9 金属塑性成形有限元软件应用介绍
- 格式:pptx
- 大小:4.15 MB
- 文档页数:4
2023-11-06•金属塑性成形概述•金属塑性成形工艺•金属塑性成形设备•金属塑性成形技术的发展趋势•金属塑性成形过程中的缺陷与质量控制目•金属塑性成形实例分析录01金属塑性成形概述金属塑性成形是一种使金属材料发生塑性变形,以获得所需形状、尺寸和性能的加工方法。
金属塑性成形广泛应用于机械制造、航空航天、汽车、电子等领域,是一种重要的材料加工技术。
金属塑性成形的定义金属塑性成形可以制造出复杂形状的零件,并且能够获得较高的精度和表面质量。
与切削加工相比,金属塑性成形具有更高的材料利用率和更低的能耗。
金属塑性成形过程中材料的变形是均匀的,因此可以避免应力集中和裂纹等缺陷。
金属塑性成形的特点03金属塑性成形的基本原理包括应力状态、屈服准则、塑性流动规律等。
金属塑性成形的基本原理01金属塑性成形的原理是基于金属的塑性变形规律,即在外力作用下,金属材料会发生形状和尺寸的变化。
02在金属塑性成形过程中,材料的变形受到应力状态、变形温度、变形速度等因素的影响。
02金属塑性成形工艺自由锻工艺自由锻是利用冲击力或静压力使金属坯料变形,并施加外力将其锻造成所需形状和尺寸的锻造方法。
定义特点流程应用自由锻具有较大的灵活性,可以生产形状各异的锻件,但生产效率较低,适用于单件或小批量生产。
自由锻的流程包括坯料准备、加热、变形和锻后冷却。
自由锻主要用于大型锻件和难变形材料的加工,如轴、轮毂、法兰等。
模锻工艺模锻是利用模具使金属坯料变形,并施加外力将其锻造成所需形状和尺寸的锻造方法。
定义模锻具有较高的生产效率,且能获得较为精确的形状和尺寸,但模具制造成本较高。
特点模锻的流程包括坯料准备、加热、放入模具、变形、锻后冷却和修整。
流程模锻广泛应用于中小型锻件的生产,如齿轮、轴套、法兰等。
应用板料冲压工艺板料冲压是利用冲压机将金属板料变形,并施加外力将其冲制成所需形状和尺寸的加工方法。
定义板料冲压具有较高的生产效率,且能获得较为精确的形状和尺寸,但模具对材料的厚度和硬度有一定要求。
有限元法在材料成型过程研究中的发展、应用及作用姓名:学号:学院:班级:有限元法在材料成型过程研究中的发展、应用及作用材料加工是先进制造技术中重要的组成,它的应用涉及航空航天、汽车、石化、军事等事关国民经济的重要产业。
材料加工工艺过程中,除了运动和外力作用等因素,还涉及温度场、流场、应力应变场及内部组织的变化; 生产环境恶劣,控制因素多样。
因此,充分了解材料加工计算机模拟的重要性及其发展趋势,对于推动我国制造业的科技进步,缩短产品的开发和加工周期,快速响应市场,提高竞争能力,真正体现高速、高效、高质的制造优势,具有重要的意义。
计算机模拟是制造业发展的产物。
以有限元方法为基础的计算机模拟技术是20 世纪技术发展的巨大成果,在工程物理科学的各个分支领域都起着十分重要的作用。
新材料、新工艺、新产品、高要求、高精度、低成本的现代制造模式要求深入了解和掌握材料成形机理、过程变化,在计算机上实现过程显现,开拓科学的工艺和设计方法,实现最优设计与制造。
因此,计算机数值模拟技术以及以此为基础的优化设计方法研究成为当今和今后国内研究的热点。
我们知道在工程中使用的金属材料大多数为多晶材料,材料的微观组织形态直接影响零件的机械性能和物理性能,所以选择合理的加工工艺参数十分重要。
材料加工过程微观组织的计算机模拟由于具有描述分子级尺寸水平的能力,这将对控制材料晶粒大小及分布,进一步了解位错的产生和运动、晶界结构、防止内部空洞和微裂纹的萌生和扩展等问题提供了新的方法[1-2] ,将大大推动材料微观结构研究的进展,并对确定优化材料加工的工步数和顺序、热处理方案十分有益。
此外,在金属成形过程中,适用的优化准则对材料最终的力学性能和微观组织性能具有重要的影响,通过优化坯料形状或预成形模具形状、模具速度使最终锻件具有良好的尺寸精度、少无飞边和所期望的微观组织。
