明渠交汇口三维水力特性试验研究
- 格式:pdf
- 大小:207.44 KB
- 文档页数:8
湿周上不同糙率明渠的水力计算(最新版)目录1.引言2.湿周与糙率的概念3.明渠的水力计算4.不同糙率明渠的水力计算结果分析5.结论正文【引言】明渠是一种广泛应用于水利工程中的输水设施,其水力特性对于工程的设计与运行至关重要。
湿周与糙率是描述明渠水力特性的两个关键参数。
本文旨在探讨不同糙率明渠的水力计算问题,以期为实际工程应用提供参考。
【湿周与糙率的概念】湿周是指明渠内水流与渠壁之间的接触线长度。
糙率是描述明渠内壁粗糙程度的参数,通常用表面粗糙度来衡量。
糙率对明渠的水力特性有很大影响,特别是在水流速度较高时,粗糙的渠壁会引起水流的湍流,从而影响水流的摩擦阻力和压力分布。
【明渠的水力计算】明渠的水力计算主要包括水力半径、摩擦阻力、流速等参数的计算。
其中,水力半径是描述明渠截面形状的重要参数,它直接影响到明渠的流速分布。
摩擦阻力与流速的平方成正比,是明渠中水流能量损失的主要原因。
【不同糙率明渠的水力计算结果分析】通过对不同糙率明渠的水力计算,可以发现以下几个规律:1.随着糙率的增加,明渠的水力半径减小,流速增加。
这是因为糙率增加会导致水流与渠壁之间的摩擦阻力增加,从而使水流速度增加以维持流量不变。
2.糙率对明渠中的压力分布也有显著影响。
糙率越大,渠壁的压力越大,而渠中心的压力减小。
3.在一定范围内,糙率的增加会加大明渠的摩擦阻力,从而增加水流的能量损失。
然而,当糙率达到一定程度后,摩擦阻力的增加趋势将趋于平缓,因为过于粗糙的渠壁会引起水流的湍流,使得摩擦阻力的增长受到限制。
【结论】不同糙率明渠的水力计算研究表明,糙率对明渠的水力特性有很大影响。
在实际工程设计中,应根据明渠的具体应用场景选择合适的糙率,以达到最佳的水力效果。
梯形断面明渠丁坝绕流水力特性三维大涡模拟魏文礼;邵世鹏;刘玉玲【摘要】对梯型断面明渠非淹没式单一丁坝绕流水力特性进行三维数值模拟,为丁坝的设计和施工提供理论基础支持.数值模拟采用两相流混合模型,并分别选取大涡模型(LES)和RNG k-ε湍流模型封闭两相流时均方程.速度与压力的耦合使用半隐式SIMPLE算法,模拟自由水面采用了VOF法.通过不同截面流线图和流速矢量图的比较得出大涡模型能更好地捕获水流瞬时流动特性,动态再现二次流动结构;并将其模拟的丁坝后回流区域边界线与试验值对比,两者吻合良好,表明大涡模型能够很好地模拟明渠丁坝绕流的水力特性分布规律.【期刊名称】《西安理工大学学报》【年(卷),期】2015(031)004【总页数】6页(P385-390)【关键词】丁坝绕流;数值模拟;大涡模型;RNG k-ε模型;水力特性【作者】魏文礼;邵世鹏;刘玉玲【作者单位】西安理工大学水利水电学院,陕西西安710048;西安理工大学水利水电学院,陕西西安710048;西安理工大学水利水电学院,陕西西安710048【正文语种】中文【中图分类】TV131.4丁坝是广泛使用的一种水工建筑物,其主要作用是保护河岸免受水流冲刷、束窄河道提高河道通航能力等。
修建丁坝后水流被导向河流中心,所以河流主流区的流速明显提高[1]。
早期的研究者主要采用实验的方法对丁坝进行研究,但随着计算机技术和计算流体力学的逐渐成熟,采用数值模拟的方法对丁坝进行研究已被越来越多的研究者所接受。
夏云峰等[2]将二维的水流运动方程与SIMPLER方法结合,得到了丁坝水流流态及水面线变化规律,且与实测值的吻合度较高;邓绍云等[3]采用数值模拟的方法对一非淹没丁坝的绕流水力特性进行了研究,并对水流流速场和压力的分布规律进行了分析,其符合实际的丁坝绕流水力特性,说明数值模拟结果达到了捕捉丁坝周围水流流态的目的;周宜林等[4]采用大涡模拟方法研究了不同挑流形式下的丁坝水力特性,从模拟结果可以看出,不同挑流形式对水流影响较小,但是相比较而言,当丁坝采用下挑形式时可以更好地保护坝头;李冰冻等[5]通过研究丁坝试验和数值模拟两方面的成果,分析了丁坝附近区域复杂的水流特征,通过比较得出数值计算能够反映丁坝挡水所引起的水流流态的变化过程;Akahori R 等[6]用大涡模型对丁坝附近二次流进行了数值模拟;Mayerle R[7]和Jia Y等[8]采用数值模拟的方法对丁坝附近水流的流动规律进行了研究;白静等[9]将数值模拟和PIV测量实验结合在一起,对不同丁坝间距下丁坝群附近的水力特性进行了研究,得出丁坝的长度与丁坝之间距离的比值L/D对湍动强度,涡量分布和流场结构等有很大的影响;蒋昌波等[10]采用简化的二维大涡模型,对一非淹没丁坝群的丁坝绕流水力特性进行了研究,并将计算的结果与实验结果相比较,结果吻合良好,说明采用简化的大涡模型可以很好地反映丁坝绕流中的流场、流线及涡的变化等水力特性;辛永政等[11]采用不同的紊流数值模型对明渠丁坝绕流进行了数值模拟并与试验值进行了比较,结果表明标准模型可以比较准确地模拟明渠中丁坝绕流的情况。
火力发电厂循环水排水明渠水流数值模拟研究分析实例摘要:考虑到排水明渠与虹吸井可能受出水口波浪影响,按浪涌对出水口附近水位波动的最不利情况进行排水明渠水流计算,以确定排水明渠与虹吸井高程相关参数及分析排水明渠内水流状态。
关键词:明渠浪涌水流数模分析1. 水文资料电厂海域潮汐特征值如下(基面采用平均海平面MSL):最低潮位:-1.70 m;最高潮位:2.50 m;水尺零点:-2.35 m。
从潮位过程图线看最大潮差小于3m,半日潮显著。
小潮期全日潮成分强,一天只出现一次涨、落。
定点进行了波浪观测。
测量期间最大波高1.08m,对应周期15秒;有效波高0.328m,周期5.06秒;平均波高0.202m,周期3.57秒。
常浪向为E向,占33.72%;SE向浪占25.78%;S向浪12.78%;SW向浪点8.59%;EN向浪8.07%;少量波浪来自西北和西向。
2. 工程概况本工程规模为2×110MW燃煤发电机组,采用海水冷却直流循环水系统,正常设计工况为一机两泵,单台循环水泵流量为 3.2m3/s。
凝汽器冷却水进入虹吸井后,先经过一段暗沟,再汇入排水明渠,最终由排出口排入大海。
暗沟断面为边长2m正方形,每台机组对应一座虹吸井,虹吸井堰顶标高2.95m,堰上水头3.95m,共有两条暗沟接入明渠,两台机组共用1座排水明渠。
本工程设计总排水流量为12.8 m3/s (46080m3/h)。
设计高水位1.7m (MSL,下同),常水位±0.0m,设计低水位-1.7m,洪水位2.50m。
根据排水流量和暗沟截面积计算知,暗沟内平均流速可达1.6m/s。
明渠长约500m,其中有一拐弯。
拐角往入海口段长约423m。
除了明渠首、尾端有局部放宽段外,沿程基本为矩形断面,底宽4m,底坡1.6‰,明渠内平均流速可达1.43m/s。
