人教版-数学-七年级上册-数学七年级上2.1.1《整式(单项式)》导学案
- 格式:doc
- 大小:105.50 KB
- 文档页数:4
人教版七年级上册数学导学案(一)导学内容:1、2章知识点第一章有理数1. 有理数包括 和 ;整数包含: 、 、 ;分数包含: 、 。
正整数和正分数通称为正有理数,负整数和负分数通称为负有理数。
2. 正数都比0大,负数都比0小, 既不是正数也不是负数。
3. 正数和负数经常用来表示 的量。
4. 数轴有三要素: 、 、 。
数轴上的两个点表示的数, 边的总比 边的大。
5. 相反数:只有 不同的两个数互为相反数,a a 和-互为相反数,0的相反数是0。
在任意的数前面添上“ ”号,就表示原来的数的相反数。
6. 绝对值:数轴上表示一个数的点与原点的 叫做该数的绝对值,用“|a|”表示。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
当a 是正数时,a a =;当a 是负数时,a a =-;当a =0时,0a =7. 两个负数比较大小, 大的反而小。
8. 有理数加法法则:·同号两个数相加,取 的符号,并把绝对值相加。
·异号的两个数相加,绝对值不等时,取绝 的符号,并用减去 。
互为相反数的两数相加得 .·一个数同0相加仍得这个数加法交换律:a b b a +=+加法结合律:()()a b c a b c ++=++9. 有理数减法法则:减去一个数等于 这个数的 。
10. 有理数乘法法则:两数相乘,同号得 ,异号得 ,并把绝对值相乘。
任何数与0相乘积仍得 。
11. 倒数:乘积是1的两个数互为 。
一般地,数a 的倒数是 (a )0≠. 12. 乘法交换律:ab ba =乘法结合律:()()ab c a bc =乘法分配律:()a b c ac bc +⨯=+13. 有理数除法法则:·除以一个不等于0的数,等于乘这个数的 。
·两个有理数相除,同号得 ,异号得 ,并把相除。
0除以任何数都得0,且0不能作除数。
14. 有理数的乘方:求n 个 因数a 的积的运算叫做乘方,乘方的结果叫做幂。
第二课时单项式一、教学目标(一)学习目标1.理解单项式的概念,能正确书写单项式.2.理解单项式的系数和次数的概念.3. 能准确的找出单项式的系数和次数,会用单项式表示实际问题中简单的数量关系. (二)学习重点1.能熟练的运用规X的式子表示实际问题中的数量关系.2.单项式的有关概念.(三)学习难点1.用含字母的式子规X表示实际问题中的数量关系.2.负系数的确定以及准确的确定一个单项式的次数.二、教学设计(一)课前设计(1)表示数或字母的乘积形式的式子叫做单项式.特别地,单独一个数或一个字母也是单项式.(2)单项式中的数字因数叫做这个单项式的系数.(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数.单独一个数字的次数为 0 .(1)下列各式中单项式的个数是()3 x ,1x+,52-,4a-,0.72xy,πA.2 B.3 C.4 D.5 【知识点】单项式的定义.【解题过程】解:3x分母含有未知数,不是;1x+不是数或字母的积,不是;剩余四个是单项式,选C.【思路点拨】按单项式的定义进行判断.【答案】C.(2)单项式22x yz -的系数、次数分别是( ),,,4【知识点】单项式的系数与次数.【解题过程】解:22x yz -的系数是-1,次数是2+1+2=5,选C.【思路点拨】按单项式的系数与次数的定义进行确定.【答案】C. (3)单项式372ab -的系数是,次数是. 【知识点】单项式的系数与次数. 【解题过程】解:372ab -的系数是72-,次数是4. 【思路点拨】按单项式的系数与次数的定义进行确定. 【答案】系数是72-,次数是4. (4)单项式22n x y -与4a b 的次数相同,则n =.【知识点】单项式次数.【解题过程】解:22nx y -的次数是2n +,4a b 的次数是5,所以25n +=,3n =. 【思路点拨】按单项式次数的定义进行确定.【答案】3n =.(二)课堂设计(1)字母表示数的意义.(2)代数式的书写注意的几个问题.(3)列式表示数量关系的方法、步骤.2.问题探究探究一 单项式的有关概念●活动① 回顾列式表示数量关系师问: 用含有字母的式子填空,观察列出的式子有何特点?(1)边长为a 的正方体的表面积为,体积是.(2)铅笔的单价是x 元,圆珠笔的单价是铅笔的单价的2.5倍,圆珠笔的单价是元.(3)一辆汽车的速度是v 千米/时,它小时行驶的路程是千米.(4)数n 的相反数是.