七年级数学用坐标表示平移2
- 格式:ppt
- 大小:1.03 MB
- 文档页数:13
七年级数学第七章7.2.2用坐标表示平移姓名 班级备课人:韩姣姣 审核人:李春霞、陈军营 备课时间:3、25 使用时间:【学习目标】1掌握坐标变化与图形平移的关系,能利用点的平移规律将图形进行平移;2会根据图形上点的横、纵坐标的变化规律,来判定图形的移动过程。
【学习重点】掌握坐标变化与图形平移的关系。
【学习难点】利用坐标变化与图形平移的关系解决实际问题。
【学习过程】 一、前提测评在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动叫做 , 平移不改变物体的 和 。
二、探索思考 自学指导一:阅读课本P75-76页,完成探究并归纳“图形平移与点的坐标变化”之间的关系(其中a 、b 为正数)(1)左、右平移: 原图形上的点(x,y) ( )原图形上的点(x,y) ( ) (2)上、下平移:原图形上的点(x,y) ( )原图形上的点(x,y) ( ) 自学检测一:1.在平面直角坐标系中,有一点P (-4,2),若将点P :(1)向左平移2个单位长度,所得点的坐标为_____________; (2)向右平移3个单位长度,所得点的坐标为_____________;(3)向下平移4个单位长度,所得点的坐标为_____________;(4)向上平移5个单位长度,所得点的坐标为_____________; 2.已知A(1,4),B(-4,0),C(2,0).⑴将△ABC 向左平移三个单位后,点A 、B 、C 的坐标 分别变为 , , .⑵将△ABC 向下平移三个单位后,点A 、B 、C 的坐标 分别变为 , , .自学指导二:阅读课本P77页,思考并归纳“点的坐标变化与图形平移”之间的关系(其中a 、b 为正数)(1)横坐标变化,纵坐标不变:原图形上的点(x,y) 向 平移 个单位 原图形上的点(x,y) 向 平移 个单位(2)横坐标不变,纵坐标变化:原图形上的点(x,y) 向 平移 个单位原图形上的点(x,y) 向 平移 个单位自学检测二:1.已知A(1,4),B(-4,0),C(2,0).⑴将△ABC 三顶点A 、B 、C 的横坐标都增加2,相应的 新图形就是把原图形向 平移了 个单位长度。
人教版七年级数学下册第七章第二节用坐标表示平移习题(含答案)一、单选题1.将点(-3,4)向右平移3个单位、向下平移2个单位后的坐标为( ) A.(-6,0) B.(6,0) C.(0,-2) D.(0,2)【答案】D【解析】【分析】根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,即可求解.【详解】解:横坐标右移加,左移减;纵坐标上移加,下移减,将点A(-3,4)向右平移3个单位,再向下平移2个单位,得到的点A′的坐标是(0,2).故选:D.【点睛】本题主要考查了在平面直角坐标系中,图形的平移与图形上某点的平移相同,难度适中.2.在平面直角坐标系中,点M(﹣1,3),先向右平移2个单位,再向下平移4个单位,得到的点的坐标为()A.(﹣3,﹣1)B.(﹣3,7)C.(1,﹣1)D.(1,7)【答案】C【解析】【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:点M(﹣1,3),先向右平移2个单位,再向下平移4个单位,得到的点的坐标为(﹣1+2,3﹣4),即(1,﹣1),故选:C.【点睛】本题主要考查了坐标与图形变化−平移,平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.3.已知点A的坐标为(1,3),点B的坐标为(3,1),将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1),则点B的对应点的坐标为( ) A.(6,3) B.(0,3) C.(6,﹣1) D.(0,﹣1)【答案】D【解析】【分析】根据点A、点A的对应点的坐标确定出平移规律,然后根据规律求解点B 的对应点的坐标即可.【详解】解:由题意A (1,3)的对应点的坐标为(-2,1),∴平移规律为横坐标减3,纵坐标减2,∴点B (3,1)的对应点的坐标为(0,-1).故选:D .