考虑到排水明渠与虹吸井可能受出水口波浪影响,按浪涌对出水口附近水位波动的最不利情况进行排水明渠水流计算,以确定排水明渠与虹吸井高程相关参数及分析排水明渠内水流状态。
2005年4月SHUILI XUEBAO第36卷第4期《水利学报》2004年被EI收录论文目录《水利学报》是美国工程信息公司Ei数据库收录的期刊之一(非核心)。
经检索,2004年《水利学报》共有185篇论文被收录,约占全部论文数的73%。
为便于作者和读者查找,现将被收录的论文名称及收录编号(Accession Number)列于后,供参考。
详细信息请通过有关网站或向该公司了解。
美国工程信息公司的网址:第1期泥沙静水沉降阻力系数…………………………………………………李大鸣吕小海焦润红(***********)考虑权重折衷系数的模糊识别方法及在水资源评价中的应用……………………………………………………………………………………………………………………王本德于义彬王旭华刘金禄(***********)入汇主河的泥石流龙头运动机理研究………………………………陈春光姚令侃杨庆华(***********)节水灌溉条件下作物系数和土壤水分修正系数试验研究……………………彭世彰索丽生(***********)一、二维嵌套模型在河口工程中的应用…………………………郑国栋黄东赵明登荣小红(***********)泥沙起动条件的非线性理论………………………………何文社曹叔尤雷孝章刘兴年(***********)泥石流入汇主河情况下交汇口附近变化规律的试验研究………郭志学余斌曹叔尤方铎(***********)水资源承载力内涵的新认识…………………………………………龙腾锐姜文超何强(***********)海绵吸收层法在坝-库水瞬态动力相互作用分析中的应用……………邱流潮金峰王世廷(***********)堤防非稳定渗流几个关键值的经验公式……………………毛昶熙段祥宝蔡金榜户朝望(***********)施加聚丙烯酰胺后坡长对侵蚀产沙过程的影响……………………刘纪根雷廷武蔡强国(***********)软岩筑面板堆石坝的坝体断面分区研究………………………………徐泽平邵宇梁建辉(***********)饱和尾矿料静、动强度特性的试验研究…………………………………………阮元成郭新(***********)U形渡槽结构静动力分析…………………………………………张伯艳刘云贺陈厚群(***********)安置区移民安置适宜性评价——以雅安市雨城区为例……倪九派张江平魏朝富谢德体(***********)第2期明渠交汇口三维水力特性试验研究……………………………茅泽育赵升伟张磊黄继汤(***********)2005年4月SHUILI XUEBAO第36卷第4期人类活动影响下的黄河下游河道泥沙淤积宏观趋势研究……………………………许炯心(***********)输水管线中弯管局部阻力的相邻影响……………………贺益英赵懿珺孙淑卿毛世民(***********)强潮河口上游建库引水后的再造床过程……………………………………陆永军李浩麟(***********)积雪最低含水饱和度的野外测定……………………周石硚中尾正义桥本重将成田英器(***********)水面散热的焓差公式及其应用……………………………………………………………赵振国(***********)室内动力模型试验中辐射阻尼效应的模拟……………………………王海波涂劲李德玉(***********)基于特征的轴流泵叶轮自动建模…………………………王海松王福军张志民刘自贵(***********)水文模型参数优选遗传算法的应用………………………………陆桂华郦建强杨晓华(***********)输水系统非正常调节时的动态仿真研究……………………钟登华熊开智崔广涛成立芹(***********)重力坝设计新思路………………………………………………………………孙君森林鸿镁(***********)估计土壤水分特征曲线的间接方法研究进展………………………刘建立徐绍辉刘慧(***********)气候变化对华北地区主要作物需水量的影响………………………………刘晓英林而达(***********)防洪体系超标洪水综合风险分析…………………………………………汪新宇张翔赖国伟(***********)地下水文预测中BP网络的模型结构及算法探讨……………屈忠义陈亚新史海滨魏占民(***********)第3期抗震钢筋对高拱坝抗震性能的影响……………………………………郭永刚涂劲陈厚群(***********)三峡水库水环境容量计算……………………………………黄真理李玉梁李锦秀陈永灿(***********)面板堆石坝动力分析方法比较研究……………………………………吴兴征栾茂田周晓光(***********)用格子Boltzmann方法模拟涌波的反射和绕射……………………………………刘峰胡非(***********)基于能量指标的结构形式最优控制设计……………………谢能刚孙林松郭兴文王德信(***********)调水渠网非恒定流的线性变换求解方法………………………………………杨开林白正裕(***********)内加强月牙肋三岔管水力特性数值模拟……………………刘沛清屈秋林王志国张红梅(***********)隔河岩和高坝洲梯级电站水库联合调度方案研究……………………………陈洋波胡嘉琪(***********)水轮发电机组最佳开机规律研究与实践……………………………张江滨解建仓焦尚彬(***********)论雨水集蓄利用的理论和实用意义………………………………………………朱强李元红(***********)基于改进层次分析法的模糊综合评价模型……………………………金菊良魏一鸣丁晶(***********)2005年4月SHUILI XUEBAO第36卷第4期非饱和土的渗透系数…………………………………………孙大松刘鹏夏小和王建华(***********)第4期水库水沙联合调度多目标决策模型………………………………………彭杨李义天张红武(***********)双层地基一维非线性固结的DQM解…………………………王宏志陈仁朋周万欢陈云敏(***********)GIS在三峡流域水文模拟中的应用………………………………井立阳张行南王俊程海云(***********)混凝土受压疲劳特性及损伤本构模型………………………………李庆斌吕培印张立翔(***********)多指标半结构性模糊评价法在水利工程后评价中的应用……………………陈守煜李庆国(***********)基于Hessian矩阵的模糊优选BP算法及其应用………………………………刘金禄陈守煜(***********)水工模型试验关于表面张力影响的波速论证……………………………………赵德志李焱(***********)秦淮河流域数字水文模型及其应用……………………………………王建群张显扬卢志华(***********)降雨条件下坡地水分转化特征实验研究………………………………………李裕元邵明安(***********)地下水允许开采量的未确定风险分析…………………………………李如忠汪家权钱家忠(***********)新疆阿图什哈拉峻地区地下水系统模型研究…………………………高佩玲雷廷武张石峰(***********)用粒径的数量分布表征的土壤分形特征………………………………张季如朱瑞赓祝文化(***********)污水灌溉系统中氮磷转化运移的试验研究………杨金忠 