为此,一方面要要研究合适的优化设计变量的选择,包括影响终锻件力学组织性能的状态变量和过程变量,即形状设计变量和速度设计变量。
材料塑性成形与计算机模拟学院(系)机械工程学院专业班级材料10802班级序号25学生姓名张沛计算机模拟在金属塑性成形的应用及一些基本理论摘要计算机模拟技术在材料科学领域中应用日益广泛,本文综述了这方面的研究现状。
介绍了材料成形中计算机模拟技术的常用软件,并详述了其在金属塑性成形方面的应用。
介绍了塑性变形有限元分析软件DEFORM的模块结构。
简述了结构有限元分析中的网格划分的基本理论。
关键字计算机模拟金属材料材料成型;DEFORM软件;有限元分析;网格划分一.引言随着计算机技术的高速发展,已经可以通过事先的工艺设计和过程控制取代单凭经验积累和试错法方式来制备材料。
计算机模拟是在计算机上通过系统模型模拟一个实际存在或正在设计中的真实系统,以再现(实现可视化)或分析(数值计算)真实系统的本质特征,作为理论与实践相补充的第三种有效手段和方法,目前它已成为解决材料科学和工程中实际问题的重要手段。
在计算机上进行的模拟实验,基本不受实验条件、时间和空间的限制,具有极大的灵活性和随机性。
而且它可以替代许多难以或无法实施的实验,解决~般方法难以求解的大型系统问题。
最近几年,随着计算科学的快速发展和有限元技术应用的日益成熟,CAE 技术模拟分析金属在塑性变形过程中的流动规律在现实生产中得到愈来愈广泛的应用。
CAE技术的成功运用,不仅大大缩短了模具和新产品的开发周期,降低了生产成本,提高企业的市场竞争能力,而且有利于将有限元分析法和传统的实验方法结合起来,从而推动模具现代制造业的快速发展。
二、金属塑性成形的计算机模拟金属塑性成形中涉及到复杂的物理现象和模具形状,难以进行精确的理论分析。
如何及时和正确地评价工艺和模具设计的可行性,以保证生产出合格的产品,还没有得到很好的解决。
塑性成形过程中的计算机模拟技术的应用是解决这个问题的有力手段,塑性成形过程的计算机模拟是在计算机上对金属塑性成形过程进行实时跟踪描述,并通过计算机图形系统演示整个过程的技术。
塑性线性有限元分析及在工程上的应用塑性线性有限元分析(Plastic Linear Finite Element Analysis)是一种常用于工程实践中的数值模拟方法,用于评估结构体的塑性变形和破坏行为。
本文将介绍塑性线性有限元分析的基本原理、模拟流程以及在工程上的应用。
一、塑性线性有限元分析的基本原理塑性线性有限元分析是将结构体离散化为有限数目的小单元,通过数值计算方法模拟结构体的力学行为。
在塑性线性有限元分析中,结构体的材料行为被假设为线弹性(即,应力与应变之间存在线性关系),而结构体的几何非线性行为由材料的硬化模型和塑性流规则描述。
在进行塑性线性有限元分析之前,首先需要对结构体进行离散化。
常用的离散化方法包括三角形离散化和四边形离散化。
接下来,在每个小单元中,通过有限元理论计算单元的刚度矩阵。
刚度矩阵描述了单元的应力分布和应变能量分布。
然后,根据材料的线弹性本构关系,将初始加载的载荷应用于结构体。
在每个加载步骤中,计算结构体的应力分布和应变能量分布,然后更新结构体的几何形状。
在每个步骤中,根据塑性流规则计算塑性应变,并根据材料的硬化模型更新材料的本应变。
最后,通过求解结构体的静力平衡方程,计算结构体的响应。
可以使用一系列求解技术提高计算的效率和准确性,如迭代方法、加速技术和松弛技术。
二、塑性线性有限元分析的模拟流程塑性线性有限元分析的模拟流程包括以下几个步骤:1. 构建有限元模型:根据实际结构体的几何形状和边界条件,使用有限元网格生成技术构建有限元模型。
常见的有限元网格生成技术包括四边形单元和三角形单元。
2. 定义材料模型:根据结构体的材料性质,选择适当的本构模型描述材料的力学行为,如线弹性模型、塑性模型和硬化模型。
