第七章 偏心受力构件承载力计算b(新)
- 格式:ppt
- 大小:1.20 MB
- 文档页数:47
第7章偏心受压构件的正截面承载力计算当轴向压力N的作用线偏离受压构件的轴线时[图7-1a)],称为偏心受压构件。
压力N的作用点离构件截面形心的距离e称为偏心距。
截面上同时承受轴心压力和弯矩的构件[图7-1b)],称为压弯构件。
根据力的平移法则,截面承受偏心距为e的偏心压力N相当于承受轴心压力N和弯矩M(=Ne)的共同作用,故压弯构件与偏心受压构件的基本受力特性是一致的。
β)图7-1 偏心受压构件与压弯构件a)偏心受压构件b)压弯构件钢筋混凝土偏心受压(或压弯)构件是实际工程中应用较广泛的受力构件之一,例如,拱桥的钢筋混凝土拱肋,桁架的上弦杆、刚架的立柱、柱式墩(台)的墩(台)柱等均属偏心受压构件,在荷载作用下,构件截面上同时存在轴心压力和弯矩。
钢筋混凝土偏心受压构件的截面型式如图7-2所示。
矩形截面为最常用的截面型式,截面高度h大于600mm的偏心受压构件多采用工字形或箱形截面。
圆形截面主要用于柱式墩台、桩基础中。
图7-2 偏心受压构件截面型式a)矩形截面b)工字形截面c)箱形截面d)圆形截面在钢筋混凝土偏心受压构件的截面上,布置有纵向受力钢筋和箍筋。
纵向受力钢筋在截面中最常见的配置方式是将纵向钢筋集中放置在偏心方向的两对面[图7-3a)],其数量通过正截面承载力计算确定。
对于圆形截面,则采用沿截面周边均匀配筋的方式[图7-3b)]。
箍筋的作用与轴心受压构件中普通箍筋的作用基本相同。
此外,偏心受压构件中还存在着一定的剪力,可由箍筋负担。
但因剪力的数值一般较小,故一般不予计算。
箍筋数量及间距按普通箍筋柱的构造要求确定。
图7-3 偏心受压构件截面钢筋布置形式a)纵筋集中配筋布置b)纵筋沿截面周边均匀布置7.1 偏心受压构件正截面受力特点和破坏形态钢筋混凝土偏心受压构件也有短柱和长柱之分。
本节以矩形截面的偏心受压短柱的试验结果,介绍截面集中配筋情况下偏心受压构件的受力特点和破坏形态。
7.1.1 偏心受压构件的破坏形态钢筋混凝土偏心受压构件随着偏心距的大小及纵向钢筋配筋情况不同,有以下两种主要破坏形态。
一、判断题(请在您认为正确陈述的各题干后的括号内打“√”,否则打“×”。
每小题1分。
) 第1章 钢筋与混凝土的力学性能1.混凝土立方体试块的尺寸越大,强度越高。
( F )2.混凝土在三向压力作用下的强度可以提高。
( T )3.普通热轧钢筋受压时的屈服强度与受拉时基本相同。
( T )4.钢筋经冷拉后,强度与塑性均可提高。
( F )5.冷拉钢筋不宜用作受压钢筋。
( T )6.C20表示f cu =20N/mm 。
( F )7.混凝土受压破坏就是由于内部微裂缝扩展的结果。
( T ) 8.混凝土抗拉强度随着混凝土强度等级提高而增大。
( T )9.混凝土在剪应力与法向应力双向作用下,抗剪强度随拉应力的增大而增大。
( F )10.混凝土受拉时的弹性模量与受压时相同。
( T )11.线性徐变就是指压应力较小时,徐变与应力成正比,而非线性徐变就是指混凝土应力较大时,徐变增长与应力不成正比。
( T )12.混凝土强度等级愈高,胶结力也愈大( T ) 13.混凝土收缩、徐变与时间有关,且互相影响。
( T )1. 错;对;对;错;对;2. 错;对;对;错;对;对;对;对;第3章 轴心受力构件承载力1.轴心受压构件纵向受压钢筋配置越多越好。
( F )2.轴心受压构件中的箍筋应作成封闭式的。
( T )3.实际工程中没有真正的轴心受压构件。
( T )4.轴心受压构件的长细比越大,稳定系数值越高。
( F )5.轴心受压构件计算中,考虑受压时纵筋容易压曲,所以钢筋的抗压强度设计值最大取为2/400mm N 。
( F )6.螺旋箍筋柱既能提高轴心受压构件的承载力,又能提高柱的稳定性。
( F )1.错;对;对;错;错;错;第4章 受弯构件正截面承载力1.混凝土保护层厚度越大越好。
( F )2.对于'f h x ≤的T 形截面梁,因为其正截面受弯承载力相当于宽度为'f b 的矩3.板中的分布钢筋布置在受力钢筋的下面。
第七章 偏心受力构件承载力的计算西安交通大学土木工程系 杨 政第七章 偏心受力构件承载力的计算结构构件的截面受到轴力N和弯矩M共同作用,只在截 面上产生正应力,可以等效为一个偏心(偏心距 e0=M/N ) 作用的轴力N。
因此,截面上受到轴力和弯矩共同作用的结 构构件称为偏心受力构件。
N NM N(a )N N M(b )N(c )(d )(e )(f)第七章 偏心受力构件承载力的计算显然,轴心受力( e0=0 )和受弯( e0=∞)构件为其特 例。
当轴向力为压力时,称为偏心受压;当轴向力为拉力 时,称为偏心受拉。
偏心受压构件多采用矩形截面,工业建筑中尺寸较大的 预制柱也采用工字形和箱形截面,桥墩、桩及公共建筑中的 柱等多采用圆形截面;而偏心受拉构件多采用矩形截面。
e0=0 轴心受拉 偏心受拉 大偏心 e0=∞ 纯弯 偏心受压 小偏心 e0=0 轴心受压小偏心大偏心第七章 偏心受力构件承载力的计算7.1 偏心受压构件正截面承载力计算7.1.1 偏心受压构件的破坏形态偏心受压构件是工程中使用量最大 的结构构件,其受力性能随偏心距、配 筋率和长细比( l0/h )等主要因素而变 化。
与轴心受压构件类似,根据构件的 长细比,偏心受压柱也有长柱和短柱之 分。
此外,其他一些重要因素,例如混 凝土和钢筋材料的种类和强度等级、构 件的截面形状、钢筋的构造、荷载的施 加途径等,都对构件的受力性能和破坏 形态产生影响。
第七章 偏心受力构件承载力的计算受压(小偏心受压)破坏 偏心受压构件破坏类型 受拉(大偏心受压)破坏7.1 偏心受压构件正截面承载力计算第七章 偏心受力构件承载力的计算受压(小偏心受压)破坏 受压应力较大一侧的应变首先达到混凝土的极限压应变 而破坏,同侧的纵向钢筋也受压屈服;而另一侧纵向钢筋可 能受压也可能受拉,如果受压可能达到受压屈服,但如果受 拉,则不可能达到受拉屈服。
构件的承载力主要取决于受压混凝土和受压纵向钢筋。