N.Jayawardane J.Blackwell陆垂裕(***********)单桩性状的可视化仿真…………………………………………黄雨叶勇庚叶为民唐益群(***********)第5期基于不完全分形理论的土壤水分特征曲线模型………………………王康张仁铎王富庆(***********)黄河中游地区淤地坝减洪减沙及减蚀作用研究…………………冉大川罗金华刘斌王宏(***********)区域产业用水系统的协调度分析……………………………雷社平解建仓黄明聪陈鸿起(***********)围岩稳定性的模糊物元评价方法…………………………………………………王广月刘健(***********)黄土区坡面侵蚀时空分布与上坡来水作用的实验研究……王文龙雷阿林李占斌唐克丽(***********)多股多层水平淹没射流数值模拟研究…………………………杨忠超邓军杨永全张建民(***********)小波分解与变换法预测地下水位动态…………………………………吴东杰王金生滕彦国(***********)2005年4月SHUILI XUEBAO第36卷第4期黄土区陡坡径流水动力学特性试验研究………………………………郑良勇李占斌李鹏(***********)横流中有限宽窄缝射流的旋涡结构………………………………………………姜国强李炜(***********)基于粗糙集的杭州湾含沙量遥感模型…………………………宋立松陈武向卫华陈彩妮(***********)采砂对河床变形影响的试验研究…………………………………………………毛野黄才安(***********)基于GIS的分布式托普卡匹水文模型在洪水预报中的应用…………………………刘志雨(***********)第6期黄河河口水沙运动的二维数学模型…………………………李东风张红武钟德钰吕志咏(***********)大区域地下水模拟的理论和方法……………………………………………张祥伟竹内邦良(***********)基于应力空间变换的原状软土本构模型………………………刘元雪施建勇尹光志陆新(***********)碾压混凝土坝诱导缝的断裂分析……………………………………宋玉普张林俊殷福新(***********)干旱与半干旱地区湿地水文及临界条件的模拟研究…………贾忠华罗纨周晓夏刘晓宁(***********)拱坝有缝坝体-坝基系统的非线性抗震分析……………………宋战平李宁陈飞熊陈厚群(***********)水泥含量和养生时间对合成模型冰物理力学性质的影响…………………………………………………………………………………………………………………………李志军王永学王喜文李广伟(***********)基于作物水盐生产函数的咸水灌溉制度确定方法……………………………王仰仁康绍忠(***********)不流动水对黄土包气带溶质运移影响的实验研究……………王金生王国华李书坤王丽(***********)基于GIS格网模型的洪水淹没分析方法………………………………丁志雄李纪人李琳(***********)用模拟退火算法估计水质模型参数…………………………………………王薇曾光明何理(***********)区域水资源可持续利用的Bossel指标体系及评价方法………………………宋松柏蔡焕杰(***********)宾汉体浆液扩散半径的研究及应用……………………………………杨秀竹王星华雷金山(***********)第7期黄河三角洲海岸强侵蚀机理及治理对策……………………………陈沈良张国安谷国传(***********)多尺度有限元法在地下水模拟中的应用………………………薛禹群叶淑君谢春红张云(***********)考虑环流横向输沙及海岸变形的平面二维扩展数学模型……………………钟德钰张红武(***********)2005年4月SHUILI XUEBAO第36卷第4期非线性布西尼斯克方程的直线解法及渗透系数反演计算……………闵涛周孝德冯民权(***********)考虑物理状态变化的砂土本构模型………………………………………………罗刚张建民(***********)水泥搅拌土防渗墙无损检测标准的试验研究…………………王建华蔡靖张献民闫海新(***********)改进的输出系数法在流域非点源污染负荷估算中的应用……蔡明李怀恩庄咏涛王清华(***********)裂隙化硬岩洞室围岩稳定概率分析方法……………………………苏永华何满潮刘晓明(***********)基于物理成因概念的水文系统模型及其应用……………………秦毅沈冰李怀恩曹光明(***********)山东淄博裂隙岩溶水中污染物运移的数值模拟及治污措施…………………………………………………………………………………………………………………………郭飞朱学愚刘建立朱俊杰(***********)改变土壤含水量影响的冬小麦根和冠生长动态模型………杨贵羽罗远培李保国陈晓远(***********)湿地保护范围的量化确定方法…………………………………………………苏玉明赵勇胜(***********)堤防盖重压渗可视化设计系统…………………………………………………刘川顺黄站峰(***********)堵港蓄淡水库水体淡化预测研究……………………………毛献忠陈甫源余祈文朱小敖(***********)三峡水库动态汛限水位与蓄水时机选定的优化设计……………刘攀郭生练王才君周芬(***********)第8期黄河中下游水沙的时空调度理论与实践…………………………………………………李国英(***********)西北内陆干旱地区生态环境及其演变趋势…………………………王浩秦大庸王岩王芳(***********)X型宽尾墩与阶梯溢流坝联合消能的三维流场数值模拟……………张挺伍超卢红郑治(***********)灌溉明渠自动控制设计方法研究……………………………………阮新建袁宏源王长德(***********)等宽明渠交汇口水流一维数学模型………………………………茅泽育罗昇赵升伟张磊(***********)城陵矶洪水抬高原因分析………………………………………徐贵黄云仙黎昔春方春明(***********)基于最小可用能耗率原理的河流水沙数学模型………………………………陈绪坚胡春红(***********)非淹没丁坝附近三维水流运动特性的研究………………………周宜林道上正规桧谷治(***********)渭河下游河流离子含量与水沙变化间的关系分析…………程东升许炯心王兆印王随继(***********)橡胶坝蓄水工程对城市浅层地下水环境影响的评价…………罗长军韩建秀卢冰李志勇(***********)潮汐水域电厂温排水的水流和热传输准三维数值模拟………………………郝瑞霞韩新生(***********)防洪模拟中的地形自适应网格生成技术………………………………………马建明陆吉康(***********)2005年4月SHUILI