陕西省安康市石泉县池河镇九年级数学上册21.2.1配方法2教案(新版)新人教版【精品教案】
- 格式:doc
- 大小:128.01 KB
- 文档页数:4
全新修订版教学设计(教案)九年级数学上册老师的必备资料家长的帮教助手学生的课堂再现人教版(RJ)21.2.1 配方法内容:配方法解一元二次方程课型:新授学习目标:1.会用开平方法解形如(x 十m)2=n(n 0)的方程.2.理解一元二次方程的解法——配方法.教学重点:利用配方法解一元二次方程教学难点:把一元二次方程通过配方转化为(x 十m)2=n(n 0)的形式.一.学前准备1用直接开平方法解方程2x 2--8=0 )62x (--9=02完全平方公式是什么?3填上适当的数,使下列等式成立:(1)x 2+12x+ = (x+6)2(2)x 2―12x+ = (x ―)2(3)x 2+8x+ = (x+) 2(4)x 2+43x+ = (x+ )2(5)x 2+px+ = (x+ )2观察并思考填的数与一次项的系数有怎样的关系?二、探究活动问题:下列方程能否用直接开平方法解?x 2+8x ―9=0 x 2一l0x 十25=7;是否先把它变成(x+m)2=n (n ≥0)的形式再用直接开平方法求解?问题:要使一块矩形场地的长比宽多6m ,并且面积为16m2,场地的长和宽应各是多少?解:设场地宽为X 米,则长为(x+6)米,根据题意得:()整理得( )怎样解方程X2+6X -16 = 0自学教材32页1什么叫配方法?例1: 用配方法解下列方程x 2--8x+1=0 2x 2+1=3x总结用配方法解方程的一般步骤.(1)化二次项系数为1,即方程两边同时除以二次项系数.(2)移项,使方程左边为二次项和一次项,右边为常数项.(3)要在方程两边各加上一次项系数一半的平方.(注:一次项系数是带符号的)(4)方程变形为(x+m)2=n 的形式.(5)如果右边是非负实数,就用直接开平方法解这个一元二次方程;如果右边是一个负数,则方程在实数范围内无解.三.自我测试。
21.2.1配方法一、教学目标1、掌握配方法的推导过程,并能够熟练地进行配方.2、用配方法解数字系数的一元二次方程.3、在配方法的应用过程中体会 “转化”的思想,掌握一些转化的技能.二、教学设想结合旧的知识展开,重点讨论配方法解一元二次方程。
教学中,应注意循序渐进地让学生掌握用配方法解数字系数的一元二次方程的做法,并且理解配方是为了配成完全平方的形式,再利用直接开平方的方法将一个一元二次方程转化为两个一元一次方程.三、教材分析本课时的教材在第一课时的基础上,通过对直接开平方的方法的理解,进一步引出用配方法解一元二次方程,然后再引导学生得出的这个方程的具体的解。
以直接开平方法为铺垫,把解一元二次方程转化为用配方法,也是为后面学习其它一元二次方程的解法作好准备。
四、重点难点重难点:使学生掌握配方法,解一元二次方程.把一元二次方程转化为q p x =+2)(.(q ≥0)五、教学方法引导学习法六、教具准备多媒体课件七、教学过程【引入】1.解下列方程,并说明解法的依据:(1)2321x -= (2) ()2210x --= 通过复习提问,指出这两个方程都可以转化为以下两个类型: ()()()2200x b b x a b b =≥-=≥和根据平方根的意义,均可用“直接开平方法”来解,如果b < 0,方程就没有实数解。
思考:利用直接开平方法解一元二次方程的特征是什么?形如(1)x 2=b(b 0≥),(2)(x+a )2=b (b 0≥)就可利用直接开平方法。
它的特征是:左边是一个关于未知数的完全平方式;右边是一个非负数。
且不含一次项。
符合这个特征的方程,就可利用直接开平方法。
2.复习完全平方公式:(a ±b )2=a 2±2ab+b 2(1)x 2+6x+_____=(x+3)2 (2)x 2+8x+_____=(x+___)2(3)x 2-16x+_____=( )2(4)x 2-5x+______=_________(5)x 2+px+______=_________3.要使一块矩形场地的长比宽多6m ,并且面积为16m 2,场地的长和宽应各为多少?分 析:设场地宽xm ,长(x+6)m ,根据矩形面积为16m 2,列方程,x (x+6)=16即x 2+6x-16=0.【互动】怎样解方程x 2+6x-16=0?引导考虑用直接开方法解一元二次方程.(小组探索)移项: 1662=+x x配方: 916962+=++x x (方程两边同时加上一次项系数一半的平方) 写成完全平方式: 25)3(2=+x采用直开法降次解题: 53±=+x解一元一次方程: 8,221-==x x像上边那样,通过配成完全平方的形式来解一元二次方程的方法,叫做配方法.