环氧胶粘剂增韧改性研究进展
- 格式:pdf
- 大小:243.85 KB
- 文档页数:4
环氧树脂增韧改性技术研究进展和新方法及其机理摘要:本文针对环氧树脂技术进行了简单的分析与研究,对于增韧改性技术进行了分析。
在增韧改性的技术中有很多方法,本文主要介绍了热塑性树脂增韧、热致性液晶增韧、刚性高分子增韧等,对于其中的增韧机理以及相关的体系进行了研究与分析。
关键词:环氧树脂;增韧;改性;技术研究;方法与机理引言环氧树脂(EP)是一种热固性树脂,因其具有优异的粘结性、机械强度、电绝缘性等特性,而广泛应用于电子材料的浇注、封装以及涂料、胶粘剂、复合材料基体等方面。
由于纯环氧树脂具有高的交联结构,因而存在质脆、耐疲劳性、耐热性、抗冲击韧性差等缺点,难以满足工程技术的要求,使其应用受到一定限制。
因此对环氧树脂的共聚共混改性一直是国内外研究的热门课题。
1.环氧树脂简述环氧树脂在使用的过程中通常都是呈现出液态的状态,通过固化剂的运用,经过一定温度环境下进行固化,使其达到最佳的使用状态。
环氧树脂在进行固化的过程中收缩率比较小,并且在固化后有着较强的机械性能,具有加高的粘性,同时还具有抗热、抗化学、抗老化等优势,是在树脂中常用的一种类型。
同时,环氧树脂也存在一定的缺点,那就是其脆性较大,韧性相对较差等,因此,要针对环氧树脂中的化学性质进行改变,并且选用新型的固化剂进行科学的配比设计。
在目前国内外有很多种类的环氧树脂,其中产量最大以及用处最多的就是双酚A型环氧树脂。
2.针对环氧树脂增韧改性现状的研究环氧树脂被广泛的引用于各行各业中,特别是在机械行业、电子行业以及涂料等行业中,环氧树脂都充分的发挥了自身的优势以及优良的性能。
但是环氧树脂的固化物特性是非常脆的,没有经过改性的树脂柔韧性较差,并且质地较脆,很容易发生开裂的现象,能够承受的冲击强度较低等等,这些存在的不足导致这类树脂的运用场合受到了很大的限制,因此,对于环氧树脂的增韧与改性的工作一直是人们重点关注的问题。
2.1橡胶弹性体改性环氧树脂橡胶具有非常好的增韧的效果,其主要原因是因为:第一,橡胶可以溶解在没有发生固化的环氧树脂体系中,并且能够在凝胶的过程中充分的分散在基体树脂中。
关于环氧树脂胶黏剂增韧改性的分析[摘要]环氧树脂胶黏剂,它属于固化剂、基体树脂、溶剂、增韧剂、增塑剂、填料等各种组分经由化学及物理混合多种方法,所形成有着良好功能性、黏结性,在工程领域当中所需用到的黏胶剂。
那么,为更进一步了解此类黏胶剂的增韧改性具体方法及其情况,鉴于此,本文主要探讨环氧树脂胶黏剂自身增韧改性情况,仅供业内相关人士参考。
[关键词]胶黏剂;环氧树脂;增韧改性前言:因环氧树脂胶黏剂,它和其余胶黏剂所具备优势特点较为不同,故其现阶段在众多行业领域当中实现较为广泛的应用。
但因其呈较大脆性及较弱韧性,因而,对环氧树脂胶黏剂自身增韧改性情况开展综合分析较为必要。
1、简述环氧胶内部成分及其增韧改性基本机理情况1.1在主要成分层面针对环氧胶内部成分,通常以基体树脂、固化剂、增塑剂及增韧剂、溶剂为主。
针对基体树脂层面,现阶段以纯环氧树脂及改性之后的环氧树脂为主。
环氧树脂,其自身黏结强度及抗压性、黏结性及力学性能相对较好,但韧性弱;针对固化剂,其属于环氧胶内部重要成分。
生产过程当中,通常需结合生产条件及其性能指标等,合理选定固化剂;针对增塑剂即增韧剂,其主要是因基体树脂与固化剂相互间经化学反应之后所形成一种固化物,呈现出较脆质地、较差韧性及其抗冲强度。
故生产过程当中需要向着固化物内部添加一定量的增塑剂及增韧剂等,确保其韧性及耐冲性能可得到增强;针对溶剂层面,其属于聚合物的反应介质。
实际应用当中,可以与具体需求结合予以合理选用。
1.2在基本机理层面一是,针对分散相撕裂及塑性拉伸基本机理层面。