XUEBAO第36卷第4期波浪作用下污染物的混合与离散……………………………………袁德奎林斌良陶建华(***********)重力坝的塑性极限分析法………………………………………………王均星李永明李泽(***********)γ透射法测量土壤含水量的层间分辨率实验研究……………………王文焰张建丰汪志荣(***********)第9期潼关高程对渭河河床演变的影响………………………………………王兆印李昌志王费新(***********)三门峡水库运行模式对黄河下游水环境的影响………………………韦洪莲倪晋仁王裕东(***********)基于统计损伤理论的德鲁克-普拉格岩石强度准则的修正……………曹文贵赵明华刘成学(***********)冲积河流混合活动层内床沙级配变化的动力学基本方程……………钟德钰张红武王光谦(***********)滴灌系统运行方式对砂壤土水氮分布影响的试验研究………………李久生张建君饶敏杰(***********)大型压缩试验在堆石坝应力变形分析中的应用………………………………张丙印李全明(***********)基于稳健统计学的水盐空间变差函数逼近方法………………陈亚新徐英魏占民史海滨(***********)模拟水质突跃问题的三种二阶高性能格式………………………丁玲逄勇吴建强李一平(***********)静止环境中垂直平面浮力射流稳定性与混合特性数值模拟…………………曾玉红槐文信(***********)地下水资源可持续利用管理模型研究…………………………………马振民武强付守会(***********)基于偏最小二乘回归与神经网络耦合的岩溶泉预报模型……………陈南祥黄强曹连海(***********)饱和地基在轴对称动力荷载下的振动分析………………………………蔡袁强孟楷徐长节(***********)考虑土应变软化及剪胀特性的大应变球孔扩张的问题……………汪鹏程朱向荣方鹏飞(***********)网格尺寸对拱坝等效应力分析的影响………………………李同春陈会芳章杭惠王仁坤(***********)水电站过渡过程计算中的反击式水轮机边界条件及迭代收敛条件…………………………………………………………………………………………………………………………阮文山杨建东李进平(***********)高浓度泥浆输送管道阻力及输送能力研究……………………孙东坡王二平严军许继钢(***********)煤层开采对岳城水库安全运行的影响……………………………武雄杨健段庆伟王俊杰(***********)多沙河流中石油类污染物迁移的一维数学模型Ⅰ.吸附模型……………………黄廷林任磊(***********)第10期2005年4月SHUILI XUEBAO第36卷第4期试论生态水利工程的基本设计原则……………………………………………………董哲仁(***********)基于动接触力法的拱坝坝肩抗震稳定有限元分析……………………张伯艳陈厚群涂劲(***********)地下水非平稳随机模型及空间变异性与非均匀性相互关系研究的展望……………………………………………………………………………………………………………廖华胜李连侠 LI Shu-guang(***********)含水层抽水试验水位恢复过程数据的直线图解分析法…………郭建青李彦王洪胜马健(***********)混凝土试件细观结构的数值模拟………………………………………马怀发陈厚群黎保琨(***********)珠江三角洲河网区水位特征空间变异性研究……………………………陈晓宏张蕾时钟(***********)城市产业结构偏水度评价方法研究………………………………袁少军王如松胡聃孙江(***********)阶梯-深潭的形成及作用机理………………………………………………………徐江王兆印(***********)地下水库调蓄能力综合评价方法探讨…………………………………………郑德风王本德(***********)局部开孔防浪堤对斜向波反射的理论分析和试验研究……………李玉成刘洪杰董国海(***********)非均质材料温度场的有限元算法…………………………………………………………张国新(***********)声学多普勒流速仪盲区数据处理及其在长江河口区的应用……………王爱军汪亚平高抒(***********)新型高阶Boussinesq水波方程………………………………………刘忠波孙昭晨张日向(***********)排水条件下饱和土壤中镉运移实验及数值模拟………………………冯绍元齐志明王亚平(***********)土壤水分植被承载力数学模型的初步研究……………………………………郭忠升邵明安(***********)博斯腾湖湖流及矿化度分布研究………………………………韩龙喜张防修张芃刘协亭(***********)灌区节水改造技术经济指标的综合主成分分析…………………………姚杰郭宗楼陆琦(***********)第11期黄河下游水沙复杂变化与河床的调整……………………………………………………曹文洪(***********)基于需水和输配水模拟与节水多准则分析的DSS模型应用研究………………………………………………………………………………………………………………许迪李益农刘钰 J.M.Goncalves(***********)利用DEM作为辅助信息推定大区域地下水初始流…………场朱奎张祥伟夏军牛存稳(***********)面板堆石坝应力变形计算中考虑土的各向异性……………………殷宗泽张坤勇朱俊高(***********)基于性能曲面拟合的泵站优化调度分析……………………龙新平朱劲木刘梅清周龙才(***********)协方差矩阵上-下三角分解法在区域土壤水盐条件模拟的应用………………………………………………2005年4月SHUILI