大学微积分的教程
- 格式:ppt
- 大小:1.77 MB
- 文档页数:29
零基础微积分入门基本教程1 前言微积分是数学中的一门重要学科,可以用来研究变化率和极值等问题。
在高等数学中,微积分是必修课程。
然而,对于零基础的学生来说,学习微积分可能会显得困难和枯燥。
因此,本文将提供一个基础的入门教程,以帮助零基础的学生理解微积分的概念和应用。
2 微积分的定义微积分主要分为微分和积分两个部分。
微分可以用来研究函数的变化率,积分可以用来计算曲线下面的面积。
具体来说,微积分可以用以下公式表示:微分:dy/dx=f’(x)积分:∫f(x)dx其中,f’(x)表示函数f(x)在x点的导数,∫f(x)dx表示f(x)在积分区间上的面积或整体。
3 基础概念微积分中有许多基础概念,其中包括:导数:导数表示函数在某一点处的变化率,是微积分中的重要概念之一。
极值:极值是函数的最大值或最小值,可以通过导数的概念来计算。
积分:积分可以用来计算函数在一定区间上的面积,也可以用来计算反常积分和定积分等。
4 应用微积分在实际中有许多应用,其中包括:物理:微积分在物理学中是必不可少的,可以用来研究物体在空间中的运动轨迹。
工程:微积分在工程学中也可以发挥重要的作用,可以用来研究建筑物的结构和稳定性等问题。
经济学:微积分在经济学中也有许多应用,可以用来研究经济数据的变化规律和趋势。
5 结论微积分是一门重要的数学学科,可以用来研究变化率和极值等问题。
然而,对于零基础的学生来说,学习微积分可能会显得困难和枯燥。
因此,建议学生在学习微积分之前,要先掌握一些基础概念和方法,逐步提高自己的学习能力。
同时,学生应该注重理论的学习和实践的应用,通过多方面的学习和实践,来提高自己的微积分水平。
《微积分》讲义第一章极限一、函数极限的概念:f=A要点:⑴x 为变量;⑵A 为一常量。
二、函数极限存在的充分必要条件:f=A f=A,f=A 例:判定是否存在?三、极限的四则运算法则⑴=f±g⑵=f·g⑶=……g≠0⑷k·f=k·f四、例:⑴⑵⑶⑷五、两个重要极限⑴=1 =1⑵=e =e ………型理论依据:⑴两边夹法则:若f≤g≤h,且limf=limh=A,则:limg=A⑵单调有界数列必有极限。
例题:⑴=⑵=⑶=⑷=⑸=六、无穷小量及其比较1、无穷小量定义:在某个变化过程中趋向于零的变量。
2、无穷大量定义:在某个变化过程中绝对值无限增大的变量。
3、高阶无穷小,低阶无穷小,同阶无穷小,等价无穷小。
4、定理:f=A f=A+a (a=0)七、函数的连续性1、定义:函数y=f在点处连续……在点处给自变量x一改变量x:⑴x0时,y0。
即:y=0⑵f=f⑶左连续:f=f右连续:f=f2、函数y=f在区间上连续。
3、连续函数的性质:⑴若函数f和g都有在点处连续,则:f±g、f·g、(g()≠0)在点处连续。
⑵若函数u=j在点处连续,而函数y=f在点=j()处连续,则复合函数f(j(x)) 在点处连续。
例:===4、函数的间断点:⑴可去间断点:f=A,但f不存在。
⑵跳跃间断点:f=A ,f=B,但A≠B。
⑶无穷间断点:函数在此区间上没有定义。
5、闭区间上连续函数的性质:若函数f在闭区间上连续,则:⑴f在闭区间上必有最大值和最小值。
⑵若f与f异号,则方程f=0 在内至少有一根。
例:证明方程式-4+1=0在区间内至少有一个根。
第二章一元函数微分学一、导数1、函数y=f在点处导数的定义:x y=f-f=A f'=A ……y',,。
2、函数y=f在区间上可导的定义:f',y',,。
3、基本初等函数的导数公式:⑴=0⑵=n·⑶=,=⑷=·lnɑ,=⑸=cosx,=-sinx=x,=-=secx·tanx,=-cscx·cotx⑹=-=-4、导数的运算:⑴、四则运算法则:=±=·g(x)+f(x)·=例:求下列函数的导数y=2-5+3x-7f(x)=+4cosx-siny=⑵、复合函数的求导法则:y u,u v,v w,w x y x'=''''例:y=lntanxy=lny=arcsin⑶、隐函数的求导法则:把y看成是x的复合函数,即遇到含有y 的式子,先对y求导,然后y再对x求导。