此项理论观点,即外部力作用至改性树脂之后,使得裂纹形成,且处于环氧树脂内部持续增长情况下,橡胶会以颗粒形式渗入裂纹内部,连接好裂纹两端位置。
外力持续增强情况下,橡胶颗粒将部分能量吸收,其自身会被逐渐拉长或撕裂,对环氧树脂后期被撕裂整个进度可起到减缓作用,环氧树脂则更具韧性[1];二是,针对微裂纹的钝化增韧基本机理层面。
【专论综述】环氧树脂增韧的研究进展张胜佳1,刘松杭1,王二国2(1.上海大学环境与化学工程学院,上海 200444;2.上海康铭化工有限公司,上海 200072)摘要:环氧树脂作为一种胶粘剂基体,应用非常广泛。
但由于环氧树脂固化后具有较高的交联密度,固化产物脆性大、耐冲击强度低、耐热性能差等缺点,极大地限制了环氧树脂在诸多领域的应用。
文章介绍了近年来国内外环氧树脂增韧改性研究进展,涉及热塑性树脂、无机刚性粒子、弹性橡胶体、互穿聚合物等增韧方法。
关键词:环氧树脂;无机刚性粒子;橡胶弹性体;热致液晶聚合物;互穿聚合物网络中图分类号:TQ323.5 文献标识码:A1引言环氧树脂是聚合物基复合材料应用最广泛的基体树脂[1],它作为一种重要的通用型热固性树脂,具有贮存稳定性高,加工工艺性能好,配方设计灵活多样等优点,已经成为目前广泛应用于机械、电子电器、航空航天、交通运输及建筑等各领域的热固性树脂之一[2-5]。
但环氧树脂固化后可能存在内应力大,质脆,耐疲劳性、耐湿热性、抗冲击韧性差等缺陷,在很大程度上限制了它在高新技术领域的应用[6]。
因而,对环氧树脂的增韧改性研究,就显得非常必要了。
2增韧改性环氧树脂2.1热塑性树脂采用热塑性树脂改性环氧树脂,使用较多的有聚砜醚(PES)、聚砜(PSF)、聚酰亚胺醚(PEI)、聚酮醚(PEK)、聚苯醚(PPO)等热塑性工程塑料,它们对环氧树脂的改性效果显著。
这些热塑性树脂不仅具有较好的韧性,而且模量和耐热性较高,作为增韧剂加入到环氧树脂中同样能形成颗粒分散相,它们的加入能使环氧树脂的韧性得到提高,而且不影响环氧固化物的模量和耐热性[7]。
刘立朋[8]以热塑性改性聚芳醚酮(PEAK)为增韧剂对环氧树脂进行改性。
通过扫描电镜分析和冲击强度测试研究了PEAK用量对PEAK/EPOXY浇注体冲击性能的影响。
结果表明,纯环氧和质量分数分别为5%,15%,25%,35%和50%质量分数的6种共混浇铸体随着PEAK含量增加而提高,各体系裂纹扩展断面主体呈现为海岸线状-锯齿型海岸线状-韧窝状-镂空状微结构转化,决定了冲击强度性能稳步升高。
改性环氧树脂胶粘剂的研究进展阐述了近年来改性环氧树脂胶粘剂的研究进展,重点介绍环氧树脂的固化方式、阻燃特性,以及增韧改性等方面的研究工作,同时对改性环氧树脂胶粘剂的发展前景和存在问题做了分析和讨论。
标签:环氧树脂胶粘剂;固化;阻燃;增韧环氧树脂胶粘剂主要由环氧树脂、固化剂、促进剂和改性剂等组成,与金属、玻璃、水泥、木材和极性塑料等具有良好的相容性。
因具有优异的综合性能,环氧树脂在工业和生活领域得到了广泛的应用。
其中,作为建筑结构胶,环氧树脂更是被广泛应用于建筑加固装饰,机场的维修等领域[1~6]。
然而,针对不同的应用场合,环氧树脂胶粘剂尚存在许多问题:1)固化工艺方面,如需降低固化温度、提高固化速度和改进流动性等;2)使用性能方面,如需提高力学性能(增强、增硬和增韧等)、改善耐温性(如耐热性、耐低温性)、提高在潮湿面、油面、水下(水中)等特殊部位的粘接性、具有特殊性能(如导电性、导热性、阻尼性、阻燃性、耐水性、耐腐蚀性等),以及拥有多功能性;3)其他特性,如需降低毒性、具有环保性和降低成本等。
显然,环氧树脂胶粘剂若用于具体的应用场合,需满足不同领域提出的应用需求,如兼顾力、热、粘接与无卤阻燃等性能。
只有这样环氧树脂胶粘剂才能够满足飞速发展的工业领域应用需求,向高性能化、多功能化和绿色化方向发展。
1 环氧树脂胶粘剂的研究进展从应用角度,环氧树脂胶粘剂的分类以及相应的改性目标为:1)环氧树脂结构胶粘剂。