【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.4.抛物线23y x =先向下平移1个单位,再向左平移2个单位,所得的抛物线是( )A .23(2)1y x =+-.B .23(2)1y x =-+C .2(2)1y x =--D .23(2)1y x =++ 【答案】A【解析】【分析】根据函数图象平移的法则“左加右减,上加下减”的原则进行解答即可.【详解】由“上加下减”的原则可知,将抛物线y=3x 2先向向下平移1个单位可得到抛物线y=3x 2-1;由“左加右减”的原则可知,将抛物线y=3x 2-1先向左平移2个单位可得到抛物线23(2)1y x =+-.故选A.本题考查二次函数图象与几何变换,解题的关键是掌握函数图象平移的法则“左加右减,上加下减”的原则.5.将点A(3, 1)向上平移2个单位得到点B , 点B 的坐标是( )A .(5,3)B .(1, 3)C .(3, 3)D .(5, 1)【答案】C【解析】【分析】根据点的平移规律,向上平移2个单位,将纵坐标加2即可.【详解】点A(3, 1)向上平移2个单位,纵坐标加2得(3, 3),故B 的坐标是(3, 3),选C.【点睛】本题考查点的平移,熟练掌握上下平移是改变纵坐标,左右平移改变横坐标是关键,与函数图像平移的“左加右减”要进行区分. 6.点()34--,先向上平移5个单位,再向右平移4个单位后的坐标为( )A .()20,B .()71-,C .()19-,D .()11, 【答案】D【解析】【分析】根据坐标系中点的平移规律,上下平移改变纵坐标,左右平移改变横坐标,即可解答.向上平移5个单位,纵坐标为-4+5=1,向右平移4个单位,横坐标为-3+4=1,所以平移后的坐标为()11,,故选D.【点睛】本题考查坐标系中点的平移,熟记平移规律是解题的关键.7.将△ABC向左平移2个单位长度后得到△A'B'C'.若点A的坐标是(-3,7),则点A'的坐标是( )A.(-5,5) B.(-1,9) C.(-5,7) D.(-1,7)【答案】C【解析】【分析】根据平移点的变化规律(横坐标右移加,左移减;纵坐标上移加,下移减)求解.【详解】解:∵△ABC向左平移2个单位长度后得到△A′B′C′,∴点A(-3,7)向左平移2个单位长度后得到的点A′的坐标为(-5,7).故选:C.【点睛】本题考查了坐标与图形变化——平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.8.在平面直角坐标系中,将点(2,3)向右平移2个单位,所得到的点的坐标是()A.(2,5 )B.(4,3 )C.(0,3 )D.(2,1 )【答案】B【解析】【分析】把点(2,3)的横坐标加2,纵坐标不变得到(4,3),就是平移后的对应点的坐标.【详解】点(2,3)向右平移2个单位长度后得到的点的坐标为(4,3).故选B.【点睛】本题考查了坐标与图形变化﹣平移.掌握平移的规律是解答本题的关键.9.在如图所示的网格中,有两个完全相同的直角三角形纸片,如果把其中一个三角形纸片先横向平移m格,再纵向平移n格,就能使它的一条边与另一个三角形纸片的一条边重合,拼接成一个四边形,那么m n 的结果()A.只有一个确定的值B.有两个不同的值C.有三个不同的值D.有三个以上不同的值【答案】B【解析】【分析】根据使一个三角形的一条边与另一个三角形的一条边重合,分情况讨论平移方式,然后分别求出m+n即可.【详解】解:①上边的三角形向右平移两个单位,向下平移三个单位,此时m+n=5;②上边的三角形向右平移两个单位,向下平移五个单位,此时m+n=7;③上边的三角形向左平移两个单位,向下平移三个单位,此时m+n=5;所以m n+的结果有两个不同的值,故选B.【点睛】本题考查图形的平移,根据题目要求判断出平移方式是解题关键.A B,其中点A,B的对应点分别10.如图,线段AB经过平移得到线段''A B 为点'A,'B,这四个点都在格点上.若线段AB上有一个点(),P a b,则点P在''上的对应点P'的坐标为()A .()2,3a b -+B .()2,3a b --C .()2,3a b ++D .()2,3a b ++ 【答案】A【解析】【分析】 先根据点A 到它的对应点'A 的平移规律即可得到线段AB 到线段''A B 的平移规律,从而得到点P 到对应点P' 的平移规律,即可得到P'的坐标【详解】解:∵点A (1,﹣1)到它的对应点'A (﹣1,2)的平移规律是:先向左平移2个单位,再向上平移3个单位,∴AB 到线段''A B 的平移规律是:先向左平移2个单位,再向上平移3个单位,∴点(),P a b 平移后对应点P'的坐标为:()2,3a b -+故选A.【点睛】此题考查的是坐标与图形的变化——平移:横坐标为左减右加,纵坐标为上加下减,掌握点的平移规律是解决此题的关键.。