XUEBAO第36卷第4期……………………………………………………………………徐英陈亚新史海滨魏占民(***********)泥石流堵江影响因素试验研究…………………………………郭志学曹书尤刘兴年方铎(***********)堤基渗流无害管涌试验研究…………………………………毛昶熙段祥宝蔡金傍茹建辉(***********)膨胀土的承载强度特征与机制………………………………孔令伟郭爱国陈善雄刘观仕(***********)随机地震荷载下黏性土残余应变的半经验计算公式……………………袁晓铭孟上九孙锐(***********)考虑中间主应力影响的土中孔扩张问题精确相似解…………………………汪鹏程朱向荣(***********)黄河河口潮流和泥沙淤积过程数值分析研究………………李东风张红武钟德钰吕志咏(***********)饱和土层中瑞利波的传播特性…………………………………………夏唐代颜可珍孙鸣宇(***********)基于并行遗传算法的新安江模型参数优化率定方法………………武新宇程春田赵鸣雁(***********)基于BP神经网络的PID控制器在渠道自动控制中的应用……………………………………………………………………………………………………………………………王涛吴小钰曾红专韩丽屏(***********)混凝土构件锈蚀胀裂时的钢筋锈蚀率…………………………………………赵羽习金伟良(***********)水库防洪预报调度的风险分析…………………………………………………姜树海范子武(***********)夏玉米田蒸发蒸腾量与棵间蒸发的试验研究……………………王健蔡焕杰陈风陈新民(***********)风化花岗岩开挖弃料配制三峡二期围堰防渗墙材料…………………李青云张建红包承纲(***********)降雨条件下坡面薄层水流速度研究……………………………夏卫生雷廷武刘春平赵军(***********)茅坪溪土石坝安全复核…………………………………………朱晟曹广晶张超然周良景(***********)第12期现代农业与生态节水的理论创新及研究重点………………康绍忠胡笑涛蔡焕杰冯绍元(***********)跳回失稳研究……………………………………………………………杜效鹄段云岭王光纶(***********)混沌水文时间序列区间预测研究…………………………………………丁涛周惠成黄健辉(***********)边坡及挡土墙变形局部化分析………………………………冯吉利孙东亚丁留谦隋允康(***********)突扩突缩式内流消能工的数值模拟研究………………………张建民许唯临刘善均王韦(***********)湖底地形对风生流场影响的数值研究…………………………………张发兵胡维平秦伯强(***********)生态用水的基本理论与计算方法………………………………杨爱民唐克旺王浩刘小勇(***********)堤基渗流管涌发展的理论分析………………………………毛昶熙段祥宝蔡金傍茹建辉(***********)2005年4月SHUILI XUEBAO第36卷第4期动水环境中有限宽窄缝湍射流的水力特性研究………………………姜国强李炜陶建华(***********)双局部行进波对流的时空结构…………………………………宁利中原田义文八幡英雄(***********)钢筋混凝土结构锈蚀损伤的解析解……………………………郑建军周欣竹 LI Chun-qing(***********)上拔荷载作用下扩展基础的颗粒流数值模拟……………………………………刘文白周健(***********)黄河干流水资源量可再生能力的评判和调控…………………………………蒋晓辉刘昌明(***********)细沟水蚀动态过程的稳定性稀土元素示踪研究………………………雷廷武张晴雯赵军(***********)GIS支持下的城市暴雨积水计算的可视化……………………张书亮曾巧玲姜永发方立刚(***********)大坝安全监控模型因子相关性及不确定性研究………………………杨杰胡德秀吴中如(***********)水库防洪调度多目标模糊群决策方法…………………………………………侯召成陈守煜(***********)饱和砂土地基中地下管线的振动台试验数值模拟分析………邹德高孔宪京娄树莲张涛(***********)。
第12卷第32期2012年11月1671—1815(2012)32-8579-04科学技术与工程Science Technology and EngineeringVol.12No.32Nov.2012 2012Sci.Tech.Engrg.水利技术基于Fluent 的明渠水流三维数值模型验证鲁婧王向东关见朝王昭艳(中国水利水电科学研究院,北京100048)摘要基于Tominaga 和Nezu 等人的矩形明渠试验模型数据,利用Fluent 软件,分别采用刚盖假定方法和VOF 方法,模拟明渠自由水面,对比研究不同宽深比条件下的明渠水流特性。
通过分析研究得到:与刚盖假定法得到的模拟值相比,VOF 模拟值更接近试验值,且VOF 方法模拟得到数据显示在宽深比小于5时,垂线最大流速出现在相对水深0.6 0.8的范围内,这与传统理论研究也是相符合的。
关键词明渠水流刚盖假定法VOF 法中图法分类号TV133.1;文献标志码A2012年7月4日收到,7月20日修改中国水利水电科学研究院青年科研专项(泥集1203)、国家自然科学基金(51209232)资助第一作者简介:鲁婧(1984─),女,汉族,山西临汾人,工程师,硕士,研究方向:水力学及河流动力学。
E-mail :lujing_lf@ 。
明渠流动是自然界中最广泛的流动现象之一。
前人对其开展了大量的试验研究工作,取得了系统的试验数据。
如1933年Nikuradse 提出用对数分布来描述水深方向的主流流速分布。
Sarama 、Nezu 和Rodi 等采用激光流速仪测量发现:当断面宽深比小于5时,断面最大流速出现在相对水深0.6 0.8的范围内[1]。
Tominaga 和Nezu [2]等系统研究了不同宽深比的光滑矩形明渠的水流特性等。
这为明渠流的数值模拟奠定了良好的基础。
现基于现代计算流体动力学软件Fluent ,模拟Tominaga 和Nezu 的矩形明渠试验环境,将模拟值与试验值进行比对分析,验证数值模型的可靠性。