大学数学基础教程:一元函数微积分一、函数微积分的主要课题在于研究变量的变化形态。
这个说法很抽象。
说的直白一点,就是研究一个量的变化过程。
这个量可以是速度,可以是加速度,可以是生产率等等。
这些是变化的,我们称之为变量。
中学时,已经学过,描述变量的数学模型是函数。
因此从函数开始说起。
函数是中学数学的主要内容,概念这里就不重复了。
对函数概念的的理解需要重点把握定义域和对应法则,有了定义域和对应法则就确定一个函数,换句话说,确定两个函数是否相同,定义域和对应法则缺一不可。
这里有一些考题,容易因为忽视了定义域而出现错误。
函数的表示形式有多种,运用数形结合的思想,在坐标系中画函数图像,可以探索函数的性质(如单调性、周期性、奇偶性)。
研究函数的性质,有时可以在积分运算过程中简化运算。
掌握了研究方法后,复合函数、反函数和初等函数都可以自己来研究。
二、无穷小量极限方法的本质就是无穷小量的分析。
因此首先学习无穷小量。
定义设有数列{εn},如果对于任意给定的正数η>0,都能取到正整数N,使得当n>N时成立|εn|<η,则称n→∞时,{εn}是无穷小量,记作εn=ο(1),n→∞.由定义可以看出,无穷小量的本质是可以任意小的变量。
这个需要好好理解。
掌握了该定义后,无穷小量的运算和无穷大量的定义都可以自己给出。
无穷小量之间的关系有高阶、低阶、同阶、等价。
这些概念要熟记。
三、极限极限是刻画变量变化趋势的重要工具。
好多教材中数列的极限、函数的极限、单侧极限的概念是分别给出的。
对比这些概念,给出的方法都相同,即ε-δ(N)语言。
通用模型是这样的:对于任意ε,存在δ,使得当****时成立,|f(x)-A|<ε,则称f(x)在x→**时以A为极限,记作或称f(x)收敛于A。
数列是定义域为整数集的特殊函数,函数极限的概念也可以用数列极限的形式来表述。
这里有许多题型,主要题型是:证明这类题目的一般解法是解不等式,用ε表示δ。
微积分教程【1】微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。
它是数学的一个基础学科。
内容主要包括极限、微分学、积分学及其应用。
微分学包括求导数的运算,是一套关于变化率的理论。
它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。
积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
微积分的基本介绍微积分学基本定理指出,求不定积分与求导函数互为逆运算[把上下限代入不定积分即得到积分值,而微分则是导数值与自变量增量的乘积],这也是两种理论被统一成微积分学的原因。
我们可以以两者中任意一者为起点来讨论微积分学,但是在教学中,微分学一般会先被引入。
微积分学是微分学和积分学的总称。
它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。
十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。
他们建立微积分的出发点是直观的无穷小量,但是理论基础是不牢固的。
因为“无限”的概念是无法用已经拥有的代数公式进行演算,所以,直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。
学习微积分学,首要的一步就是要理解到,“极限”引入的必要性:因为,代数是人们已经熟悉的概念,但是,代数无法处理“无限”的概念。
所以,必须要利用代数处理代表无限的量,这时就精心构造了“极限”的概念。
在“极限”的定义中,我们可以知道,这个概念绕过了用一个数除以0的麻烦,相反引入了一个过程任意小量。
就是说,除的数不是零,所以有意义,同时,这个小量可以取任意小,只要满足在德尔塔区间,都小于该任意小量,我们就说他的极限为该数——你可以认为这是投机取巧,但是,他的实用性证明,这样的定义还算比较完善,给出了正确推论的可能性。