人教版七年级数学下册第七章第二节用坐标表示平移习题 (含答案)如图,在平面直角坐标系中,点 A,B 的坐标分别为 A(a,0),B(b,0). 且 a,b 满足 a 3 +(a-2b+7)2=0.现同时将点 A,B 分别向左平移 2 个单位, 再向上平移 2 个单位,分别得到点 A,B 的对应点 C,D,连接 AC,BD.(1)请直接写出 A,B 两点的坐标. (2)如图,点 P 是线段 AC 上的一个动点,点 Q 是线段 CD 的中点,连接 PQ,PO,当点 P 在线段 AC 上移动 时(不与 A,C 重合),请找出∠PQD,∠OPQ, ∠POB 的数量关系,并证明你的结论. (3)在坐标轴上是否存在点 M,使三角形 MAD 的面积与三角形 ACD 的面 积相等?若存在,直接写出点 M 的坐标;若不存在,试说明理由.【答案】(1) A(-3,0) B(2,0); 【解析】 【分析】 (1)根据平方与绝对值的非负性即可求解;(2)过点 P 作 PE∥AB,由平 移的性质可得 AB∥CD,利用平行线的性质即可求解;(3)先求出△ACD 的面 积,再根据 M 在 x 轴上与 y 轴上分别求解. 【详解】 解:(1)依题意得 a 3=0,a-2b+7=0,解得 a=-3,b=2,∴A(-3,0) B(2,0)∵将点 A,B 分别向左平移 2 个单位,再向上平移 2 个单位,分别得到点 A,B 的对应点 C,D,∴C(-5,2),D(0,2)(2)∥PQD+∥OPQ+∥POB=360°证明:过点 P 作 PE∥AB,由平移的性质可得 AB∥CD,∥AB∥PE∥CD,∥∥PQD+∥EPQ =180°,∥OPE +∥POB=180°,∥∥PQD+∥EPQ+∥OPE +∥POB=360°,即∥PQD+∥OPQ+∥POB=360° (3) 先求出△ACD 的面积为 1 5 2 =52①M 在 x 轴上再根据△MAD 的高与△ACD 相等即 AM=CD=5,故坐标为(-8,0),(2,0),②M 在 y 轴上,根据△MAD 的高为 AO=3,得出 MD= 10 3由 D(0,2)得出 M(0, 16 ),(0, 4 ).33故存在符合条件的 M 点坐标为(-8,0),(2,0),(0, 16 ),(0, 4 ).33【点睛】此题主要考查直角坐标系的坐标特点,解题的关键是熟知坐标的平移与面积 的计算.82.△ABC 在网格中的位置如图所示,请根据下列要求作图: (1)过点 C 作 AB 的平行线; (2)过点 A 作 BC 的垂线段,垂足为 D; (3)将△ABC 先向下平移 3 格,再向右平移 2 格得到△EFG(点 A 的对 应点为点 E,点 B 的对应点为点 F,点 C 的对应点为点 G)【答案】(1)见解析;(2)见解析;(3)见解析. 【解析】 【分析】 (1)平移 AB,使它经过点 C,则可得到直线 l 满足条件; (2)利用网格特点作 AD⊥BC 于 D; (3)根据图形平移的性质画出△EFG 即可. 【详解】 (1)如图,直线 l 为所作; (2)如图,AD 为所作; (3)如图,△EFG 为所作.【点睛】 本题考查了平移变换:确定平移后图形的基本要素有两个:平移方向、平移 距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距 离确定对应点后,再顺次连接对应点即可得到平移后的图形. 83.适当建立直角坐标系,描出点(0,0),(5,4),(3,0),(5,1), (5,-1),(3,0),(4,-2),(0,0),并用线段顺次连接各点.⑴看图案像 什么?⑵作如下变化:纵坐标不变,横坐标减 2,并顺次连接各点,所得的图案 与原来相比有什么变化?【答案】(1)“鱼”;(2)向左平移 2 个单位. 【解析】 【分析】 (1)描点根据顺序连线即可. (2)根据平移前后图形的形状和大小没有变化可以知道,图案大小形状没有变化, 位置向左平移两个单位. 