六年级数学下册6.3一元一次方程及解法(3)一元一次方程及解法教案沪教版五四制
- 格式:doc
- 大小:2.97 MB
- 文档页数:4
一元一次方程及解法
课题引入:课题引入: 课前练习一
1。
解下列方程:(口答)
课前练习二
需要注意什么
巩固化系数为1和移
项的方法。
回顾
解去括号的一元一次方程的步骤。
强调去括号和
移项
知识呈现:课题引入: 新课探索一(1)
英国伦敦博物馆保存着一部极其珍贵的文物-—纸莎草文书(在埃及古都的废墟中发现的)。
这是古埃及人用象形文字写在一种特殊的草上的著作,它于公元前1700年左右写成,至今已有三千七百多年.
这部书中记载了许多有关数学的问题,其中有如下一道著名的求未知数的问题.
问题 一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33。
新课探索一(2)
问题 一个数,它的三分之二,它的一半,
它的七分之一,它的全部,加起来总共是33.
用现在的数学符号表示,设这个数为,那么可得方程:
请解这个方程
新课探索二
新课探索三
解方程的具体过程:
新课探索四
练习:化简下列各式:事项通过练习巩固去分母的方法。
课件步骤中对于分子是式子的去分母后要加括号的提示
新课探索五新课探索六很明显.让学生讲解这个方程的注意点,加深印象.最后让学生自己概括解这个方程的一般步骤,让知识更系统化.通过具体的解方程的步骤得到
课内练习书P47 1、2
攀上山峰,见识险峰,你的人生中,也许你就会有苍松不惧风吹和不惧雨打的大无畏精神,也许就会有腊梅的凌寒独自开的气魄,也许就会有春天的百花争艳的画卷,也许就会有钢铁般的意志.。
一元一次方程课题设计依照(注:只在开始新章节教课课必填)课型(1)一元一次方程教材章节剖析:学生学情剖析:新讲课教1.理解一元一次方程的看法;能判断一元一次方程;回想等式的两条性质,知学道它是解一元一次方程依照;掌握简单的一元一次方程的解法。
目2.经历由等式的基天性质得出解一元一次方程的方法的过程;体验解一元一次标方程的注意点;感悟解方程要查验的重要性。
利用查验培育学生做事仔细,战胜马虎的能力。
要点一元一次方程的定义和判断;等式的基天性质的内容;简单调元一次方程的解法。
难点移项时要变号的掌握。
教课1、计算2、方程组、分式方程、无理方程、不等式(组)的解法;3、列方程准备解应用题。
学生活动形式教课过程课题引入:课题引入:课前练习一依据以下问题,设出未知数列出方程:(1)一台计算机已经使用了1700小时,估计每个月再使用150小时,经过多少月这台计算机使用时间抵达规定的检修时间2450小时?课前练习二设计企图由于上课时间限制,建议课前练习放在前一天看作业。
那么这节课可以直接重新课探究开始—(2)一个长方形篮球场的周长为86米,长是宽的2倍少2米,这个篮球场的长与宽分别(3)是多少米?课前练习三某校女生占全体学生的52%,比男生多80人,这个学校有多少学生?知识体现:新课探究一(1)由课前练习所列的方程自然的引出一元一次方程的定义。
1等方程,从未知数的个数及未知数的指数上看,我们把它们称为一元一次方程。
只含有一个未知数且未知数的次数是一次的方程叫做一元一次方程。
新课探究一(2)例1.请判断以下方程是否是一元一次方程,假如不是,试简要说明原因.(在学生察看时,提示学生从未知数的个数和指数看。
)新课探究二(1)新课探究二(2)请说一说等式性质.等式性质一等式两边同时加上(或减去)同一个数或同一个含有字母的式子,所得结果还是等式.等式性质二等式两边同时乘以同一个数(或除以同一个不为零的数),所得结果还是等式.运用等式性质和运算性质能够求方程的解.求方程解的过程叫做解方程.新课探究三(1)例2解方程:新课探究三(2)察看上述两式左右的变化,你可获取什么结论?上边方程的变形,相当于把改变符号后从等号的一边移到另一边,这种变形过程叫做移项.移项起什么作用?要注意什么?新课探究四例3解方程:稳固一元一次方程的定义。
