知识网络,解决实际问题。
(3)强化规划训练,提高应考能力。
(4)关注学生特长需求,做好学生心理疏导。
具体地说,教育学生掌握基础知识和基本技能,培养学生的逻辑思维能力,运算能力,空间观念和解决简单实际问题的能力,是学生逐步形成正确合理的进行运算,逐步学会观察分析,综合,抽象,概括。
会用归纳演绎,类比进行简单的推理。
使学生懂得数学来源于实践又反过来作用于实践。
提高学生学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。
顽强的学习毅力和独立思考,探索的新思想。
培养学生应用数学知识来解决实际问题的能力。
知识技能目标:掌握二次函数的概念,性质及计算,会解一元二次方程,理解旋转的基本性质,掌握圆及与圆有关的概念,性质,理解概率在生活中的应用。
过程方法目标:培养学生的观察,探究,归纳能力,发展学生合情推理能力,逻辑思维能力和推理认证表达能力,提高知识综合应用能力。
态度情感目标:进一步感受数学与生活密不可分的联系,同时对学生进行辩证唯物主义世界观教育。
1、做好教学六认真工作,认真研读新课标,钻研新教材,认真上课,批改作业,认真辅导,认真对待单元检测,也教会学生认真对待学习。
2、兴趣是的老师,从各个方面来激发学生学习数学的兴趣,提高学生学习数学的积极性。
人教版九年级上册数学教学计划一、学情分析本班学生两极分化比较严重,部分学生数学基础不够好,学习积极性不高,其中女生居多:-等。
部分男生学习习惯不太好,家长也不够重视,如:-等。
由于平时学习不够认真和扎实,我非常担心这些学生对前面所学的一些基础知识记忆不清,掌握不牢。
二、教学内容分析本学期的课本内容只剩下投影和视图这一章,因此在一周内把课本最后一章结束,接下来就是整体初中内容的有计划复习,复习的教学内容大致可分成代数、几何两大部分,其中初中数学教学中的六大版块即:“实数与统计”、“方程与函数”、“解直角三角形”、“三角形”、“四边形”、“圆”是学业考试考中的重点内容。
在《课标》要求下,培养学生创新精神和实践能力是当前课堂教学的目标。
在近几年的中考试卷中逐渐出现了一些新颖的题目,如探索开放性问题,阅读理解问题,以及与生活实际相联系的应用问题。
这些新题型在中考试题中也占有一定的位置,并且有逐年扩大的趋势。
如果想在综合题以及应用性问题和开放性问题中获得好成绩,那么必须具备扎实的基础知识和知识迁移能力。
因此在总复习阶段,必须牢牢抓住基础不放,对一些常见题解题中的通性通法须掌握。
学生解题过程中存在的主要问题:(1)审题不清,不能正确理解题意;(2)解题时自己画几何图形不会画或有偏差,从而给解题带来障碍;(3)对所学知识综合应用能力不够;(4)几何依然对部分同学是一个难点,主要是几何分析能力和推理能力较差。
三、教学计划措施1、认真研读学习课标,紧抓中考方向,了解中考的有关的政策,避免走弯路,走错路。
同时研读《中考说明》,看清范围,研究评分的标准,牢记每一个得分点。
2、扎扎实实打好基础。
重视课本,系统复习。
初中数学基础包括基础知识和基本技能两方面。
现中考仍以基础的为主,有些基础题是课本的原型或改造,后面的大题是教材题目的引伸、变形或组合,复习时应以课本为主。
尤其课后的读一读,想一想,有些中考题就在此基础上延伸的,所以,在做题时注意方法的归纳和总结,做到举一反三。
人教版九年级上数学教案(优秀6篇)人教版九年级上数学教案篇一一、教学思想:教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。
会用归纳演绎、类比进行简单的推理。
使学生懂得数学来源与实践又反过来作用于实践。
提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。
顽强的学习毅力和独立思考、探索的新思想。
培养学生应用数学知识解决问题的能力。
二、抓常规课堂管理入手,严格规范课前准备,立足提高课堂效率,重视课后反思,定位规律探究。
做到:1.备好课:争取每节课前,与同组同仁们讨论、研究确定教学的重点、难点、教学目标、教法、学法,甚至例题的选用,作业的布置等等,做到五备,让每一节课上出实效,让每位学生愉悦的获得新知。
认真研究教材及考纲,明确教学目标,抓住重点、难点,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。
2.上好课:在备好课的基础上,上好每一个45分钟,提高45分钟的效率,让每一位同学都听的懂,对部分基础较差者要循序渐进,以选用的例题的难易程度不同,使每个学生能“吃”饱、“吃”好。