【详解】解:(1)像“鱼”. (2)纵坐标不变,横坐标减 2,即向左平移两个单位,根据平移前后图形的形状和大 小没有变化可以知道,图案大小形状没有变化,位置向左平移两个单位.【点睛】本题考查坐标轴画图,细心画图即可. 84.在如图所示的平面直角坐标系中表示下面各点 A(0,3),B(1,-3), C(3,-5),D(-3,-5),E(3,5),F(5,6),G(5,0)根据描点回答问题:(1)A 点到原点的距离是________. (2)将点 C 向 x 轴的负方向平移 6 个单位,它与点______重合. (3)连接 CE,则直线 CE 与坐标轴是什么关系? (4)在以上七个点中,任意两点所形成的直线中,直接写出互相垂直的直线. 【答案】(1)3;(2)D;(3)垂直;(4)直线 CD 与 CE 垂直,直线 CD 与 FG 垂 直. 【解析】 【分析】 (1)根据 A 点坐标可得出 A 点在 y 轴上,即可得出 A 点到原点的距离; (2)根据点的平移的性质得出平移后的位置; (3)利用图形性质得出直线 CE 与坐标轴的位置关系; (4)利用图形性质得出互相垂直的直线. 【详解】 解:由题意得,如图所示:(1)A 点到原点的距离是 3. (2)将点 C 向 x 轴的负方向平移 6 个单位,它与点 D 重合. (3)直线 CE 与 y 轴平行,与 x 轴垂直; (4)直线 CD 与 CE 垂直,直线 CD 与 FG 垂直. 故答案为:(1)3;(2)D;(3)垂直;(4)直线 CD 与 CE 垂直,直线 CD 与 FG 垂直. 【点睛】 此题主要考查了点的坐标性质以及平移的性质,根据坐标系得出各点的位置 是解题关键. 85.已知直角坐标平面内两点 A(-2,-3)、B(3,-3),将点 B 向上平 移 5 个单位到达点 C,求:(1)A、B 两点间的距离; (2)写出点 C 的坐标; (3)四边形 OABC 的面积. 【答案】(1) 5;(2) (3,2);(3)15.【解析】 【分析】 (1)A、B 两点的横坐标差的绝对值即为 A、B 两点间的距离; (2)将点 B 的横坐标不变,纵坐标加 5 即可求出点 C 的坐标; (3)四边形 OABC 的面积等于三角形 ODC 面积与梯形 OABD 的面积之和. 【详解】 (1)因为点 A(-2,-3)、点 B(3,-3),所以 AB=3-(-2)=5; (2)因为点 B(3,-3),将点 B 向上平移 5 个单位到达点 C,所以点 C 的坐 标为(3,2); (3)如图,设 BC 与 x 轴交于点 D,则S四边形 OABC=S三角形 ODC+S梯形 OABD=1 2×3×2+1 2(3+5)×3=3+12=15.【点睛】此题主要考查直角坐标系的点,解题的关键是熟知坐标点的定义与性质.86.如图,△ABC 的顶点 A 在原点,B、C 坐标分别为 B(3,0),C(2,2),将△ABC向左平移 1 个单位后再向下平移 2 单位,可得到△A′B′C′.(1)请画出平移后的△A′B′C′的图形;(2)写出△A′B′C′各个顶点的坐标;(3)求△ABC 的面积.【答案】见解析;(2) A′(﹣1,﹣2),B′(2,﹣2),C′(1,0);(3) 3. 【解析】 【分析】 1)根据图形平移的性质画出∥A′B′C′即可; (2)根据各点在坐标系的位置写出各点坐标即可; (3)利用底乘以高除以 2 即可求出三角形 ABC 的面积. 【详解】 解:(1)△A′B′C′如图所示;(2)A′(﹣1,﹣2),B′(2,﹣2),C′(1,0);(3)S△ABC=1 2×3×2=3.【点睛】此题主要考查作图与平移变换,解题的关键是熟知坐标系的特点.87.在纸上建立直角坐标系,根据点的坐标描出下列各点:(0,0),(5,3),(3,0),(5,1),(5,-1),(4,-2),然后按照(0,0)→(5,3)→(3,0)→(5,1)→(5,-1)→(3,0)→(4,-2)→(0,0)的顺序用线段连接起来.(1)看看你得到的图案像什么? (2)如果把这些点的横坐标都加上 1,纵坐标都减去 2,再按照原来的顺序 将得到的各点用线段连接起来,这个图案与原图案在大小、形状和位置上有什么 变化?【答案】(1)一条可爱的小鱼;(2)见解析. 【解析】 【分析】 (1)根据题意画出图形,观察即可解答;(2)根据题意画出图形,与原图 形比较即可解答. 