6.3一元一次方程及其解法(1)知识点归纳1.只含有—个未知数且未知数的次数是—次的方程叫做一元一次方程.2.等式性质1:等式两边同时加上(或减去)同一个数或同一个含有字母的式子,所得结果仍是等式.等式性质2:等式两边同时乘以同一个数(或除以同一个不为零的数),所得结果仍是等式.3.方程中的某些项改变符号后,从等号的一边移到另一边,这样的变形过程叫做移项.4.求方程的解的过程叫做解方程.夯实基础一、填空题1.已知关于x的方程3x-2m=4的解是x=m,则m的值是.2.若x=2是关于x的方程2x+3m-1=0的解,则m的值为.3.如果关于x的方程(m+2)x=8无解,那么m的取值范围是.4.如果方程mx-5=2x-2的解为x=1,那么m的值是.5.当a≠,n= 时,方程2a(是一元一次方程.--n x-)22=3二、解答题6.判断下列方程是不是一元一次方程,如果不是,请说明理由.(1)2x -1=0; (2)x -y=5; (3)022=--x x7.解方程.(1)3x -1=-x+7; (2)21214--=+y y .8. 一个数的2倍减去9的差正好是它的相反数,求这个数。
9.方程(a -1)x+2=3x -5是一元一次方程,求a 的取值范围。
强化拓展10.解下列方程(1)0.3x -1.5=0.6+x; (2)9+11y=10y -31711.解方程:1-8(254 x )=5x.12.已知方程(3m -4)2x -(5-3m)x -4m=-2m 是关于x 的一元一次方程.(1)求m 和x 的值.(2)若n 满足关系式m n +2=1,求n 的值.13. 已知87231=-++x x n 是关于x 的一元一次方程,求n 的值以及方程的解.答案。
6.1 列方程教学目标1。
知道什么是方程,会区分方程和等式。
2.会寻找未知数和已知数之间的等量关系,列方程。
教学重点与难点:会寻找未知数和已知数之间的等量关系,列方程. 教学用具准备: 投影仪、电脑 教学流程设计教学过程设计一、情景引入问题小丽2月份的零花钱花掉了25。
4元,还剩下60元,那么小丽二月份有多少零花钱?分析一列式可得25.4+60=85。
4.分析二设小丽二月份有x元零花钱.x—25.4=60.二、学习新课1.概念辨析方程:含有未知数的等式叫做方程.在方程中,所含的未知数又称为元.练习1判断:下列各式哪些是方程?哪些不是方程?并说明为什么。
列方程:为了求得未知数,在未知数和已知数之间建立一种等量关系式,就是列方程。
2.例题分析例题 1 根据下列条件列出方程:(1)一个正方形的边长为x厘米,周长为36厘米;(2)25减去数x的一半是56.解(1)方程是436x=(2)方程是256 52x-=例题222(1)2; (2)0; (3)-1+2=1;34(4)32; (5)3507x xx x x x+-=+=--+=一个数与它的一半的和是 34,求这个数。
分析 设这个数为x,那么它的一半是 2x ,两数的和为2xx +,根据题意可以列出等量关系式 324x x +=. 例题3某水果店有苹果与香蕉共152千克,其中苹果的重量是香蕉重量的3倍,求该水果店的苹果与香蕉各有多少千克? 三、巩固练习 练习2 1。
列方程:(1)x 的25与6的和为2; (2)x 的相反数减去5的差为5; (3)y 的3次方与x 的和为0;(4)x 、y 的积减去13所的差的一半为23。
2.在下列问题中引入未知数,列出方程:(1) 某数的两倍与—9的和等于15,求这个数。
(2) 长方形的宽是长的13,长方形的周长是24厘米,求长方形的长。
(3) 小明用10元钱买了15本练习本,找回了1元钱,求每本练习本的价格.四、课堂小结 五、作业布置 练习册6.11、有一所寄宿制学校,开学安排宿舍时,如果每间宿舍安排住4人,将会空出5间宿舍;如果每间宿舍安排住3人,就有100人没床位,那么在学校住宿的学生有多少人?2、请你自编一道应用题,要求语句通顺,所编问题要具有一定的实际意义,且所列的方程应为x+(3x-6)=503、甲仓库存粮200吨,乙仓库存粮70吨。
一元一次方程及解法课前练习二2。
解下列方程:课前练习三3.你会解下列方程吗?课前练习三3。
你会解下列方程吗?括号前面是“+”号,把括号和它前面的“+"号去掉,括号里各项都______ ;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都_______.让学生做在笔记本上,回忆上一节课的知识让学生复习一下去括号法则利用乘法分配律去括号,讲授为主。
老师解(1),规定格式,做示范。