3. 定义约束条件:根据结构体的实际情况,定义适当的边界条件和加载条件。
边界条件包括固定边界和非固定边界,加载条件包括恒定加载和变加载。
4. 执行塑性线性有限元分析:开始塑性线性有限元分析,通过求解静力平衡方程,在每个加载步骤中更新结构体的几何形状和材料的本应变,计算结构体的响应。
有限元分析在金属冷成形中的应用有限元分析在金属冷成形中的应用专业:模具设计与制造班级:09模具学生:指导教师:摘要:拉深工艺是借助设备的动力和模具的直接作用使平板毛坯变成开口空心的零件的冲压成型方法,在实际生产中应用十分广泛,在保证产品的质量的用时,工艺品的极限拉深系数、减少工序、提高效率和降低成本,通过对现有拉深工艺的研究,本文概括了凹模型腔尤其是曲面凹模的研究现状,提出了存在的问题并针对一种新的拉深凹模型腔曲面提出了新的研究方法,在整个拉深过程中,拉深件侧壁上缘始终与凹模型腔曲面相切接触,降低了凹模圆角半径造成的摩擦阻力和弯曲变形阻力,特殊的曲面结构又能产生切向的压缩变形,有效防止制件起皱通过数学分析,并提出了采用分割的方法求取曲面凹模的极限拉深系数通过运用有限元分析软件,本文对板料拉深过程进行了模拟,找到了曲面凹模的极限拉深系数采用同样的方法,求得了平端面凹模、锥形凹模的极限拉深系数,并与曲面凹模进行对比,验证了曲面凹模的极大的优势,较之平端面凹模,曲面凹模的极限拉深系数降低了锥形凹模,另外,本文还分析了起皱的影响和引起起皱的原因通过比较,分析了厚向异性系数、硬化指数和相对厚度等材料成形参数对极限拉深系数的影响规律本文对曲面凹模拉深工艺进行了深入的理论和仿真研究,得出的工艺参数对极限拉深系数的影响规律为实际生产中工艺选择及制定提供了理论依据。
关键词:拉深工艺曲面凹模有限元模拟冲压成型引言:1、板料成形在汽车、航空、模具等行业中占据着重要地位。
板料成形的主要难点问题就是较长的模具开发设计周期,特别是对于复杂的板料成形零件无法准确预测成形的结果,难以预防缺陷的产生,传统的方式存在设计周期长、试模次数多、生产成本高等缺点。
某些特殊复杂的板料成形零件甚至制约了整个产品的开发周期。
而板料成形CAE技术及分析软件的出现,有效地缩短模具设计周期、减少试模时间、改进产品质量、降低生产成本,从根本上提高产品的市场竞争。
DEFORM-3D的简介Deform(Design Enviroment for Forming)有限元分析系统是美国SFTC公司开发的一套专门用于金属塑性成形的软件。
通过在计算机上模拟整个加工过程,可减少昂贵的现场试验成本,提高工模具设计效率,降低生产和材料成本,缩短新产品的研究开发周期。
Deform软件是一个高度模块化、集成化的有限元模拟系统,它主要包括前处理器、模拟器、后处理器三大模块。
前处理器:主要包括三个子模块(1)数据输入模块,便于数据的交互式输入。
如:初始速度场、温度场、边界条件、冲头行程及摩擦系数等初始条件;(2)网格的自动划分与自动再划分模块;(3)数据传递模块,当网格重划分后,能够在新旧网格之间实现应力、应变、速度场、边界条件等数据的传递,从而保证计算的连续性。
模拟器:真正的有限元分析过程是在模拟处理器中完成的,Deform运行时,首先通过有限元离散化将平衡方程、本构关系和边界条件转化为非线性方程组,然后通过直接迭代法和Newton-Raphson法进行求解,求解的结果以二进制的形式进行保存,用户可在后处理器中获取所需要的结果后处理器:后处理器用于显示计算结果,结果可以是图形形式,也可以是数字、文字混编形式,获取的结果可为每一步的有限元网格;等效应力、等效应变;速度场、温度场及压力行程曲线等DEFORM软件操作流程(1)导入几何模型在DEFORM-3D软件中,不能直接建立三维几何模型,必须通过其他CAD/CAE软件建模后导入导DEFORM系统中,目前,DEFORM-3D的几何模型接口格式有: ①STL:几乎所有的CAD软件都有这个接口。
它由一系列的三角形拟合曲面而成。