学生独立完成,老师课堂巡视,关注中下程度的学生,个别指导.学生举手抢答.【设计意图】通过学生列式,复习书写的规X 和列式解决实际问题的方法和步骤. ●活动② 整合旧知,探究单项式的概念★我们来看引言和例1中的式子:100t ,0.8p ,mn ,2a h ,n -.师问:这些式子中的运算都有哪些共同特点?生答:这些式子都是数与字母、字母与字母之间的乘法运算,它们都是数或字母的乘积. 师问:它们各表示什么意义?生答:100t 表示100·,0.8p ·p ,2a h 表示1·2a ·h ,n -表示-1·n .师问:像这样的式子都是数或字母的乘积运算形式,所以这样的式子叫什么?生答:像这样的式子就叫单项式,还规定单独的一个数或一个字母也是单项式. 师问:单项式定义中应抓住哪些关键特征理解?生答:学生讨论并交流汇报展示总结 :单项式的特征:1.一种运算----乘法运算;2.三种形式:①数与字母的乘积,②字母与字母的乘积,③单独的数或字母.师问:这些式子哪些是单项式,哪些不是?为什么?(1) 2x y -; (2) 5x - ; (3) 4m ; (4) 5a b + ; (5)-1.生答:(2)、(5)是单项式,(1)(3)(4)不是,因为(2)能写成数或字母的乘积形式,(5)是单独一个数,(1)(3)(4)不能写成数或字母的乘积形式.师问:如何判断一个式子是否是单项式?生答:关键看这个式子能不能写成数或字母的乘积形式.师问:0是单项式吗?π是字母吗?π是单项式吗?生答:0和π都是单项式,π不是字母. 追问:5x -是什么数与字母的乘积?4m为什么不是单项式?他们的区别是什么? 学生举手抢答.总结:单项式的特征:1.一种运算----乘法运算;2.三种形式:①数与字母的乘积②字母与字母的乘积③单独的数或字母.【设计意图】正确理解单项式的定义以及准确判断一个式子是否是单项式的方法. ●活动③师问:在书写单项式时我们应怎样书写才简洁、美观、规X ?生答:学生小组讨论,再分组回答交流.归纳:老师在学生交流的基础上进行归纳总结强调单项式的书写.① 数与字母、字母与字母相乘一般要省略乘号或者用·表示,如a b ⨯表示ab 或·a b . ②数与字母相乘时,数必须写在字母前面,当这个数为1时可以省略不写,如1ab 表示为ab .当这个数是-1时,只省略1,但“负号”不能省略,如-1ab 表示为 ab -.当这个数是带分数时必须把这个数化为假分数,如235ab -应表示为175ab -. ③式子中出现除法运算时,必须按分数形式来写,如3m ÷应表示为3m . 【设计意图】让学生知道正确规X 的书写单项式使式子更加规X 、简洁.探究二 理解单项式的系数和次数的概念★▲●活动①(探究单项式的系数和次数)师问:什么叫做单项式的系数?生答:单项式中的数字因数叫做单项式的系数,如100t ,0.8p ,mn ,2a h ,n -,2r π的系数分别是100、0.8.1.1.-1.π.师问:我们在指出单项式的系数时应注意哪些?生答:①系数要包含前面的性质符号,②只含字母的单项式的系数为1或-1,③π是数,不能看作字母,常数项没有系数.师问:什么是单项式的次数?生答:单项式中所有字母的指数和.师问:在单项式的次数中我们应该抓哪些关键词理解?生答:学生讨论并交流展示总结:①所有字母的指数和,不要漏掉字母指数为1的情况;②单独一个字母的指数是1;③次数只与字母有关;④单独的一个非零数规定次数为0;⑤单项式根据次数命名的读作几次单项式.【设计意图】通过师生互动加深对单项式的系数和次数的理解.探究三会用单项式表示实际问题中简单的数量关系,并能准确的找出单项式的系数和次数★▲●活动①例1.用单项式填空,指出它们的系数和次数,并正确读出.(1)每包书有12册,n包书有册.(2)底边长为a cm,高为h cm的三角形的面积是2cm.(3)棱长为a的正方体的体积是.(4)一台电视机原价b元,现按原价的9折出售,这台电视机现在售价为元.(5)一个长方形的长为0.9 cm,宽是b cm,这个长方形的面积是cm2.【知识点】单项式表示数量关系,准确判断系数和次数【解题过程】解:(1)12n,系数12,次数1,读作一次单项式;(2)12ah,系数12,次数2次,读作二次单项式;(3)3a b,b,系数0.9,次数1,读作一次单项式.【思路点拨】按照实际问题中数量关系规X写出单项式,再根据单项式的有关概念指出系数和次数.【答案】(1)12n ,系数12,次数1,读作一次单项式;(2)12ah ,系数12,次数2次,读作二次单项式;(3)3a b ,b ,系数0.9,次数1,读作一次单项式. b b 的一个其他的含义吗?总结:用字母表示数后,同一个式子可以表示不同的含义如例3中的(4)和(5). ,错误的改正过来.