强调:无论是直接开平方法还是配方法,其本质都是先降次,化成一元一次方程解决问题.例题1:解下列方程:(1) 0182=+-x x ; (2)x x 3122=+; (3) 04632=+-x x .分 析:能否经过适当变形,将它们转化为(x+a )2=b (b 0≥)的形式,应用直接开方法求解?解(1)原方程化为1422-=⨯-x x (移项) 16116422+-=+⨯-x x (方程两边同时加上16)15)4(2=-x (化为完全平方的形式)由此得: 154±=-x 154;15421-=+=x x(2)原方程化为_____________________ (移项)_____________________ (方程两边同时加上_____)_____________________, (化为完全平方的形式)由此得: _____________________, 21;121==x x (3) 原方程化为_____________________ (移项)_____________________ (方程两边同时加上_____)_____________________, (化为完全平方的形式)由此得: _____________________,无解.【练习】1.P39页:练习题第1题:填空。
21.2解一元二次方程21.2.1配方法(2)教学设计一、整体设计说明1、课题及学情分析《配方法》是人教版九年级数学上册第二十一章《一元二次方程》的内容,“配方法”是学生接触到的的第二种一元二次方程的解法,它是以直接开方法为基础的一次深入探究,是由特殊到一般的一个拓展过程,又对继续学习后面的公式法有着指导和铺垫,具有承上启下的作用。
通过这节课的学习,不但可以使学生掌握一种基本的运算方法,还可以培养学生探索与归纳能力,提高小组合作意识。
九年级的学生已经具备了一定的探索能力,也初步养成了合作交流的习惯。
大多数学生的好胜心比较强,性格比较活泼,他们希望有展现自我才华的机会,但是对于九年级的农村中学的学生来说,他们独立分析问题的能力和灵活应用的能力还有待提高,很多时候还需要教师的点拨和引导。
因此,我遵循学生的认识规律,由浅入深,适时引导,调动学生的积极性,并适当地给予表扬和鼓励,借此增强他们的自信心。
2、教学目标及重难点教学目标:知识目标:(1).了解配方法的定义,掌握配方法解一元二次方程的步骤;(2).会用配方法解数字系数的一元二次方程;能力目标:提高自学能力、归纳能力、交流能力,增强思维能力。
情感态度:通过学生间交流、探索,进一步激发学生的学习热情,求知欲望,同时提高小组合作意识和一丝不苟的精神。
重点:会用配方法解数字系数的一元二次方程难点:熟练进行配方.3、适用微课的理由解方程本身对学生来说是一项基本技能,而且在七、八年级已经有了解方程的经验,但对于降次还是第一次接触,需要归纳和总结出具体可行的方法解决这一问题。
利用微课的形式可以明确的体现本课重点内容,使学生清楚解题步骤,大大提高教学效率,是突破教学难点的有效途径。
4、整体设计思路课前学生预习本节课的相关内容,并学习微课视频————配方法解一元二次方程;课上先复习上节课所学知识,接着检测学生自学效果,并提出什么是配方法,类比直接开平方法,归纳配方法解一元二次方程的步骤;再由特殊到一般的思想,更深层次的完善一元二次方程的解法;通过解一元二次方程,归纳一元二次方程根的情况;最后归纳小结,当堂检测,再一次体验配方,加深学生对配方法的理解。
陕西省安康市石泉县池河镇九年级数学上册21.2.1 配方法(2)教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(陕西省安康市石泉县池河镇九年级数学上册21.2.1 配方法(2)教案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为陕西省安康市石泉县池河镇九年级数学上册21.2.1 配方法(2)教案(新版)新人教版的全部内容。
配方法(2)一、教材分析运用配方法解一元二次方程的步骤.用配方法熟练灵活地解二次项系数不是1的一元二次方程二、学情分析根据已学的平方根的意义来解形如x2=p(p≥0)的一元二次方程,然后迁移到解(mx+n)2=p(p≥0)型的一元二次方程.这样容易完成学习内容。
三、教学目标通过对比用配方法解二次项系数是1的一元二次方程,解二次项系数不是1的一元二次方程,经历从简单到复杂的过程,对配方法全面认识。
四、教学重点难点重点用配方法解一元二次方程难点用配方法解二次项系数不是1的一元二次方程,首先方程两边都除以二次项系数,将方程化为二次项系数是1的类型。