第38卷第5期2005年10月武汉大学学报(工学版)Enginee ring Jour nal of W uhan U niver sity Vo l.38N o.5O ct.2005收稿日期:2005-04-08作者简介:严 军(1971-),湖北武汉人,博士研究生,主要从事水力学及河流动力学教学与研究.基金项目:河南省科技攻关项目(2000570001).文章编号:1671-8844(2005)05-057-06矩形断面明渠流速分布特性的试验研究严 军1,王二平1,孙东坡1,董志慧2(1.华北水利水电学院,河南郑州 450011;2.珠江水利委员会科学研究所,广东广州 510611)摘要:通过对明渠流速的水槽试验研究,建立了矩形断面明渠沿垂线流速的抛物线分布公式和横向平均流速的乘幂函数分布公式,同时给出了相关系数的确定方法.采用不同渠道流速资料进行验证,表明所提出的明渠流速分布律与实际分布一致,对应测点流速相对误差较小,可以满足明渠流速分布及流量计算精度要求.关键词:流速分布律;边界摩阻;无量纲流速;边界效应中图分类号:T V 133 文献标识码:A Experimental study on distribution properties ofvelocity in rectangular open channelYAN Jun 1,WANG Er -ping 1,SUN Dong -po 1,DONG Zhi -hui2(1.N or th China Institute of Wa te r Conse rvancy and Hydro electric Pow er ,Zheng zho u 450011,China ;2.Institute of P RCC ,Guang zho u 510611,China )A bstract :Through the flum e expe rimental research ,the velocity distributio n fo rmulas for rectang ular open channel hav e been found ,including parabola form of v elocity distribution on the vertical and pow er fo rm of mean velocity distribution on the transverse direction ;meanw hile ,the means o f ascertaining cor -relative coefficient have been given in this paper.Validation of the observing velocity data in different channels indicate s that the velocity -distribution law given by authors is in acco rdance w ith the real v eloc -ity -distributio n perfectly in open channel ;and the relative erro r betw een observing value and calculating value of point velo city is sm all ,w hich can satisfy the precision requirement in the calculatio n of velocity distribution and discharge in open channel.Key words :velocity distribution ;boundary friction ;dimensionless velocity ;boundary effect 引水明渠流量的精确度量是进行水资源科学管理的重要环节,这也是灌区取水动态、连续计量急需解决的技术问题.若不改变明渠边界,一般多采用流速-面积法测定流量.以有限点的流速表征断面流动状况,需要准确掌握明渠过流断面上的流速分布规律.在明渠断面上如何正确布点测量特征点流速,能否采用准确合理的流速分布公式,对计量明槽流量的精确度都会产生很大影响.近年来为了这些问题,Coles 和Coleman 提出添加尾迹函数给对数流速分布律进行修正可以更好地符合实际流速分布,王晋军也有类似的研究,但瑞士的Graf 则通过试验认为尾迹函数对二维均匀流的影响并不明显而且使用繁琐.胡春宏基于大量试验提出了在不同区域采用不同形式流速公式的方法解决问题,研究焦点多集中在流速沿垂线分布上[1].本文研究了在矩形断面明渠中水流垂向及横向流速分布的特点,借助水槽试验,探求符合实际流速分布特点的明槽流速垂线分布律与横向分布律.通过建武汉大学学报(工学版)2005立准确的流速分布公式及相应参数的确定方法,为精确计量明槽流量提供理论计算依据.1 明槽流速分布的试验1.1 试验设备概化明槽为长60m 的室内大型玻璃水槽,断面为矩形,槽宽B =1.2m ,槽深H =0.6m ,糙率n =0.009,底坡i =1/1000.为保证均匀流条件与流态的稳定,流速测量段选取在水槽中间的20m 范围内(试验区上下游的过渡段均大于20m );水槽进口布置两道消能栅和压波排使水面波动迅速衰减.流量采用E -m ag 电磁流量计测量,测量精度为0.30%;流速测量使用LC -3光电式旋桨流速仪,校验后精度为0.1m m /s.1.2 测速点布设及试验控制条件根据对称性原则,自水槽中垂线至边壁布设8条测速垂线,每条测线布置9个测速点,测点分布参照国际标准ISO1088和国家JJG835《速度-面积法》计量检测规程有关规定[2],保证测点密度可以准确反映流速分布.试验流量范围为106~250L /s ,每个流量级控制水深为20~40cm ,保持明渠宽深比B /h 在3~6之间,每个测点流速样本不低于8个,试验水温在T =11.3℃左右.1.3 测量成果采用不同流量级与不同水深的组合进行试验,水流保持恒定均匀紊流状态.雷诺数范围Re =49733~146127,佛汝德数范围Fr =0.112~0.707,实测流速为0.12~1.64m /s.2 垂向流速分布规律的分析2.1 垂向流速分布在明渠流量量测时,通常采用1/7指数分布律与对数分布律.由于公式形式自身的缺陷及边壁的影响,实际垂向流速分布与对数拟合曲线相比较,中心区的相关系数均在0.85左右,而边壁附近相关系数一般在0.5左右甚至更小.分析作者水槽试验成果和前人研究的相关资料,都表明实际明渠流速的最大值应该在水面以下,流速的垂线分布更接近于二次函数曲线的特征.统计整理各试验组次的流速测量成果,引入无量纲相对流速u /v 与相对水深y /H ,通过拟合分析表明,各垂线的这两个无量纲因子之间的相关曲线具有很好的相似性.明渠任一垂线上流速与水深的无量纲函数关系可以一般的表示为u v=a y H 2+b yH +c(1)式中:u ,v 分别为测线上任一点流速与测线平均流速;y ,H 意义同前;a ,b ,c 为待定系数.图1为实测相对流速u /v 与相对水深y /H 之间的关系曲线,测流断面上各条测线的垂向流速分布都具有相同的特性,曲线拟合的相关系数一般均在0.95左右,可见上述关系式更接近于真实反映了矩形明渠流速的分布特征.受水槽断面几何特性、边界阻力及水力特性等要素影响,虽然沿横向各垂线流速分布的规律一致,但决定垂线流速分布曲线形状的流速垂向分布系数a ,b ,c 却有所变化.