(1)单项式2xy -的系数是0,次数是2.(2)单项式722a 的系数是2,次数是9. (3)单项式23n x y -的系数是23-,次数是1n +. 【知识点】单项式的系数和次数.【解题过程】解:(1)错误,系数-1,次数3;(2)错误,系数72,次数2;(3)正确.【思路点拨】按单项式的系数和次数的特征进行判断.【答案】(1)错误,系数-1,次数3,(2)错误,系数72,次数2,(3)正确.【设计意图】进一步熟练准确指出单项式的系数和次数.●活动②例2:若2(72)b a x y +是关于x 、y 的五次单项式,系数为16,求a 和b 的值. 【知识点】单项式的系数和次数.【解题过程】解:因为2(72)b a x y +是关于x 、y 的五次单项式.所以25b +=, 3b =, 又因系数为16, 所以7216a +=, 所以2a =【思路点拨】根据系数和次数的定义分别建立两个方程,从而求解.【答案】2a =, 3b =.练习:如果单项式32nx y -与单项式42a b 的次数相同,则n =. 【知识点】单项式的系数和次数.【解题过程】解:因为两个单项式的次数相同.所以342n +=+, 所以3n =.【思路点拨】根据次数相同建立方程.【答案】3n =.【设计意图】进一步熟练准确指出单项式的系数和次数,培养学生逆向思维.知识梳理(1)单项式的判断需要注意:①数或字母的积;②单独的一个数或一个字母也是单项式;③式子中不含“+、-”,分母中不含未知数.(2)单项式的系数、次数的确定需要注意:①次数是指所有字母指数的和;②系数是指单项式中的数字因数.重难点归纳:(1)单项式的判定方法:数或字母的乘积形式,分母中不含字母(2)单项式的系数:单项式中的数字因数,特别注意包括前面的符号.(3)单项式的次数确定:所有字母的指数和.。
2.1整式--------单项式教学目标:知识与能力1.理解单项式及单项式系数、次数的概念;2.会准确迅速地确定一个单项式的系数和次数;3.能用单项式表示具体问题中的数量关系.过程与方法经历学习单项式的过程,初步培养学生观察、分析、抽象、概括等思维能力及应用意识。
情感、态度与价值观:1、通过交流、研讨活动,培养学生主动与他人合作的意识。
2、通过用含有字母的式子描述现实世界的数量关系,认识到它是解决问题的重要的数学工具之一。
教学重难点:重点:理解单项式及单项式系数、次数的概念;会准确迅速地确定一个单项式的系数和次数。
难点:单项式概念的建立。
教学过程:一、情境导入青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答下列问题:列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?1.思考:(1)若正方体的边长为a,则正方体的表面积是________;体积是________.(2)铅笔的单价是x元,钢笔的单价是铅笔单价的2.5倍,则钢笔的单价是________元.(3)一辆汽车的速度是v千米/时,行驶t小时所走过的路程为________千米.(4)设n表示一个数,则它的相反数是________;2.观察所列式子包含哪些运算,有何共同的运算特征.(学生讨论回答)二、合作探究探究点一:单项式的相关概念(学生讨论完成)【类型一】单项式的判断:判断下列各式是否是单项式,是的打√,不是的打×,并说明理由。
(1)m (2)-9 (3)-2xy (4)x+1 (5)2a-b(6)x/3 (7)3ab/2 (8)(9)2ab/x(10)3ab/【类型二】确定单项式的系数和次数:解析:单项式的系数就是单项式中的数字因数;单项式的次数就是单项式中所有字母指数的和,只要将这些字母的指数相加即可.方法总结:(1)当单项式的系数是1或-1时,“1”通常省略不写;(2)单项式的系数是带分数时,通常写成假分数.单项式的系数包括前面的符号.(3)π是圆周率,是一个确定的数,不是字母.方法总结:1、在一个单项式中,所有变数字母的指数的和才叫做单项式的次数。
2.1 整式(1)单项式(教学设计)一、教学目标1.理解整式的概念,并学会区分单项式和多项式;2.能够用字母表示单项式,并根据具体情境解释单项式的含义;3.掌握单项式的基本运算规则,并能够进行单项式的加减运算;4.了解单项式的系数、次数和字母乘幂的含义。
二、教学内容1.整式的概念介绍;2.单项式的介绍和特点;3.单项式的加法和减法运算;4.单项式的系数、次数和字母乘幂的解释和应用。
三、教学重点和难点1.教学重点:单项式的概念和特点,单项式的基本运算规则;2.教学难点:单项式的系数、次数和字母乘幂的解释和应用。