抓住课堂45分钟,严格按照教学计划,备课组统一进度,统一练习,进行教学,精心设计每一节课的每一个环节,争取每节课达到教学目标,突出重点,分散难点,增大课堂容量组织学生人人参与课堂活动,使每个学生积极主动参与课堂活动,使每个学生动手、动口、动脑,及时反馈信息提高课堂效益。
3.注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验。
精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。
4.批好每一次作业:作业反映了一节课的效果如何,学生对知识的掌握程度如何,认真批改作业,使教师能迅速掌握情况,对症下药。
人教版九年级数学上册教案5篇人教版九年级数学上册教案1一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点:理解分式的基本性质.2.难点:灵活应用分式的基本性质将分式变形.3.认知难点与突破方法教学难点是灵活应用分式的基本性质将分式变形.突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形.三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入1.请同学们考虑:与相等吗?与相等吗?为什么?2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.人教版九年级数学上册教案2一、创设情境导入新课1、介绍七巧板师:你们玩过七巧板吗?你知道七巧板是由哪些不同的图形组成的吗?一千多年前,中国人发明了七巧板。
人教版九年级上册数学教学计划6篇人教版九年级上册数学教学计划 (1)一、学情分析:新学期,根据九年级合班的实际,首先是先摸清底子,稳住学生,然后根据学生学情分布情况,重新划分学习小组,对新合班过来的学生,做好各方面的工作,使他们迅速适应新环境,然后,尽快帮他们找到新的学习榜样和新学伴,帮他们树立竞争意识和发展意识以及创新意识,鼓励大家在新学期,获得更大的进步,取得更大的发展。
二、教学内容本学期所教九年级数学包括:,第二十一章《一元二次方程》第二十二章《二次函数》,第二十三章《旋转》,第二十四章《圆》、第二十五章《概率初步》。
代数三章,几何两章。
而且本学期要授完下册第二十七章内容。
三、教学目标:本学期的主要教学任务目标:(1)根据学情,调整好教学进度,优化学习方法,激活知识积累。
(2)形成知识网络,解决实际问题。
(3)强化规范训练,提高应考能力。
(4)关注学生特长需求,做好学生心理疏导。
具体的说,教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。
会用归纳演绎、类比进行简单的推理。
使学生懂得数学来源与实践又反过来作用于实践。
提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。
顽强的学习毅力和独立思考、探索的新思想。
培养学生应用数学知识解决问题的能力。
知识技能目标会解一元二次方程;理解旋转的基本性质;掌握圆及与圆有关的概念、性质;理解概率在生活中的应用。
过程方法目标:培养学生的观察、探究、推理、归纳的能力,发展学生合情推理能力、逻辑推理能力和推理认证表达能力,提高知识综合应用能力。
四、提高学科教育质量的主要措施1、认真做好教学工作。
把认真教学作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。
21.2.2 公式法1.理解一元二次方程求根公式的推导过程,了解公式法的概念.2.会熟练应用公式法解一元二次方程.阅读教材第9至12页的部分,完成以下问题.1.用配方法解下列方程: (1)6x 2-7x +1=0; (2)4x 2-3x =52.2.如果这个一元二次方程是一般形式a x 2+bx +c =0(a≠0),你能否用上面配方法的步骤求出它们的两根?问题 已知ax 2+bx +c =0(a≠0),试推导它的两个根x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a. 分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.