【详解】 解:(1)建立平面直角坐标系,将各点描出,连接后我们可以得到一条可爱 的小鱼,如图①. (2)如果把这些点的横坐标都加上 1,纵坐标都减去 2,再按原来的顺序连接, 仍得到一条小鱼,这条小鱼的大小、形状与原来的完全一样,它的位置可以看作 将原来的小鱼先向右平移 1 个单位长度,然后再向下平移 2 个单位长度得到, 如图②.【点睛】本题主要考查了坐标与图形的性质,利用已知点得出在坐标系中位置是解题关键.88.在平面直角坐标系中,△ABC三个顶点的坐标分别是A(−2,2)、B(2,0),C(−4,−2).(1)在平面直角坐标系中画出△ABC;(2)若将(1)中的△ABC平移,使点B的对应点B′坐标为(6,2),画出平移后的△A′B′C′;(3)求△A′B′C′的面积.【答案】(1)见解析;(2)见解析;(3)△A′B′C′的面积为10.【解析】【分析】(1)根据点A、B、C的坐标描点,从而可得到△ABC;(2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′B′C′,利用此平移规律写出A′、C′的坐标,然后描点即可得到△A′B′C′;(3)用一个矩形的面积分别减去三个三角形的面积去计算△A′B′C′的面积.【详解】(1)如图,△ABC为所作;(2)如图,△A′B′C′为所作;(3)△A′B′C′的面积=6×4−12×2×6−12×2×4−12×4×2=10.【点睛】本题考查作图-平移变换,解题的关键是掌握平移变换的性质.89.如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D、点B与点E、点C与点F分别是对应点.观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D、点B与点E、点C与点F的坐标,并说出三角形DEF是由三角形ABC经过怎样的变换得到的;(2)若点Q(a+3,4-b)是点P(2a,2b-3)通过上述变换得到的,求a-b 的值.【答案】(1)A(2,4),D(-1,1),B(1,2),E(-2,-1),C(4,1),F(1,-2),平移方法见解析;(2)a-b=8.3【解析】【分析】(1)根据各点在直角坐标系中的位置写出坐标,然后根据图形的位置确定平移方法即可;(2)根据(1)中的平移规律可得关于a、b的方程,解方程求得a、b的值后即可求得答案.【详解】(1)A(2,4),D(-1,1),B(1,2),E(-2,-1),C(4,1),F(1,-2);三角形DEF是由三角形ABC先向左平移3个单位,再向下平移3个单位得到的(或先向下平移3个单位,再向左平移3个单位得到的).(2)由题意得2a-3=a+3,2b-3-3=4-b,,解得a=6,b=10310=8.∴a-b=6-【点睛】本题考查了坐标与图形变化——平移,能够利用平面直角坐标系写出点的坐标、熟练掌握平移规律是解题的关键.90.如图,长方形ABCD在坐标平面内,点A的坐标是A(√2,1),且边AB,CD与x轴平行,边AD,BC与y轴平行,AB=4,AD=2.(1)求B,C,D三点的坐标;(2)怎样平移,才能使A点与原点O重合?【答案】(1)B (4+√2,1),C (4+√2,3),D (√2,3);(2)见解析.【解析】【分析】(1)根据长方形的对边平行且相等求出BC到y轴的距离,CD到x轴的距离,然后写出点B、C、D的坐标即可;(2)根据图形写出平移方法即可.【详解】(1)∵A(√2,1),AB=4,AD=2,∴BC到y轴的距离为4+√2,CD到x轴的距离2+1=3,∴点B的坐标为(4+√2,1),点C的坐标为(4+√2,3),点D的坐标为(√2,3);(2)由图可知,先向下平移1个单位长度,再向左平移√2个单位长度(或先向左平移√2个单位长度,再向下平移1个单位长度).【点睛】本题考查了坐标与图形性质,坐标与图形变化-平移,熟练掌握长方形的对边平行且相等并准确识图是解题的关键.。