四、教学准备1.教材:人教版七年级上学期数学教材;2.教具:黑板、彩色粉笔。
五、教学过程1. 导入新课引导学生回顾上节课所学的代数式的概念,通过提问让学生找出代数式中的规律,引出整式的概念。
2. 学习整式的概念使用黑板上的教学示意图,给出整式的定义,并解释整式中包含的一些基本概念,如项、单项式和多项式。
通过示例引导学生理解整式的概念,并归纳总结整式的特点。
3. 学习单项式的概念和特点解释单项式的定义,给出单项式的示例,引导学生观察单项式的特点,包括只有一个项、项之间没有加减号等。
让学生进一步理解单项式的含义,并能够用字母表示一个单项式。
4. 学习单项式的加法和减法运算讲解单项式的加法和减法运算规则,并通过具体的例子进行示范演示。
引导学生积极参与讨论,操练单项式的加减运算。
5. 学习单项式的系数、次数和字母乘幂的概念解释单项式中系数的含义,并通过具体例子进行解释。
引导学生理解系数的概念,并能够根据单项式的表达式判断系数。
介绍单项式的次数和字母乘幂,并结合例子进行讲解。
6. 练习和拓展让学生在课本上完成相关的练习题,巩固和拓展所学的知识。
教师提供指导,并及时给予反馈。
7. 小结与作业布置总结本节课的重点内容,并布置相关的作业。
要求学生在家完成作业,并带到下节课上进行讲解和订正。
六、教学反思本节课的教学设计注重引导学生主动思考和参与讨论,通过示例和练习使学生能够掌握单项式的概念和基本运算规则。
第一章整式代数式教案设计课型:新授授课时间:教学目标:【知识与技能】1.理解字母表示数的意义,会用含有字母的式子表示实际问题中的数量关系。
2.理解单项式、单项式的次数,系数等概念,会指出单项式的次数和系数。
【过程与方法】1.经历列式表示实际问题中的数量关系,发展符号感。
【情感态度】1.体会字母表示数在实际问题中的数量关系。
【教学重点】1.字母表示数解决实际问题。
【课前准备】导学案教学过程:一、情境设计、导入新课(时控6分钟)欣赏一组图片,了解图片背景问题1:青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100km/h.列车在冻土地段行驶时,根据已知数据求出列车行驶的路程.(1)2h行驶的路程是多少?3 h呢?8 h呢?t h呢? ____________(2)字母t表示时间有什么意义?如果用v表示速度,列车行驶的路程是多少? ____________(3)回顾以前所学的知识,你还能举出用字母表示数或数量关系的例子吗? ____________问题2:怎样分析数量关系并用含有字母的式子表示数量关系呢? ____________二、典例探究(时控30分钟)【例1】(1)苹果原价是每千克x元,按8折优惠出售,用式子表示现价; ____________ (2)某产品前年的产量是a件,去年的产量是前年产量的m倍,用式子表示去年的产量; ____ (3)一个长方体包装盒的长和宽都是a cm,高是h cm,用式子表示它的体积; ____________ (4)数a的相反数是____________(5)比a的一半大3的数____________(6)a与b的差的c倍____________(7)a的一半与b的平方的差____________(8)当x=2,y=-1时,代数式|xy 的值是____________|x||【例2】(1)一条河的水流速度是2.5km/h,船在静水中的速度是v km/h,用式子表示船在这条河中顺水行驶和逆水行驶时的速度;分析:船在河流中行驶时,船的速度需要分两种情况讨论:顺水行驶时,船的速度=船在静水中的速度+水流速度;逆水行驶时,船的速度=船在静水中的速度-水流速度.(2)买一个篮球需要x元,买一个排球需要y元,买一个足球需要z元,用式子表示买3个篮球、5个排球、2个足球共需要的钱数;(3)如图(a)(图中长度单位:cm),用式子表示三角尺的面积;(4)如图(b)是一所住宅的建筑平面图(图中长度单位:m),用式子表示这所住宅的建筑面积.三、对应练习(时控30分钟)(1)观察下列各式:x,2x2,3x3,4x4,…,按此规律,第个n式子是(2)一个两位数,十位上的数字为a,个位上的数字为b,则这个两位数为课本56页练习四、作业布置(时控5分钟)五、课后反思第一章有理数代数式导学案班级:姓名:学习目标:1.理解字母表示数的意义,会用含有字母的式子表示实际问题中的数量关系。