分析试验成果表明,它们与水流宽深比B /H ,糙率n ,水力半径R ,水力坡度J ,横向位置z /B (B 为矩形渠宽,z 为测线至中垂线的距离),相对水深y /H 等因素有关,但在不同区域主要受其中某个或某几个因素影响.图1 u/v 与y /H 的关系示意图2.2 a ,b ,c 系数的分析与确定统计分析室内矩形玻璃水槽的试验资料表明,在明渠中心区和边壁区影响流速函数垂向分布系数a ,b ,c 的因素也不相同.分析边壁区实测流速拟合曲线的变化,可以发现在这一区域的系数a ,b ,c 主要受测线至边壁的横向位置的影响.分析中心区实测流速拟合曲线的变化,发现这一区域的系数a ,b ,c 与横向位置基本无关,主要受表征水流强度的Fr 数控制.统计实测流速拟合曲线的资料,可以得到系数a ,b ,c 与无量纲横向坐标Z /H (Z =B /2-z )的相关关系如图2所示.在图2中系数a 和c 的变化相类似,随着Z /H 值的增加,a 值和c 值先减小,大约在Z /H 为0.5左右,两值又开始随Z /H 值的增加而增大,而后趋于常数,即当Z /H ≥2.5时a 值和c 值都主要受F r 值的影响.在图2中,b 值则是先随Z /H 值的增加而增大;大约在58 第5期严 军等:矩形断面明渠流速分布特性的试验研究图2 系数a ,b ,c 与无量纲Z /H 的关系图Z /H 为0.5左右,b 值又开始随Z /H 值的增加而减小;而后趋于平缓,即在Z /H ≥2.5时b 值主要受Fr 值的影响.通过分析拟合,得到在不同区域流速垂向分布系数a ,b ,c 与Z /H ,Fr 间的拟合函数关系:在边壁区,当Z /H ≤0.5时:a =-1.17(Z /H )-0.4282(2)b =1.5261(Z /H )+0.4106(3)c =-0.4168(Z /H )+0.9211(4) 当0.5<Z /H <2.5时:a =0.1804(Z /H )-0.9085(5)b =-0.1704(Z /H )+1.0781(6)c =0.0141(Z /H )+0.7556(7) 在中心区,当Z /H ≥2.5、满足缓流(Fr <1)条件时有a =13.851Fr 3-25.739Fr 2+15.345Fr -3.4831(8)b =-25.985Fr 3+46.449Fr 2-26.361Fr +5.5073(9)c =11.017Fr 3-19.205Fr 2+10.561Fr -1.0329(10)2.3 流速垂线分布律的校核验证采用本次试验和前人观测资料,依据《明渠水流测量》[2]相关规范进行数据验证校核,对比结果如表1所示.为了检验作者提出的流速分布律与流速垂向分布系数公式,收集了一些水槽试验和明渠的实测流速资料,与按拟合流速分布律计算的相应点流速进行比照.比较表1中数字可以看到,测线上各测点计算流速与实测流速非常接近,相对误差一般均小于3%;在相对水深等于0.4处的流速,计算流速与实测流速更接近,相对误差都小于2.5%.这表明根据试验研究提出的矩形明渠流速分布律比较准确地反映了实际明槽的流速分布规律.实际引水渠道由于边界糙率较大,边壁区的影响范围相应会较大.试验成果分析表明,当相对水深较小时,测点的计算流速比较接近实测流速,当相对水深较大时,明渠水流强烈的紊动使测点计算流速与实测流速的相对误差会相应增大.3 流速横向分布规律的探讨由实际观测与流速资料的整理统计发现,沿明渠横断面的边壁区与中心区,测线平均流速还是连续变化并与其横向位置有关;边壁区变化大些,中心区变化小些.如果采用无量纲流速与无量纲横向位置,按照对称性原则,明渠实际流速的横向分布特点如图3所示,基本反映了乘幂函数的分布特征.通过分析水槽试验的流速实测成果,采用无量纲分析法可以将沿横断面相对流速与相对位置的函数关系表示为vv m=nB 2-z B 2m(11)图3 半槽宽内流速横向分布特性示意式中:v 为测线平均流速;v m 为中垂线平均流速;B 为渠道宽度;z 为测线至中垂线的横向距离;m ,n为待定参数.显然测线平均流速沿渠宽的分布特性除了与其横向位置、中垂线平均流速有关外,还与参数m ,n 有关,我们就称其为流速横向分布参数.3.1 流速横向分布特性参数的确定根据量纲分析,可以确定横向分布参数m ,n 均受断面几何特性及水力特性等要素的影响,如B /H ,z /B ,y /H ,n ,R ,J 与运动粘滞系数υ等因59武汉大学学报(工学版)2005表1 明渠流速分布成果对比Z/H Fr y/H v/(m s-1)u′/(m s-1)u/(m s-1)R/%0.1030.226160.10.3130.29060.286 1.610.20.3130.30320.3020.450.30.3130.31240.3130.140.40.3130.31810.3170.420.50.3130.32050.3210.280.60.3130.31930.3160.950.80.3130.30680.312-1.630.90.3130.29540.2930.970.950.3130.28840.293-1.641.5380.3260.10.4520.38510.3762.490.20.4520.41340.408 1.320.30.4520.43600.447-2.420.40.4520.45290.463-2.230.50.4520.46410.472-1.650.60.4520.46970.471-0.350.80.4520.46360.473-1.890.90.4520.45200.454-0.510.950.4520.44410.452-1.642.8990.73090.1 1.0410.84610.8450.090.2 1.0410.92150.943-2.280.3 1.0410.9843 1.013-2.850.4 1.041 1.0344 1.053-1.790.5 1.041 1.0718 1.077-0.510.6 1.041 1.0965 1.0960.060.8 1.041 1.1079 1.114-0.530.9 1.041 1.0946 1.110 1.420.95 1.041 1.0831 1.099 1.41*0.3330.150.40.5800.59860.600-0.23*0.2670.330.4 1.680 1.6637 1.680-0.97#1.0340.2190.20.6400.58980.580 1.690.80.66990.690 2.85#2.6790.2730.40.6400.63490.6400.81*1.7860.1820.20.6750.61550.600 2.590.40.67250.675-0.370.80.69150.680 1.69*90.5860.20.4130.37410.380-1.540.40.41150.420-2.030.80.43280.4300.66注:u为模型试验测线上任一测点的实测流速;u′为相应测点的计算流速;R=(u′-u)/u×100%,为测线上任一测点流速计算值与实测值的相对误差;#,*分别为矩形断面实际明渠和水槽模型试验的实测流速数据;Fr一般在0.15~0.65之间.