首先是提高力学性能,尤其是增韧;其次是提高耐热性和降低固化温度等;2)环氧树脂非结构胶粘剂。
对力学性能要求不高,所以又可分为:①通用型环氧树脂胶粘剂。
重点是提高室温固化速度;②耐低温型环氧树脂胶粘剂。
主要是提高低温力学性能,增柔即可;③潮湿面、油面及水下(水中)特殊部位用环氧树脂胶粘剂。
主要是提高粘接性能,关键是解决界面上的物理化学问题,使胶液与被粘物的亲和力大于水(或油)与被粘物的亲和力,从而使被粘物表面的水(或油)膜易于被胶液膜取代。
环氧树脂胶粘剂增韧改性的研究一、本文概述Overview of this article环氧树脂胶粘剂是一种广泛应用于工业生产和日常生活中的重要材料,因其优异的机械性能、良好的化学稳定性和较强的粘附力而备受关注。
然而,随着科技的发展和应用领域的不断拓展,传统的环氧树脂胶粘剂在某些特定场合下已无法满足使用需求,尤其是在需要更高柔韧性和抗冲击性的场合。
因此,对环氧树脂胶粘剂进行增韧改性研究具有重要的现实意义和应用价值。
Epoxy resin adhesive is an important material widely used in industrial production and daily life, which has attracted attention due to its excellent mechanical properties, good chemical stability, and strong adhesion. However, with the development of technology and the continuous expansion of application fields, traditional epoxy resin adhesives can no longer meet the usage needs in certain specific situations, especially in situations where higher flexibility and impact resistance are required. Therefore, studying the tougheningmodification of epoxy resin adhesives has important practical significance and application value.本文旨在探讨环氧树脂胶粘剂的增韧改性方法,以提高其柔韧性和抗冲击性。
环氧树脂改性方法的研究现状及进展
一种常见的环氧树脂改性方法是添加纳米填料。
纳米填料具有高比表面积和优异的力
学性能,能够显著改善环氧树脂的力学性能。
研究表明,添加纳米填料可以提高环氧树脂
的强度、硬度和耐磨性等性能。
常用的纳米填料包括纳米氧化物、纳米碳材料和纳米陶瓷等,它们可以通过增加界面作用、限制聚合物链的运动以及增加嵌段间的交联来改善环氧
树脂的性能。
另一种常见的环氧树脂改性方法是添加增韧剂。
环氧树脂通常呈现脆性断裂模式,而
添加增韧剂可以显著提高其的韧性和韧度。
常用的增韧剂包括弹性体微粒、聚合物改性剂、共聚物改性剂等,它们通过在环氧树脂中形成可拉伸的弹性体相,改变了断裂机制,从而
提高了环氧树脂的韧性。
还有其他一些环氧树脂改性方法,如添加助剂、交联剂和引入共聚物等。
助剂可以通
过改变环氧树脂的物理性质来改善其综合性能。
交联剂可以提高环氧树脂的热稳定性和抗
溶剂性能。
共聚物的引入可以改变环氧树脂的分子结构,进而影响其性能。
环氧树脂改性方法的研究现状较为丰富,已经取得了一定的进展。
目前仍存在一些问题,例如改性方法复杂、成本高昂以及加工难度大等。