知识探究一元二次方程ax 2+bx +c =0(a≠0)的根由方程的系数a 、b 、c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当b 2-4ac≥0时,将a 、b 、c 代入式子x =-b±b 2-4ac 2a就得到方程的根,当b 2-4ac <0,方程没有实数根; (2)x =-b±b 2-4ac 2a叫做一元二次方程ax 2+bx +c =0(a≠0)的求根公式; (3)利用求根公式解一元二次方程的方法叫公式法;(4)由求根公式可知,一元二次方程可能有两个不等的实数根,也可能有两个相等的实数根或没有实数根;(5)一般地,式子b 2-4ac 叫做方程ax 2+bx +c =0(a≠0)的根的判别式,通常用希腊字“Δ”表示,即Δ=b 2-4ac.自学反馈用公式法解下列方程:(1)2x 2-4x -1=0; (2)5x +2=3x 2;(3)(x -2)(3x -5)=0; (4)4x 2-3x +1=0.活动1 小组讨论例1 在什么情况下,一元二次方程a x 2+bx +c =0(a≠0)有两个不相等的实数根?有两个相等的实数根?没有实数根?解:Δ=b 2-4ac ,Δ>0时,有两个不相等的实数根;Δ=0时,有两个相等实数根;Δ<0时,没有实数根.例2 写出一元二次方程ax 2+bx +c =0(a≠0,b 2-4ac≥0)的求根公式:x =2a例3 方程x 2-4x +4=0的根的情况是(B)A .有两个不相等的实数根B .有两个相等的实数根C .有一个实数根D .没有实数根活动2 跟踪训练 1.利用判别式判定下列方程的根的情况: (1)2x 2-3x -32=0; (2)16x 2-24x +9=0; (3)x 2-42x +9=0; (4)3x 2+10x =2x 2+8x.2.用公式法解下列方程:(1)x2+x-12=0;(2)x2-2x-14=0;(3)x2+4x+8=2x+11; (4)x(x-4)=2-8x;(5)x2+2x=0; (6)x2+25x+10=0.用公式法解一元二次方程时,一定要先写对a,b,c的值,再判断Δ的正负.活动3 课堂小结1.求根公式的概念及其推导过程.2.公式法的概念.3.应用公式法解一元二次方程.4.一元二次方程根的情况.【预习导学】自学反馈(1)x1=1+62,x2=1-62.(2)x1=2,x2=-13.(3)x1=2,x2=53.(4)无解.【合作探究】活动2 跟踪训练1.(1)有两个不相等的实数根.(2)有两个相等的实数根.(3)无实数根.(4)有两个不相等的实数根. 2.(1)x1=3,x2=-4. (2)x1=2+32,x2=2-32.(3)x1=1,x2=-3.(4)x1=-2+6,x2=-2- 6.(5)x1=0,x2=-2.(6)无解.21.2.3 因式分解法1.会用因式分解法解某些简单的数字系数的一元二次方程.2.能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.阅读教材第12至14页,完成预习内容.1.将下列各题因式分解:am +bm +cm =________; a 2-b 2=________;a 2±2ab +b 2=________.2.解下列方程:(1)2x 2+x =0(用配方法);(2)3x 2+6x =0(用公式法).知识探究仔细观察上面两个方程特征,除配方法或公式法,你能找到其他的解法吗?1.对于一元二次方程,先将方程右边化为0,然后对方程左边进行因式分解,使方程化为两个一次式的乘积的形式,再使这两个一次式分别等于零,从而实现降次,这种解法叫做________.2.如果a·b=0,那么a =0或b =0,这是因式分解法的根据.如:如果(x +1)(x -1)=0,那么x +1=0或________,即x =-1或________.自学反馈[:Z*X*X*K]1.说出下列方程的根:(1)x(x -8)=0; (2)(3x +1)(2x -5)=0.2.用因式分解法解下列方程:(1)x 2-4x =0; (2)4x 2-49=0;(3)5x 2-20x +20=0.活动1 小组讨论例1 用因式分解法解下列方程:(1)5x 2-4x =0;(2)3x(2x +1)=4x +2;(3)(x +5)2=3x +15.解:(1)x 1=0,x 2=45. (2)x 1=23,x 2=-12. (3)x 1=-5,x 2=-2.解这里的(2)(3)题时,注意整体的思想.例2 用因式分解法解下列方程:(1)4x 2-144=0;(2)(2x -1)2=(3-x)2;(3)5x 2-2x -14=x 2-2x +34; (4)3x 2-12x =-12.解:(1)x 1=6,x 2=-6.(2)x 1=43,x 2=-2. (3)x 1=12,x 2=-12. (4)x 1=x 2=2.注意本例中的方程可以使用多种方法求解.活动2 跟踪训练1.用适当的方法解下列方程:(1)x 2+x =0; (2)x 2+x -12=0;(3)3x 2-6x =-3; (4)4x 2-121=0;(5)4x 2-x -9=0.2.