素.为了便于研究,对式(11)取对数可以转换为lnvv m=m lnB2-zB2+ln(n)(12)或为ln v=m ln(B/2-z)/B/2+ln(n v m)(13) 大量明渠研究表明[1],当宽深比B/H>5且Z>2.5H时,渠道断面存在一个准二维流动的中心区,区内各垂线流速分布基本相同,故各测线的平均流速相等,即有v=v m.在此区域流速横向分布系数m=0,n=1.当B/H>5且Z≤2.5H时,这部分渠道断面为具有三维流动特性边壁区,区内各垂线流速分布均不同程度地受壁面影响.60 第5期严 军等:矩形断面明渠流速分布特性的试验研究当宽深比B /H >5时,按中心区边界条件:取Z =2.5H ,v =v m ,可得:n =(2/5H /(B /2))-m(14) 则指数m 可利用水槽、明渠的实测流速资料以最小二乘法来拟合确定[3].当B ≤5H 时无中心区,按明槽中轴线条件:取z =0,v =v m ,可得系数n =1,m 也可根据实测流速资料采用最小二乘法来拟合确定.令y =ln vx =ln ((B /2-z )/(B /2))k =ln (n v m )则式(13)可以表示为y =mx |+k 设在某一过流断面设置p 条测线,测得各测线的垂线平均流速为v i(i =1~p ),根据最小二乘法原理有p∑pi =1xi∑p i =1x i∑pi =1x2imk=∑pi =1yi∑p i =1y ixi(15)方程组(15)中系数矩阵为一对称阵,根据断面实测流速资料求解式(16),即可确定未知的流速横向分布参数m 及k.根据明槽宽深比,还可以确定系数n 和v m .按以上方法确定了各参数,就可根据式(11)计算相应测流断面任一测线的平均流速,进而就可以利用垂线平均流速的横向分布确定明渠流量.3.2 垂线平均流速横向分布律的校核比较根据水槽与明渠的流速实测资料,对垂线平均流速横向分布规律进行比较验证,并以测线平均流速与中垂线平均流速比值为纵坐标,以测线位置与槽宽比值为横坐标,将分析成果绘于图4中.图4 相对流速与相对宽度的关系 图4(a )和(b )反映了两类不同的明槽宽深比(B /H >5和B /H ≤5)情况下,在对数坐标中相对流速与横向位置间都存在着很好的线性关系,测点与趋势线的相关系数均在0.98以上.图4(a )反映在大宽深比(B /H >5)有中心区的情况下,Z /H ≤2.5的测线相对流速与相对位置的关系,从图中不难看出m 值的变化范围不大.在Fr =0.344~0.731,m =0.095~0.138,n =0.972~1.035.图4(b )反映在小宽深比(B /H <5)无中心区的情况下,测线相对流速与相对位置的对数关系,从图中容易看出,趋势线基本都均经过原点,与前述边界条件结果是一致的.小宽深比(B /H <5)时,m 值的变化范围稍大,Fr =0.116~0.430,m =0.078~0.14,n =0.978~1.019.由于测量设备精度及测量验证资料的限制,此种流速分布律的验证还只局限在有限宽深比和边界糙率基本一致的矩形渠道,梯形及复式断面明渠的分布率还有待进一步探讨.在准确掌握了明槽流速的垂向分布律与横向分布律之后,就可以根据流速分布律特点,选择几个特征点;通过量测特征点流速就可以很快确定垂线平均流速与断面平均流速,进而比较精确地计算明槽流量.4 结 语(1)矩形渠道测线流速的垂向分布律采用二次抛物线拟合,更加符合实际流速分布特点.实测资料分析表明,作者提出的流速垂向分布律拟合精度较高,流速计算值与实际测量值的相对误差较小.(2)矩形渠道测线平均流速的横向分布符合乘幂函数分布形式,不同宽深比明槽流速横向分布律61武汉大学学报(工学版)2005的幂指数有所不同.通过最小二乘法拟合确定各参数后,可以很方便地确定出任一测线的平均流速及横向分布.(3)根据作者提出的流速分布律按照特征点布点测量,可以采用计算机编程处理垂向流速分布和横向平均流速分布,可以大大地减少流速实测工作量和计算工作量.同时根据比较准确的流速分布律,可以进行无边界干扰的明槽流量精确计算.参考文献:[1] 胡春宏,惠遇甲.明渠挟沙水流运动的力学和统计规律[M].北京:科学出版社,1995.[2] 明渠水流测量续集[M].水利部水文司译.北京:中国科学技术出版社,1992.[3] 陈森林,肖 舸,赵云发,等.河道断面流速分布函数研究[J].水利学报,1999(4):70-74.(上接第56页)的比较分析可见,对于水工模型实验主要关心的流量系数和堰面压强值,数值计算结果都与模型实验值极为一致.由此可以认为,以目前的计算技术水平,数值计算方法替代部分模型试验是可能的,这对降低这类水工建筑物的设计成本和设计周期有着积极的意义.参考文献:[1] 李志勤.溢流丁坝附近自由水面的实验研究与数值模拟[J].水利学报,2003(8):53-57.[2] 王志东,汪德.含闸墩溢流坝三维过坝水流数值模拟[J].水科学进展,2004(6):735-738.[3] Savag e B M,Jo hnson M C.F low over o gee spillw ay: phy sical and numerical model case study[J].J.of Hydraulic Eng ineering,2001,127(8):640-649. [4] U nami K.T wo-dimensio nal nume rical model of spillw ay flow[J].J.of Hy draulic Eng ineering,1999,125(4):369-375.[5] Har low F H,Welch J E.N umerical calculation oftime-dependent viscous incompressible flo w of fluidw ith free surface[J].T he Phy sics of Fluids,1965,8:2182-2189.[6] H ir t C W,Nicho ls B D.V olume of fluid me tho d fo rthe dy namics of free surface bounda ries[J].J.ofComput.P hy s.,1981,39:201-225.[7] 孙 建.越过矩形分流墩的流态及急流自由水面[J].西安理工大学学报,1994(3):208-214.62。