2.1 整式 第2课时 单项式一、导学 1.课题导入:我们的学习引言与上节例1中出现了如下一些式子:100t,0.8p,mn,a 2h,-n,这些式子有什么特点呢?它叫做什么式呢?板书课题:单项式. 2.三维目标: (1)知识与技能①能叙述并理解单项式及单项式的系数,次数的概念. ②会正确确定一个单项式的系数和次数. (2)过程与方法通过观察式子探究单项式的意义,学会归纳和总结. (3)情感态度 培养应用数学的意识. 3.学习重、难点:重点:单项式、单项式的系数、次数的意义. 难点:确定单项式的次数和系数. 4.自学指导:(1)自学内容:教材第56页“思考”至第57页“思考”上面的内容. (2)自学时间:8分钟.(3)自学要求:仔细阅读课文,圈点重要内容和提示,结合例题进一步理解概念. (4)自学参考题纲:①什么叫做单项式?什么叫做单项式的系数和次数?式子是数字或字母的积,系数是单项式中的数字因数,次数是单项式中的所有字母的指数和.②下列各式是不是单项式?为什么?23, -m, 0, 2x , 12a 2b, 213x +, -2x y πa 3πabc, (π-3)aR 2213x +和(π-3)aR 2因为含有加减号,所以不是单项式,而2x 和-2x yπa 因为分母中有字母,所以也不是单项式. ③填表二、自学学生结合自学指导进行自学.三、助学1.师助生:(1)明了学情:教师巡视课堂了解学生学习情况,针对性地抽查部分学生的自学提纲完成情况.(2)差异指导:对个别学生不能正确确定系数、指数的情况进行点拨指导.2.生助生:引导学生相互交流帮助解决一些疑难问题.四、强化1.概念:单项式;单项式的系数;单项式的次数.2.注意事项:(1)圆周率π是常数.(2)当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等.(3)系数是-1时,1省略不写,但“-”号不能省.(4)单项式次数只与字母指数有关.3.练习:(1)判断下列各式是否是单项式.如果不是,请说明理由;如果是,请指出它的系数和次数.x+1(×);1x(×) ;πr2(√);-32a2b(√);22(2)3x y-(√)第三、四、五个式子是数字与字母乘积的形式所以是单项式. 系数和次数:πr2:系数:π;次数:2-32a2b:系数:-32;次数:3 22(2)3x y-:系数:2(2)3-;次数:3.第一个式子有加号,第二个式子分母里有字母,都不是单项式. (2)下面的判断是否正确?-7xy 2的系数是7;(×)-x 2y 3与x 3没有系数;(×) -ab 3c 2的次数是1+3+2 = 6(√);-a 3的系数是-1;(√) -32x 2y 3的次数是7;(×)13πr 2h 的系数是13.(×) 五、评价1.学生的自我评价(围绕三维目标):学生自我评价本节课的学习表现和收获以及存在的不足.2.教师对学生的评价:(1)表现性评价:教师对本节课学习中大家在自主学习和交流学习中的表现进行总结. (2)纸笔评价:课堂评价检测. 3.教师的自我评价(教学反思):本课时内容是概念学习课,教学过程要重点展示概念的形成过程,由学生观察、分析、比较,找出单项式的共同特点,教学时可充分让学生利用小组交流的方式探索出法则,并在应用时互相学习.一、基础巩固(第1、2、3题每题10分,第4题20分,共50分) 1.(40分)在代数式3ab ,x,xy-1,1, 2a b ,3x 中,单项式有3ab,x,1. 2.(30分)填表:二、综合应用(每题15分,共30分)3.(20分)(1)若2x 2y m-2a 是6次单项式,试求m 的值; (2)若(m-5)x 2y|m|-2a 是6次单项式,试求m 的值.解:(1)∵2+m-2+1=6,∴m=5.(2)∵|m|-2=3且m≠5,∴m=-5.三、拓展延伸(20分)4.(10分)下列单项式:-x,2x2,-3x3,4x4,…(1)根据它们的排列规律,写出第101,102个单项式;(2)写出第n个单项式的表达式.解:(1)-101x101,102x102.(2)n(-x)n.4.2 直线、射线、线段(二)1.会用尺规画一条线段等于已知线段;2.会比较两条线段的长短;3.理解线段中点的概念,了解“两点之间,线段最短”的性质.重点:线段的中点概念,“两点之间,线段最短”的性质;难点:画一条线段等于已知线段.一、温故知新1.过A,B,C三点作直线,小明说有三条,小颖说有一条,小林说不是一条就是三条,你认为__小林的说法是对的.二、自主学习问题:现有一根长木棒,如何从它上面截下一段,使截下的木棒等于另一根木棒的长?上面的实际问题可以转化为下面的数学问题:1.作一条线段等于已知线段,现在我们来解决这个问题.作法:(1)作射线AM;(2)在AM上截取AB=a.则线段AB即为所求.应用:已知线段a,b,求作线段AB=a+b.