②UNV:是由SDRC公司(现合并到EDS公司)开发的软件IDEAS制作的三维实体造型及有限元网格文件格式,DEFOEM接受其划分的网格。
③PDA:MSC公司的软件Patran的三维实体造型及有限元网格文件格式。
DEFORM-3D的简介Deform(Design Enviro ment for Formin g)有限元分析系统是美国S F TC公司开发的一套专门用于金属塑性成形的软件。
通过在计算机上模拟整个加工过程,可减少昂贵的现场试验成本,提高工模具设计效率,降低生产和材料成本,缩短新产品的研究开发周期。
Deform软件是一个高度模块化、集成化的有限元模拟系统,它主要包括前处理器、模拟器、后处理器三大模块。
前处理器:主要包括三个子模块(1)数据输入模块,便于数据的交互式输入。
如:初始速度场、温度场、边界条件、冲头行程及摩擦系数等初始条件;(2)网格的自动划分与自动再划分模块;(3)数据传递模块,当网格重划分后,能够在新旧网格之间实现应力、应变、速度场、边界条件等数据的传递,从而保证计算的连续性。
模拟器:真正的有限元分析过程是在模拟处理器中完成的,Deform运行时,首先通过有限元离散化将平衡方程、本构关系和边界条件转化为非线性方程组,然后通过直接迭代法和Newton-Raphso n法进行求解,求解的结果以二进制的形式进行保存,用户可在后处理器中获取所需要的结果后处理器:后处理器用于显示计算结果,结果可以是图形形式,也可以是数字、文字混编形式,获取的结果可为每一步的有限元网格;等效应力、等效应变;速度场、温度场及压力行程曲线等DEFORM软件操作流程(1)导入几何模型在DEFOR M-3D软件中,不能直接建立三维几何模型,必须通过其他CAD/CAE软件建模后导入导DEFOR M系统中,目前,DEFORM-3D的几何模型接口格式有: ①STL:几乎所有的C A D软件都有这个接口。
它由一系列的三角形拟合曲面而成。
塑性成形的刚塑性有限元方法概述徐小波摘要:总结了国外有关塑性成形的刚塑性有限元方法的研究现状以及刚塑性有限元法的概述和基本理论。
指出三维成形有限元模拟在工业设计生产中具有广泛的应用前景。
关键词:有限元法塑性成形数值模拟一、引言21世纪的塑性加工产品向着轻量化、高强度、高精度、低消耗的方向发展。
塑性精密成形技术对于提高产品精度、缩短产品交货期、减少或免除切削加工、降低成本、节省原材料、降低能耗,当前的生产的发展,除了要求锻件具有较高的精度外,更迫切地是要解决复杂形状地成形问题,同时还要不断提高锻件地质量、减少原料的消耗、提高模具寿命,促使降低锻件成本、提高产品的竞争能力。
塑性加工问题的研究方法主要有三种:理论解析研究方法、试验研究方法和数值模拟研究方法。
这几种方法中,理论解析法突出的优点是求解直接,能给出力学量与参数间的函数全局关系,对揭示变形的力学本质和指导实践有重要意义。
但这种方法只能求解简单的或经过简化的问题,对于复杂问题,求解复杂、难度大。
试验研究方法在理论解析与数学手段尚不完善的情况下,是一种不可缺少的研究方法;结果可靠,常作为理论解析与数值模拟的验证或对比数据;此外,试验研究可以发现新现象、新规律。
然而,试验研究的局限性在于对复杂成形过程的研究有时试验手段与试验方法无法实现或难以达到要求;另外,耗资大、周期长、工作量大,为此,试验方法的应用存在严重的局限性,并且优化显得特别重要。
数值模拟的方法,克服了理论解析法求解复杂问题的困难,能减少试验工作量,近年来得到很大的发展。
特别是基于变分原理的有限元法,由于其单元形状的多样性与方法本身的特点,原则上可以运用于分析任何材料模型、任意边界条件、任意形状的零件的塑性成形过程,得到广泛的应用。
二、刚塑性/刚粘塑性有限元法概述塑性有限元法可以分为流动性塑性有限元(包括刚塑性有限元和刚粘塑性有限元法)和固体塑性有限元(包括小变形弹塑性有限元和大变形弹塑性有限元)两大类。