第7章平面直角坐标系7.2坐标方法的简单应用-7.2.2用坐标表示平移班级:姓名:知识点1用坐标表示点的平移1.将点A(2,1)向左平移2个单位长度得到点A',则点A'的坐标是()A.(0,1)B.(2,-1)C.(4,1)D.(2,3)2.把点A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到B,点B的坐标是()A.(-5,3)B.(1,3)C.(1,-3)D.(-5,-1)3.点P(2,-3)先向左平移4个单位长度,再向上平移1个单位长度,得到点P'的坐标是.4.将点A(-3,-2)先沿y轴向上平移5个单位长度,再沿x轴向左平移4个单位长度得到点A',则点A'的坐标是.5.将点A(1,-3)向右平移2个单位长度,再向下平移2个单位长度后得到点B(a,b),则ab=.6.(1)如图,将点A向右平移几个单位长度可得到点B()A.3个单位长度B.4个单位长度C.5个单位长度D.6个单位长度(2)将点A向下平移5个单位长度后,将重合于图中的()A.点CB.点FC.点DD.点E(3)将点A先向右平移3个单位长度,再向下平移5个单位长度,得到A',将点B先向下平移5个单位长度,再向右平移3个单位长度,得到B',则A'与B'相距()A.4个单位长度B.5个单位长度C.6个单位长度D.7个单位长度(4)点G(-2,-2),将点G先向右平移6个单位长度,再向上平移5个单位长度,得到G',则G'的坐标为()A.(6,5)B.(4,5)C.(6,3)D.(4,3)7.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是()A.(2,5)B.(-8,5)C.(-8,-1)D.(2,-1)知识点2用坐标表示图形的平移8.将一个三角形的三个顶点的坐标分别向上平移1个单位长度,再向左平移4个单位长度所得点的坐标分别是(2,1),(-1,3),(4,-5),则平移前三个顶点的坐标分别是()A.(6,0),(3,2),(8,-6)B.(-1,-5),(2,-7),(3,-1)C.(1,5),(2,-7),(-3,1)D.(-1,5),(2,-7),(-3,1)9.如图,将三角形PQR向右平移2个单位长度,再向下平移3个单位长度,则点P平移后的坐标是()A.(-2,-4)B.(-2,4)C.(2,-3)D.(-1,-3)10.如图在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(-4,2),(-2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是.11.如图,三角形OAB 的顶点B 的坐标为(4,0),把三角形OAB 沿x 轴向右平移得到三角形CDE.如果CB=1,那么OE 的长为.12.如图,A,B 的坐标分别为(1,0),(0,2),若将线段AB 平移至A 1B 1,A 1,B 1的坐标分别为(2,a),(b,3),则a+b=.13.如图,梯形A'B'C'D'可以由梯形ABCD 经过怎样的平移得到?对应点的坐标有什么变化?综合点学科内综合14.如图,点A,B 的坐标分别为(1,2),(4,0),将三角形AOB 沿x 轴向右平移,得到三角形CDE,已知DB=1,则点C 的坐标为.15.如图,三角形A'B'C'是由三角形ABC 平移后得到的,已知三角形ABC 中一点P(x 0,y 0)经平移后对应点为P'(x 0+5,y 0-2).(1)已知A(-1,2),B(-4,5),C(-3,0),请写出A',B',C'的坐标;(2)试说明三角形A'B'C'是如何由三角形ABC平移得到的;(3)请直接写出三角形A'B'C'的面积为_____.拓展训练拓展点坐标中的规律探究16.如图,三角形DEF 是三角形ABC 经过某种变换后得到的图形,分别写出点A 与点D,点B 与点E,点C 与点F 的坐标,并观察它们的关系,如果三角形ABC 中任一点M 的坐标(x,y),那么它的对应点N的坐标是什么?第7章平面直角坐标系7.2坐标方法的简单应用-7.2.2用坐标表示平移答案与点拨1.A(点拨:点A'的横坐标为2-2=0,纵坐标为1,∴A'的坐标为(0,1).故选A.)2.B(点拨:∵A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到B,∴1+2=3,-2+3=1;点B的坐标是(1,3).故选B.)3.(-2,-2)(点拨:点(2,-3)向左平移4个单位长度,横坐标为:2-4=-2,向上平移1个单位长度,纵坐标为:-3+1=-2,∴点P'(-2,-2).)4.