把小圆形场地的半径增加5 m 得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.活动3 课堂小结1.因式分解法解一元二次方程的一般步骤:(1)将方程右边化为0;(2)将方程左边分解成两个一次因式的乘积;(3)令每个因式分别为0,得两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.2.归纳解一元二次方程不同方法的优缺点.【预习导学】(a +b +c)m (a +b)(a -b) (a±b)2知识探究1.因式分解法 2.x -1=0 x =1自学反馈1.(1)x 1=0,x 2=8.(2)x 1=-13,x 2=52. 2.(1)x 1=0,x 2=4.(2)x 1=72,x 2=-72.(3)x 1=x 2=2. 【合作探究】活动2 跟踪训练1.(1)x 1=0,x 2=-1.(2)x 1=-4,x 2=3.(3)x 1=x 2=1.(4)x 1=112,x 2=-112.(5)x 1=1+1458,x 2=1-1458. 2.设小圆形场地的半径为x m .则可列方程2πx 2=π(x +5)2.解得x 1=5+52,x 2=5-52(舍去).答:小圆形场地的半径为(5+52)m.*21.2.4 一元二次方程的根与系数的关系1.理解并掌握根与系数关系:x 1+x 2=-b a ,x 1x 2=c a. 2.会用根的判别式及根与系数的关系解题.阅读教材第15至16页,完成预习内容.知识探究1.完成下列表格:①用语言叙述你发现的规律;(两根之和为一次项系数的相反数;两根之积为常数项)②x 2+px +q =0的两根为x 1,x 2,用式子表示你发现的规律.(x 1+x 2=-p ,x 1x 2=q)2.完成下列表格:问题:上面发现的结论在这里成立吗?(不成立)请完善规律:①用语言叙述发现的规律;(两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数之比)②ax 2+bx +c =0的两根为x 1,x 2,用式子表示你发现的规律.(x 1+x 2=-b a ,x 1x 2=c a) 3.利用求根公式推导根与系数的关系:ax 2+bx +c =0的两根x 1=________________,x 2=________________.则x 1+x 2=________,x 1x 2=________.自学反馈根据一元二次方程的根与系数的关系,求下列方程的两根之和与两根之积:(1)x 2-3x -1=0; (2)2x 2+3x -5=0;(3)13x 2-2x =0.活动1 小组讨论例1 不解方程,求下列方程的两根之和与两根之积:(1)x 2-6x -15=0; (2)3x 2+7x -9=0;(3)5x -1=4x 2.解:(1)x 1+x 2=6,x 1x 2=-15.(2)x 1+x 2=-73,x 1x 2=-3. (3)x 1+x 2=54,x 1x 2=14.先将方程化为一般形式,找对a 、b 、c 的值.例2 已知方程2x 2+kx -9=0的一个根是-3,求另一根及k 的值.解:另一根为32,k =3.本题有两种解法:一种是根据根的定义,将x =-3代入方程先求k ,再求另一个根;另一种是利用根与系数关系解答.例3 已知α,β是方程x 2-3x -5=0的两根,不解方程,求下列代数式的值.(1)1α+1β;(2)α2+β2;(3)α-β. 解:(1)-35.(2)19.(3)29或-29.[:Z*xx*k] 活动2 跟踪训练1.不解方程,求下列方程的两根之和与两根之积:(1)x 2-3x =15; (2)5x 2-1=4x 2;(3)x 2-3x +2=10; (4)4x 2-144=0; (5)3x(x -1)=2(x -1); (6)(2x -1)2=(3-x)2.2.两根均为负数的一元二次方程是( )A .7x 2-12x +5=0B .6x 2-13x -5=0C .4x 2+21x +5=0D .x 2+15x -8=0两根均为负数的一元二次方程根与系数的关系满足两根之和为负数,两根之积为正数.活动3 课堂小结1.一元二次方程的根与系数的关系.2.一元二次方程的根与系数的关系成立的前提条件.[:Z#X#X#K]【预习导学】知识探究 3.-b +b 2-4ac 2a -b -b 2-4ac 2a -b a c a自学反馈(1)x 1+x 2=3,x 1x 2=-1.(2)x 1+x 2=-32,x 1x 2=-52.(3)x 1+x 2=6,x 1x 2=0. 