关于金属塑性成形有限元模拟姓名:班级:学号:摘要在塑性成形中,材料的塑性变形规律、模具与工件之间的摩擦现象、材料中温度和微观组织的变化及其对制件质量的影响等,都是十分复杂的问题。
这使得塑性成形工艺和模具设计缺乏系统的、精确的理论分析手段,而主要是依据靠工程师长期积累的经验,对于复杂的成形工艺和模具,设计质量难以保证。
另外,一些关键参数要在模具设计制造后,通过反复地调试和修改才能确定,浪费了大量的人力、物力和时间。
借助于数值模拟的方法,能使工程师在工艺和模具设计阶段预测成形过程中工件的变形规律、可能出现的成形缺陷和模具的受力状况,以较小的代价、较短的时间找到最优的或可行的设计方案。
塑性成形过程的数位模拟技术是使模具设计实现智能化的的关键技术之一,它为模具的并行设计提供了必要的支撑,应用它能降低成本、提高质量、缩短产品交货期。
一、金属塑性成形过程的前提条件正确设计和控制金属塑性成形过程的前提条件是充分掌握金属流动、应力应变状态、热传导、润滑、加热与冷却及模具结构设计等方面的知识。
任何分析方法都是为工程技术人员服务的,其目的是帮助工程技术人员掌握金属流动过程中应力应变状态等方面知识,一个好的分析方法至少应包括以下几个功能:(1)、在未变形体(毛坯)与变形体(产品)之间建立运动学关系,预测金属塑性成形过程中的金属流动规律,其中包括应力应变场量变化、温度变化及热传导等。
(2)、计算金属塑性成形极限,即保证金属材料在塑性变形过程中不产生任何表面及内部缺陷的最大变形量可能性。
(3)、预测金属塑性成形过程得以顺利进行所需的成形力及能量,为正确选择加工设备和进行模具设计提供依据。
当前,有限元法已成为分析和研究金属塑性成形问题的最重要的数值分析方法之一,它具有以下优点:(1)、由于单元形状具有多样性,有限元法使用与任何材料模型,任意的边界条件,任意的结构形状,在原则上一般不会发生处理上的困难。
金属材料的塑性加工过程,均可以利用有限元法进行分析,而其它的数值方法往往会受到一些限制。
基于deform 在金属塑性成形中的应用铜陵学院09材控一班陈军 0910121117摘要:由于deform-3D不具有三维造型功能,所以要实现塑性模拟过程所需要的物理模型均在其他三维软件中建立。
然后利用deform软件所具备的重新划分网格后,原节点的信息不会丢失。
设定变形物体的网格重划分网格标准,有两种选择:一个是绝对值,一个是相对值。
在deform软件的材料库中,各种材料都被分成易于选择的类别。
材料可以通过单位制或加工工艺类型进行检索。
这里主要介绍deform图形文件的生成及其相关功能键使用方法。
正文:一,deform软件的操作流程:(1)、定义几何特征。
Deform中对象的几何数据具有多种格式可供选择。
(2)、网格划分。
Deform网格划分生成四面体单元,这种四面体表面适合于表面成型。
(3)、初始条件。
如轧制时设置变形体、模具与周围介质间的热交换,变形体内部大变形生成热量及其传导都对产品的成形质量造成很大影响,对此问题的仿真模拟分析应按瞬间热-机耦合处理。
Deform软件可提供多种温度下的材料特性。
(4)、材料模型。
这里只研究钢塑性材料。
设定材料变形前,变形时,变形终了的温度和变形率下材料流动应力应变曲线和热膨胀系数、弹性模量、泊松比、热导率等随温度变化的曲线。
(5)、接触定义。
定义变形体与模具之间以及模具之间可能产生的接触关系。
变形的的温度、变形是待求量,变形体为接触体,刚性接触时只具有常温,起主动传递位移或合力作用。
如果需要模具的温度变化,可将模具上要关心的部分离散成单元,定义成允许热传递的刚性接触体,可以与外界催在热交换。
(6)、网格自动重划分。
模拟分析过程中,单元附着在材料上,材料流动中极易造成相应的单元格畸变,单元格畸变后会中断计算过程。
因此保证仿真过程中材料经大量流动后仍然可以继续,获得的结果仍然具有足够的精度。
Deform在网格畸变到一定程度后会自动进行网格重划分,生成搞质量的网格。