(-7,3)(点拨:点A(-3,-2)先沿y轴向上平移5个单位长度,再沿x轴向左平移4个单位长度得到点A',∴A'的坐标是(-3-4,-2+5),即(-7,3).)5.-15(点拨:将点A向右平移2个单位长度,纵坐标不变,横坐标增加2,此时点的坐标为(3,-3),再向下平移2个单位长度,横坐标不变,纵坐标减2,此时的坐标为(3,-5),即点B坐标为(3,-5),∴a=3,b=-5,∴ab=3×(-5)=-15.)6.(1)B(2)D(3)A(点拨:先分别找到A',B'的位置,再观察它们之间的距离.)(4)D7.D(点拨:逆向思考,把点(-3,2)先向右平移5个单位长度,再向下平移3个单位长度可得到A点坐标.)8.A(点拨:将平移后各点横坐标加4,纵坐标减1,可得到平移前的点的坐标分别是:(2+4,1-1),(-1+4,3-1),(4+4,-5-1),即(6,0),(3,2),(8,-6).)9.A(点拨:由图形知点P的坐标为P(-4,-1),由平移规律得平移后P点的坐标是(-4+2,-1-3)即(-2,-4).故选A.)10.(5,4)(点拨:左眼坐标由(-4,2)到(3,4)是向右平移7个单位长度,又向上平移2个单位长度,右眼由(-2,2)作同样的平移得坐标为(5,4).)11.7(点拨:因为三角形OAB的顶点B的坐标为(4,0),所以OB=4,所以OC=OB-CB=4-1=3,因此平移的距离为3.因为把三角形OAB沿x轴向右平移得到三角形CDE,所以CE=OB=4,所以OE=OC+CE=3+4=7.)12.2(点拨:∵A,B的坐标分别为(1,0),(0,2),若将线段AB平移至A1B1,A1,B1的坐标分别为(2,a),(b,3),可知线段AB向右平移了1个单位长度,向上平移了1个单位长度,则a=0+1=1,b=0+1=1,则a+b=1+1=2.)13.可由ABCD向左平移7个单位长度,向上平移7个单位长度得到.各对应点的坐标横坐标减7,纵坐标加7.14.(4,2)(点拨:O与D是一对对应点,因此平移距离为OD=OB-DB=4-1=3,因此平行规律为向右平移3个单位长度,所以A(1,2)的对应点C的坐标为(4,2).)15.(1)A'(4,0),B'(1,3),C'(2,-2)(2)三角形ABC向右平移5个单位长度,再向下平移2个单位长度(或先下平移2个单位长度,再向右平移5个单位长度)即可得到三角形A'B'C'.(3)616.A(4,3),D(-4,-3),B(3,1),E(-3,-1),C(1,2),F(-1,-2);N(-x,-y)。
用坐标表示平移(优质课教案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN用坐标表示平移教学目标:1. 掌握点的坐标变化与图形平移的关系;能利用点的平移规律将平面图形进行平移;会根据图形上点的坐标的变化,来判定图形的移动过程.2. 经历探索点坐标变化与点平移的关系,图形各个点坐标变化与图形平移的关系的过程,发展学生的形象思维能力和数形结合意识。
教学重难点:教学重点:掌握坐标变化与图形平移的关系.教学难点:探索坐标变化与图形平移的关系.学情分析:1、知识掌握上,七年级学生刚刚学习直角坐标系,对直角坐标系及坐标的理解不一定很深刻,许多学生容易造成知识混乱,所以应全面系统的去讲述。
2、由于七年级学生的理解能力、思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
3、心理上,学生对数学课的兴趣,老师应抓住这有利因素,引导学生认识到数学课的科学性,学好数学有利于其他学科的学习以及学科知识的渗透性。
教法:根据所学知识直观性的特点,我将采用多媒体教学,以学生的自主探究、合作交流为主,教师的点播为辅。
教学过程:一、知识回顾:什么叫做平移?把一个图形整体沿某一个方向移动一定的距离,图形的这种移动,叫做平移。
平移后得到的新图形与原图形有什么关系?新图形中的每一点都是由原图形中的某一点移动后得到的。
二、观察发现(1)在方格纸上画出点A的坐标,然后按照下面的提示进行平移,观察平移后点的坐标变化:点A(-3,-2)向右平移5个单位长度;(2,-2)点A(-3,-2)向右平移7个单位长度;(4.-2)总结:若将点A(-3,-2)向右平移a(a>0)个单位长度,得到的点的坐标为(-3+a,-2)横纵坐标发生了什么变化?向右平移,纵坐标不变,横坐标加。