这个概念是成功的。
微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。
高等数学教案、第一章 函数、极限与与连续本章将在分别研究数列的极限与函数的极限的基础上,讨论极限的一些重要性质以及运算法则,函数的连续性,闭区间上连续函数的性质。
具体的要求如下:1. 理解极限的概念(理解极限的描述性定义,对极限的N -ε、δε-定义可在学习过程中逐步加深理解,对于给出ε求N 或δ不作过高要求)。
2. 掌握极限四则运算法则。
3. 了解极限存在准则(夹逼准则和单调有界准则),会用两个重要极限求极限。
4. 了解无穷小、无穷大及无穷小的阶的概念.能够正确运用等价无穷小求极限。
5。
理解函数在一点连续的概念,理解区间内(上)连续函数的概念。
6. 了解间断点的概念,会求函数的间断点并判别间断点的类型。
7. 了解初等函数的连续性和闭区间上连续函数的性质(最大、最小值定理、零点定理、介值定理)。
第一章共12学时,课时安排如下绪论 §1.1、函数 §1.2初等函数 2课时 §1。
4数列极限及其运算法则 2课时 §1.4函数极限及其运算法则 2课时 §1。
4两个重要极限 无穷小与无穷大 2课时 §1.4函数的连续性 2课时 第一章 习题课 2课时绪论数学:数学是研究空间形式和数量关系的一门学科,数学是研究抽象结构及其规律、特性的学科.数学具有高度的抽象性、严密的逻辑性和应用的广泛性。
关于数学应用和关于微积分的评价:恩格斯:在一切理论成就中,未必再有像17世纪下叶微积分的微积分的发现那样被看作人类精神的最高胜利了。
如果在某个地方我们看到人类精神的纯粹的和唯一的功绩,那就正是这里.华罗庚:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之迷,日用之繁,无处不用数学。
张顺燕:微积分是人类的伟大结晶,它给出了一整套科学方法,开创了科学的新纪元,并因此加强和加深了数学的作用。
……有了微积分,人类才有能力把握运动和过程;有了微积分,就有了工业革命,有了大工业生产,也就有了现代的社会。
微积分的基本解法引言微积分是数学中的一门重要学科,用于研究变化与积累的关系。
它是现代科学和工程学的基石,对于解决许多实际问题具有重要意义。
本文将介绍微积分的基本解法。
一、导数的计算导数是微积分的重要概念,表示函数在某一点处的变化率。
计算导数的方法有以下几种:1.极限法:通过取极限的方式计算导数,简洁常用。
例如,对于函数f(x)=3x^2-2x+1,可使用极限法计算其导数为f'(x)=6x-2.1.极限法:通过取极限的方式计算导数,简洁常用。
例如,对于函数f(x)=3x^2-2x+1,可使用极限法计算其导数为f'(x)=6x-2.1.极限法:通过取极限的方式计算导数,简洁常用。
例如,对于函数f(x)=3x^2-2x+1,可使用极限法计算其导数为f'(x)=6x-2.2.基本函数的导数:基本函数的导数有固定的公式,例如多项式函数导数的计算公式为求每一项的导数,再相加。
其他常见函数的导数计算公式如指数函数、对数函数、三角函数等,通过记忆这些公式可以快速计算函数的导数。
2.基本函数的导数:基本函数的导数有固定的公式,例如多项式函数导数的计算公式为求每一项的导数,再相加。
其他常见函数的导数计算公式如指数函数、对数函数、三角函数等,通过记忆这些公式可以快速计算函数的导数。
2.基本函数的导数:基本函数的导数有固定的公式,例如多项式函数导数的计算公式为求每一项的导数,再相加。
其他常见函数的导数计算公式如指数函数、对数函数、三角函数等,通过记忆这些公式可以快速计算函数的导数。
3.隐函数求导:对于隐函数,可以通过求偏导数的方式计算导数。
例如,对于方程x^2 + y^2 = 1,可以通过对x和y分别求导得到dy/dx的表达式。
3.隐函数求导:对于隐函数,可以通过求偏导数的方式计算导数。
例如,对于方程x^2 + y^2 = 1,可以通过对x和y分别求导得到dy/dx的表达式。
3.隐函数求导:对于隐函数,可以通过求偏导数的方式计算导数。