解:(1)作射线AM;(2)在AM上顺次截取AC=a,CB=b.则AB=a+b即为所求.做一做:作线段AB=a-b.2.比较两条线段的长短两条线段可能相等,也可能不相等,那么怎样比较两条线段的长短呢?我们先来回答下面的问题.怎样比较两个同学的身高?一是用尺子测量;二是站在一起比(脚在同一高度).如果把两个同学看成两条线段,那么比较两条线段就有两种方法:(1)度量法:用刻度尺分别量出两条线段的长度,从而进行比较.(2)叠合法:把一条线段移到另一条线段上,使一端对齐,从而进行比较.(如图)AB<CD AB>CD AB=CD3.线段的中点及等分点如图(1),点M 把线段AB 分成相等的两条线段AM 与BM ,点M 叫做线段AB 的中点; 记作AM =MB 或AM =MB =12AB 或2AM =2MB =AB .如图(2),点M ,N 把线段AB 分成相等的三段AM ,MN ,NB ,点M ,N 叫做线段AB 的三等分点.类似地,还有四等分点,等等.4.线段的性质请同学们阅读课本P128的思考. 结论:两点的所有连线中,线段最短.简单地说成:两点之间,线段最短.你能举出这条性质在生活中的一些应用吗? 两点的距离的定义:连接两点间的线段的长度.注意:距离是用“数”来衡量的,它是线段的长度,而不是线段本身.1.课本P128练习1,2,3.2.在直线上顺次取A ,B ,C 三点,使 AB =4 cm ,BC =3 cm ,点O 是线段AC 的中点,则线段OB 的长度是( C )A .2 cmB .1.5 cmC .0.5 cmD .3.5 cm3.已知线段AB =5 cm ,C 是直线AB 上一点,若BC =2 cm ,则线段AC 的长为7_cm 或3_cm.1.画一条线段等于一条已知线段. 2.怎样比较两条线段的长短? 3.线段的性质是什么? 4.什么是两点的距离?3绝对值【知识与技能】1.借助数轴,初步理解相反数,绝对值的概念,能求一个数的相反数和绝对值.2.会利用绝对值比较两个负数的大小.【过程与方法】借助数轴,认识相反数和绝对值,通过应用相反数和绝对值解决实际问题,体会相反数、绝对值的意义和作用,培养学生的数感和符号感.【情感态度】结合本课教学特点,向学生进行热爱生活教育和美育渗透,激发学生观察、探究、发现数学问题的兴趣.【教学重点】会求一个数的相反数和绝对值,会利用绝对值比较两个负数的大小.【教学难点】会利用绝对值比较两个负数(尤其是两个负分数)的大小.一、情境导入,初步认识“南辕北辙”这个成语讲的是古代某人要去南方,却向北走了起来,有人预言他无法到达目的地,他却说“我的马很快,车的质量也很好”,请问他能到达目的地吗?1.“马很快,车质量好”会出现什么结果?2.同学们能用数轴来描述这个成语吗?【教学说明】从学生非常熟悉的“南辕北辙”这个成语引入,再让学生用数轴来描述这个成语,有利于学生从直观形象上认识相反数.二、思考探究,获取新知1.相反数的代数意义和几何意义问题1 3与-3有什么相同点?32与-32,5与-5呢?你还能列举两个这样的数吗?你发现了什么?由此你能得到什么结论?【教学说明】由学生观察、思考,再与同伴进行交流,得出相反数的概念,教师加以规范.【归纳结论】如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数(代数意义).注意:0的相反数是0.问题 2 将上面三组数用数轴上的点表示出来,每组数所对应的点在数轴上的位置有什么关系?【教学说明】学生动手操作、观察、分析,再与同伴进行交流,得出结论.【归纳结论】在数轴上,表示互为相反数的两个点,位于原点的两侧,且与原点的距离相等.(几何意义)2.绝对值的概念及求法在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值.例如,+2的绝对值等于2,记作|+2|=2;-3的绝对值等于3,记作|-3|=3.问:(1)如果a表示有理数,那么|a|有什么含义?(2)互为相反数的两个数的绝对值有什么关系?【教学说明】使学生能准确地理解绝对值的意义和求法.问题3 求下列各数的绝对值:-21,49,0,-7.8,-21.【教学说明】学生独立完成,再与同伴进行交流,进一步掌握绝对值的求法.问:一个数的绝对值与这个数有什么关系?通过这个问题我们能得到绝对值的性质.【归纳结论】正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.用字母表示为:a (a>0)|a| 0 (a=0)-a (a<0)3.用绝对值比较两个负数的大小问题4 (1)在数轴上表示下列各数,并比较它们的大小:-1.5,-3,-1,-5.