五、教学过程设计一、复习引入导语:我们在上节课,已经学习了用直接开平方法解形如x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程,以及用配方法解二次项系数是1,一次项系数是偶数的一元二次方程,这节课继续学习配方法解一元二次方程。
二、探究新知1。
填空:○,1()22________8+=++xxx○,2()22________-=+-xxx○,3()22____4___+=++xx错误!()22____49___-=+-xx2。
人教版九年级数学上册:21.2.1 配方法教学设计2一. 教材分析人教版九年级数学上册第21章是关于圆的方程,而21.2.1节是配方法在圆的方程求解中的应用。
这部分内容是在学生已经掌握了二元一次方程和一元二次方程的基础上进行讲解的,目的是让学生通过配方法这种技巧,更好地理解和解决圆的方程问题。
教材通过具体的例题,让学生掌握配方法的基本步骤和应用,并通过练习题进行巩固。
二. 学情分析九年级的学生在数学上已经有了一定的基础,对于方程的解法和求解过程有一定的了解。
但是,他们在面对复杂方程时,可能会感到困惑和不解。
因此,在教学过程中,需要帮助学生回顾和巩固已学的知识,并通过具体例题,让学生理解和掌握配方法。
三. 教学目标通过本节课的学习,学生能够理解配方法在圆的方程求解中的应用,掌握配方法的基本步骤,并能够运用配方法解决实际问题。
四. 教学重难点教学难点是学生对于配方法的理解和应用。
配方法是一种解决问题的技巧,需要学生通过具体的例题,理解和掌握其基本步骤和应用。
五. 教学方法采用问题驱动的教学方法,通过引导学生回顾已学的知识,引入配方法的概念,并通过具体的例题,让学生理解和掌握配方法。
在教学过程中,注重学生的参与和思考,鼓励学生提出问题和解决问题。
六. 教学准备准备相关的教学材料,包括PPT和练习题,以及相关的辅助教学工具。
七. 教学过程1.导入(5分钟)通过提问,引导学生回顾已学的方程知识,为新知识的学习做好铺垫。
2.呈现(15分钟)通过PPT,呈现配方法的基本步骤和应用。
讲解配方法的基本概念,并通过具体的例题,让学生理解和掌握配方法。
3.操练(10分钟)让学生通过练习题,运用配方法解决问题。
在学生解决问题的过程中,给予适当的引导和帮助。
4.巩固(5分钟)通过PPT,总结配方法的基本步骤和应用。
让学生通过思考和讨论,巩固所学的知识。
5.拓展(5分钟)让学生通过思考和讨论,探索配方法在其他方程求解中的应用。
人教版数学九年级上册教案21.2.1《配方法》一. 教材分析《配方法》是人教版数学九年级上册第21章第2节的内容,本节课主要让学生掌握配方法的原理和步骤,并能够运用配方法解决一些实际问题。
教材通过引入“完全平方公式”的概念,引导学生探索如何将一个二次多项式转化为完全平方形式,从而引出配方法。
学生在学习过程中,需要理解并掌握配方法的基本步骤,以及如何判断一个多项式是否可以配成完全平方形式。
二. 学情分析学生在学习本节课之前,已经学习了二次方程的解法、完全平方公式等知识,对于二次多项式的基本概念和性质有一定的了解。
但学生在运用配方法解决实际问题时,可能会遇到一些困难,如判断多项式是否可以配成完全平方形式,以及如何正确地进行配方操作。
因此,在教学过程中,教师需要关注学生的学习情况,引导学生积极参与课堂活动,提高学生运用配方法解决问题的能力。
三. 教学目标1.知识与技能目标:使学生掌握配方法的原理和步骤,能够运用配方法将一个二次多项式转化为完全平方形式。
2.过程与方法目标:通过小组合作、讨论交流等学习活动,培养学生探索问题、解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和自信心。
四. 教学重难点1.重点:配方法的原理和步骤。
2.难点:如何判断一个多项式是否可以配成完全平方形式,以及如何正确地进行配方操作。
五. 教学方法1.启发式教学:教师通过提出问题,引导学生思考和探索,激发学生的学习兴趣。
2.小组合作学习:学生分组讨论,共同解决问题,培养学生的团队协作能力。
3.案例教学:教师通过举例子,让学生理解并掌握配方法的运用。
六. 教学准备1.准备相关教案和教学资料。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备一些实际问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)教师通过提出一个实际问题,引导学生思考如何解决。
例如:已知一个二次多项式 f(x) = x^2 - 6x + 9,请问如何将其转化为完全平方形式?2.呈现(10分钟)教师引导学生回顾二次方程的解法和完全平方公式,然后引导学生探索如何将 f(x) = x^2 - 6x + 9 转化为完全平方形式。