【合作探究】活动2 跟踪训练1.(1)x 1+x 2=3,x 1x 2=-15.(2)x 1+x 2=0,x 1x 2=-1.(3)x 1+x 2=3,x 1x 2=-8.(4)x 1+x 2=0,x 1x 2=-36.(5)x 1+x 2=53,x 1x 2=23.(6)x 1+x 2=-23,x 1x 2=-83. 2.C第二十二章 二次函数22.1 二次函数的图象和性质22.1.1 二次函数1.结合具体情境体会二次函数的意义,理解二次函数的有关概念.2.能够表示简单变量之间的二次函数关系.阅读教材第28至29页,理解二次函数的概念及意义.自学反馈学生独立完成后集体订正:1.一般地,形如________________(a ,b ,c 是常数,且a≠0)的函数叫做二次函数,其中二次项系数、一次项系数和常数项分别为________.2.现在我们已学过的函数有________、________,它们的表达式分别是____________________、____________________.3.下列函数中,不是二次函数的是( )A .y =1-2x 2B .y =(x -1)2-1C .y =12(x +1)(x -1) D .y =(x -2)2-x 2 4.二次函数y =x 2+4x 中,二次项系数是____,一次项系数是____,常数项是____.5.一个圆柱的高等于底面半径,写出它的表面积S 与半径r 之间的关系式.[:Z|xx|k]6.n 支球队参加比赛,每两队之间进行一场比赛,写出比赛的场次数m 与球队数n 之间的关系式.判断二次函数关系要紧扣定义.活动1 小组讨论例1 若y =(b -1)x 2+3是二次函数,则b≠1.二次项系数不为0.例2 一个正方形的边长是12 cm ,若从中挖去一个长为2x cm ,宽为(x +1)cm 的小矩形,剩余部分的面积为y cm 2.(1)写出y 与x 之间的关系式,并指出y 是x 的什么函数?(2)当小矩形中x 的值分别为2和4时,相应的剩余部分的面积是多少?解:(1)y =122-2x(x +1),即y =-2x 2-2x +144.∴y 是x 的二次函数.(2)当x =2和4时,相应的y 的值分别为132和104.几何图形的面积一般需画图分析,相关线段必须先用x 的代数式表示出来. 活动2 跟踪训练(独立完成后展示学习成果)1.如果函数y =(k +2)xk 2-2是y 关于x 的二次函数,那么k 的值为多少?不要忽视k +2≠0.2.设y =y 1-y 2,若y 1与x 2成正比例,y 2与x 成正比例,则y 与x 的函数关系是( )A .正比例函数B .一次函数C .二次函数D .不确定3.有一个人患流感,经过两轮传染后共有y 人患了流感,每轮传染中,平均一个人传染了x 人,则y 与x 之间的函数解析式为________________.4.如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD ,设AB 边长为x m ,则菜园的面积y(m 2)与x(m)的函数解析式为______________________(不要求写出自变量x 的取值范围).5.已知,函数y =(m +1)xm 2-3m -2+(m -1)x(m 是常数).(1)m 为何值时,它是二次函数?(2)m 为何值时,它是一次函数?注意(2)要分情况讨论.6.如图,在矩形ABCD 中,AB =2 cm ,BC =4 cm ,P 是BC 上的一动点,动点Q 仅在PC 或其延长线上,且BP =PQ ,以PQ 为一边作正方形PQRS ,点P 从B 点开始沿射线BC 方向运动,设BP =x cm ,正方形PQRS 与矩形ABCD 重叠部分面积为y cm 2,试分别写出0≤x≤2和2≤x≤4时,y 与x 之间的函数解析式.注意按自变量的取值范围写函数解析式.活动3 课堂小结 学生试述:这节课你学到了些什么?【预习导学】自学反馈1.y =ax 2+bx +c a 、b 、c 2.一次函数 二次函数 y =ax +b(a 、b 为常数,且a≠0)y =ax 2+bx +c(a 、b 、c 为常数,且a≠0) 3.D 4.1 4 0 5.S 表=4πr 2. 6.m =12n 2-12n.【合作探究】活动2 跟踪训练1.k =2. 2.C 3.y =x 2+2x +1 4.y =-12x 2+15x5.(1)m =4.(2)m =-1或m =3±172或m =3±212.6.y =x 2(0≤x≤2);y =-2x +8(2≤x≤4).23.2 中心对称23.2.1 中心对称1.了解中心对称、对称中心、关于对称中心的对称点等概念.2.掌握中心对称的基本性质.[:Z。