(2)求出(1)中各数的绝对值,并比较它们的大小;(3)你发现了什么?【教学说明】先回顾前面学习的利用数轴比较有理数的大小,再利用绝对值比较它们的大小,有利于学生掌握不同的方法.【归纳结论】两个负数比较大小,绝对值大的反而小.问题5 比较下列每组数的大小:(1)-1和-5;(2)-56和-2.7.【教学说明】学生独立完成,有利于学生掌握所学新知.三、运用新知,深化理解1.-5的相反数是,绝对值是 .2.绝对值小于3的整数有个,分别是 .3.用>、<、=号填空.-(-5) 0,-(+3) 0,|+8||-8|,-(-5) -(-8).4.在数轴上距离原点2个单位长度的点表示什么数?5.在数轴上表示下列各数及其相反数,并求它们的绝对值:-32,6,-3.6.比较下列各组数的大小:(1)-110,-27;(2)-0.5,-|23|;(3)0,| -23|;(4)|-7|,|7|.(1)小李在送第几位乘客时行车里程最远?(2)若汽车耗油量为0.1L/km,这天下午汽车共耗油多少升?【教学说明】学生自主完成,检测对相反数、绝对值有关知识的掌握情况,加深对新学知识的理解.对学生的疑惑及时指导,并进行强化.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.5 5 2. 5 ±2 ±1 03.>< = <4. ±25.|-32|=32|6|=6 |-3|=36.(1)-110>-27(2)-0.5>-2 3(3)0<|-23|(4)|-7|=|7|7.(1)小李在送最后一名乘客时行车里程最远,是26km;(2)总耗油量为:0.1×(|+15|+|-3|+|+14|+|-1|+|+10|+|+4|+|-26|)=7.3(L).四、师生互动,课堂小结1.师生共同回顾相反数的意义,绝对值的定义和性质等知识点.2.通过这节课的学习,你掌握了哪些新知识?请与同伴交流.【教学说明】教师引导学生回顾知识点进行知识的提炼和归纳.【板书设计】1.布置作业:从教材“习题2.3”中选取.2.完成练习册中本课时的相应作业.本节课借助数轴来理解相反数、绝对值的概念,通过类比、观察、思考培养学生动手、动脑习惯,加深对所学知识的认识.。
2.1 整式 (1)教课目的和要求:1.理解单项式及单项式系数、次数的看法。
2.会正确快速地确立一个单项式的系数和次数。
3.初步培育学生察看、剖析、抽象、归纳等思想能力和应意图识。
4.经过小组议论、合作学习等方式,经历看法的形成过程,培育学生自主研究知识和合作沟通能力。
教课要点和难点:要点:掌握单项式及单项式的系数、次数的看法,并会正确快速地确立一个单项式的系数和次数。
难点:单项式看法的成立。
教课方法:分层次教课,讲解、练习相联合。
教课过程:一、复习引入:1、列代数式(1) 若正方形的边长为,则正方形的面积是;(2)若三角形一边长为 a ,而且这边上的高为h,则这个三角形的面积为;(3)若 x 表示正方体棱长,则正方体的体积是;(4)若 m表示一个有理数,则它的相反数是;(5)小明从每个月的零花费中储存x 元钱捐给希望工程,一年下来小明捐钱元。
2、请学生说出所列代数式的意义。
3、请学生察看所列代数式包含哪些运算,有何共同运算特色。
二、讲解新课:1.单项式:由数与字母的乘积构成的代数式称为单项式。
增补,单唯一个数或一个字母也是单项式,如 a,5。
2.练习:判断以下各代数式哪些是单项式?(1) x 1; (2)a bc;(3)b2;(4)-5a b2; (5)y ; (6)-xy2; (7) -5。
23.单项式系数和次数:直接指引学生进一步察看单项式构造,总结出单项式是由数字因数和字母因数两部分构成的。
以四个单项式1 a2h,2πr,a bc,-m为例,让学生说出它3们的数字因数是什么,,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,进而引入单项式次数的看法并板书。
4.例题:例 1:判断以下各代数式是不是单项式。
如不是,请说明原因;如是,请指出它的系数和次数。
①x+1;②1x ;③πr 2;④- 3 a2b。
2答:①不是,由于原代数式中出现了加法运算;②不是,由于原代数式是 1 与x 的商;③是,它的系数是π,次数是2;④是,它的系数是- 3 ,次数2是 3。
《整式 单项式》
学习目标1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
一、创设问题情境:1只青蛙1张嘴 2只眼4条腿 1声扑通跳下水。
2只青蛙,2张嘴 4只眼睛, 8条腿 , 2声扑通跳下水。
n 只青蛙, 张嘴 , 只眼睛, 条腿 , 声扑通跳下水。