(2)由学生解.提示:注意括号前的符号.明确解此类方程的步骤:①去括号②移项③合并④化系数为1知识呈现:新课探索一(2)2.去括号:新课探索二新课探索三新课探索四思考如何解这个方程新课探索五课内练习书P46 1、2课堂小结:利用“去括号法则”解一元一次方程.注意去“-”号课外作业练习册p25\6,7,8堂堂练p31/6。
3(2)预习要求P46/6。
3(3)尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。
一元一次方程教学目标1、使学生进一步理解一元一次方程的有关概念。
2、掌握一元一次方程的解法步骤,熟练地解一元一次方程。
重点、难点一元一次方程的概念的应用与解法掌握考点及考试要求一元一次方程的概念的应用与解法掌握教学内容一、解一元一次方程的一般步骤:(1)去分母;(方程两边同时)(2)去括号;(括号外面是负号,去括号时要注意括号里面的每一项都要)(3)移项;(移项要注意)(4)合并同类项,(化为最简形式;)(5)系数化1;(方程两边同,得出方程的解.)例题讲解题型一:一元一次方程概念的理解:例1:若是关于x的一元一次方程,则方程的解是。
变式练习1:1.是关于x的一元一次方程,则代数式的值为。
例2、.已知关于的方程与的解互为倒数,则的值是。
变式练习2:关于的方程的解是的解的3倍,则,这两个方程的解分别是。
例3、.若,则= 。
变式练习3:已知方程,则代数式的值是。
题型二:方程的解的讨论:当方程中的系数是用字母表示时,这样的方程叫含字母系数的方程,含字母系数的一元一次方程总可以化为ax=b的形式,继续求解时,一般要对字母系数a、b进行讨论。
(1)当时,方程有唯一解;(2)当时,方程无解;(3)当时,方程有无数个解。
例4:已知关于的方程无解,试求的值。
变式练习 4如果为定值,关于的方程,无论为何值,它的根总是,求的值。
例5、.解方程变式练习5:a为何值时,方程有无数多个解?a为何值时,该方程无解?题型三:绝对值方程:例6、解方程:(1)(2)变式练习6:解方程:(1)(2)三、课堂练习:1. 解方程:若方程和方程的解相同,则的值为多少?3.若关于的一元一次方程的解是,则的值是()A. B.1 C.- D.04.问当满足什么条件时,方程;(1)有唯一解;(2)有无数解;(3)无解。
5.解下列方程签字确认学员教师班主任。
沪教版数学六年级下册6.3《一元一次方程及其解法》教学设计一. 教材分析《一元一次方程及其解法》是沪教版数学六年级下册第六章第三节的内容。
本节课的主要内容是一元一次方程的定义、性质、解法以及应用。
这一部分内容是学生学习数学的重要基础,也是进一步学习代数和数学分析的基础。
教材通过具体的例子引入一元一次方程,使学生了解其意义和应用,然后引导学生通过代数方法解决方程,培养学生解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经学习了代数的基本概念,如代数表达式、运算等,对代数有一定的认识。
但是,对于一元一次方程的定义、性质和解法可能还比较陌生。
因此,在教学过程中,需要通过具体的例子和实际应用,使学生理解和掌握一元一次方程的知识。
三. 教学目标1.知识与技能:使学生理解一元一次方程的定义和性质,学会解一元一次方程的方法,能够应用一元一次方程解决实际问题。
2.过程与方法:通过实际问题和代数方法,培养学生的抽象思维和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:一元一次方程的定义、性质和解法。
2.难点:一元一次方程的解法和应用。
五. 教学方法1.情境教学法:通过实际问题和情境,引导学生理解和掌握一元一次方程的知识。
2.合作学习法:通过小组讨论和合作,培养学生的团队合作意识和自主学习能力。
3.引导发现法:通过教师的问题和引导,激发学生的思考和发现,培养学生的抽象思维能力。
六. 教学准备1.教材和教案:准备沪教版数学六年级下册的教材和教案。
2.课件和教学资源:准备与教学内容相关的课件和教学资源,如图片、视频等。
3.练习题和作业:准备与教学内容相关的练习题和作业,以便巩固和检测学生的学习效果。
七. 教学过程1.导入(5分钟)利用实际问题引入一元一次方程,如“小明买了一本书,原价是20元,他给了店员30元,店员应该找给他多少元?”引导学生思考和解答这个问题,引出一元一次方程的概念。