未来的研究方向应该是探索更简单、经济、高效的改性方法,以进一步提高环氧树脂的性能,并推动其在各个领域的应用。
环氧树脂的改性与增韧研究引言环氧树脂是一种重要的聚合物材料,具有优异的力学性能和化学稳定性,在工业领域中广泛应用。
然而,传统的环氧树脂存在一些固有的缺点,如脆性、易开裂和低冲击韧性等。
为了提高环氧树脂的性能,研究人员不断努力开展改性与增韧研究,以满足不同领域对材料性能的需求。
一、环氧树脂的改性方法1. 添加剂改性添加剂是改善环氧树脂性能的常见方法之一。
通过添加不同类型的添加剂,如填料、增塑剂和稀释剂等,可以调整环氧树脂的硬度、抗冲击性和粘附性等性能。
填料的加入可以增加环氧树脂的强度和硬度,同时降低成本。
增塑剂的加入可以提高环氧树脂的柔韧性和延展性,改善其加工性能。
稀释剂的加入可以调节环氧树脂的粘度,降低粘度有利于涂层的施工。
2. 聚合物改性聚合物改性是另一种常见的环氧树脂改性方法。
将其他聚合物与环氧树脂共混,可以改变其力学性能和热性能。
常用的聚合物改性剂包括丙烯酸酯、苯乙烯和聚酰胺等。
通过共混聚合,可以在环氧树脂中引入新的相,从而改善其力学性能和耐热性。
此外,聚氨酯改性剂也常用于环氧树脂的改性,可以提高其抗冲击性和抗裂性。
二、环氧树脂的增韧方法1. 纤维增韧纤维增韧是一种常用的增韧方法,主要通过引入纤维增强相来增加环氧树脂的韧性。
常用的纤维增韧剂包括玻璃纤维、碳纤维和芳纶纤维等。
这些纤维增韧剂具有高强度和高模量的特点,可以增加环氧树脂的拉伸强度和韧性。
此外,纤维增韧还能提高环氧树脂的热稳定性和抗老化性能。
2. 橡胶增韧橡胶增韧是另一种常见的增韧方法,通过在环氧树脂中引入橡胶颗粒,可以提高其冲击韧性和拉伸韧性。
常用的橡胶增韧剂包括丁苯橡胶、丙烯酸酯橡胶和乙烯-丙烯橡胶等。
橡胶颗粒能吸收冲击能量,从而有效阻止环氧树脂的开裂和断裂。
此外,橡胶增韧还能提高环氧树脂的耐热性和耐溶剂性。
三、环氧树脂的改性与增韧研究进展随着科学技术的不断发展,环氧树脂的改性与增韧研究取得了显著的进展。
一方面,研究人员通过改变添加剂的类型和含量,实现了对环氧树脂性能的精确调控。
环氧树脂改性方法的研究现状及进展环氧树脂是一种具有广泛应用前景的高分子材料,具有优异的机械性能、化学稳定性、耐热性和电绝缘性能。
然而,传统环氧树脂的应用范围受到其固有缺陷的限制,如脆性、耐冲击性能差、拉伸强度低、抗剪强度差等。
因此对环氧树脂进行改性是提高其应用性能的有效途径之一。
目前,常见的环氧树脂改性方法主要包括增韧改性、增强改性、生物基改性和功能性改性等。
其中增韧改性是最为常见的改性方法,其主要目的是提高环氧树脂的韧性和耐冲击性能。
增韧剂的种类繁多,如以丁腈橡胶、聚酰亚胺、聚醚酰胺等为代表的弹性体增韧剂,以及纳米填料增韧剂等。
通过添加适量的增韧剂,可以显著提高环氧树脂的韧性、拉伸强度、抗剪强度和耐冲击性能,使其能在更加苛刻的应用环境下工作。
增强改性是对环氧树脂强度方面的改性,主要是通过添加增强剂提高环氧树脂的强度和刚度,使其具备更高的承载能力。
常见的增强剂有碳纤维、玻璃纤维、碳纳米管等。
添加适量的增强剂可以显著提高环氧树脂的拉伸强度、弯曲强度和耐疲劳性能等。
生物基改性是利用来源于生物质的化合物,如淀粉、脂肪酸、生物树脂等,对环氧树脂进行改性。
生物基改性环氧树脂与传统环氧树脂相比,具有可再生性高、合成成本低、生产过程环保等优势。
此外,生物基改性环氧树脂还可应用于医学、食品包装等领域。
功能性改性是利用其它功能材料对环氧树脂进行改性,如导电剂、吸声剂、阻燃剂、Uv稳定剂等。
功能性改性环氧树脂的添加剂种类繁多,不仅可以为其赋予新的功能性质,也能提高其在特定应用领域的适用性能。
总体来看,环氧树脂改性方法在不同的应用领域都有广泛的应用前景,特别是近年来随着材料科学的发展,各类新型改性剂的研究不断推进,将为环氧树脂的应用开辟新的领域。