1.填空
(1)若正方形的边长为a ,则正方形的面积是 ;
(2)若三角形一边长为a ,并且这边上的高为h ,则这个三角形的面积为 ;
(3)若x 表示正方形棱长,则正方形的体积是 ;
(4)若m 表示一个有理数,则它的相反数是 ;
(5)小明从每月的零花钱中贮存x 元钱捐给希望工程,一年下来小明捐款 元。
2.试说出所列式子的意义。
3.观察所列式子包含哪些运算,有何共同的运算特征。
二、自主学习与合作探究:
(一)自学提纲:
请同学们围绕着“什么叫做单项式?单项式的系数?单项式的次数?”这些问题,自学课文第53页开始到57页“练习”为止。
(二)、自学检测:
1.下列各式:(1) abc; (2) 2a-b; (3)b 2; (4)-5ab 2; (5) a (m+n ); (6)-xy 2; (7)-5;(8)
12x (9)ab=ba;(10)b a
;(11)y 中,是 单项式(填序号) 2. 判断题(对的打√,错的打×)
(1)字母a 和数字1都不是单项式( )
(2)x 3可以看作x 1与3的乘积,所以式子x
3是单项式( ) (3)单项式xyz 的次数是3( )
(4)-3
23y x 这个单项式系数是2,次数是4( ) (5)下列关于42的次数是4( )
(三)、知识点归纳:
叫做单项式, 叫做单项式的系数, 叫做单项式的次数。
特别注意:单独的 或 也叫单项式.
下列写法都不规范:①1x ,应为 ②-1x 应为 ③a ×3应为 ④a ÷2 ⑤ 31x 4
应为
三、巩固与拓展
例1:判断下列各代数式是否是单项式。
如不是,请说明理由;如是,请指出它的系数和次数。
①x +1; ②x 1
; ③πr 2; ④-23
a 2
b 。
解:○1不是,因为
例2:下面各题的判断是否正确?把不正确的改正过来。
①-7xy 2的系数是7; ②-x 2y 3与x 3没有系数; ③-ab 3c 2的次数是0+3+2;
④-a 3的系数是-1; ⑤-32x 2y 3的次数是7; ⑥31πr 2h 的系数是31。
答:○1的判断是错误的,
注意事项:
①圆周率π是常数;
②当一个单项式的系数是1或-1时,“1”通常省略不写,如x 2,-a 2b 等;
③省略1的字母指数别漏掉;
④单项式次数只与字母指数有关。
四、当堂检测
1.填空题
(1)整式3x ,-5
3ab ,t +1,0.12h +b 中,单项式有_________, (2)如图,长方形的宽为a ,长为b ,则周长为_________,面积为_________.
(3)非典时期,同学们积极做网页歌颂白衣战士,一班同学做了x 张,二班比一班的2倍少y 张,二班做了_________张,两个班共做了_________张.
2.选择题
(1)下面说法中,正确的是( )
A .x 的系数为0
B .x 的次数为0
C .
3x 的系数为1 D .3x 的次数为1 (2)下面说法中,正确的是( )
A .xy +1是单项式
B .
xy 1是单项式 C . 12xy 是单项式 D .3xy 是单项式 (3)单项式-ab 2c 3的系数和次数分别是( )
A .系数为-1,次数为3
B .系数为-1,次数为5
C .系数为-1,次数为6
D .以上说法都不对
3.解答题
如图2为园子一角,正方形边长为x ,里面有两个半圆型花池,阴影部分是草坪,求草坪的面积是多少?
课外作业:
1.填空(1)每包书有12册,n 包书有 册;
(2)底边长为a ,高为h 的三角形的面积是;
(3)一个长方体的长和宽都是a ,高是h ,它的体积________;
(4)产量由m 千克增长10%,就达到__________千克;
(5)一台电视机原价a 元,现按原价的9折出售,这台电视机现在的售价为 元;
(6)一个长方形的长是0.9,宽是a , 这个长方形面积是;
(7)有这样一组数字:3,6,9,12,…,第n 个数 。
2.用代数式填空,并判断其是否是单项式。
如不是,请说明理由;如果是,请指出它的系数和次数。
⑴长方形的面积为s,宽为a,则其长为 .
⑵我国去年一户农民平均收入为m 万元,今年比去年增长了20﹪,今年收入为 万元。
⑶一圆形花坛半径为r,则其面积为 。
⑷规定向东为正方向,小明向东走了x 米,花花向西走的路程是小明的y 倍。
则花花走了 米。
⑸体重由b 千克减了5千克之后是 千克。
3、(1)如果单项式
23n a b 的次数是5,求n 的值。
(2)如果22n mx y 是关于x 、y 的5次单项式,且系数是4,求m 、n 的值.
4、2320.55
m x y xy 与
是同次单项式求m 的值。
5、填表
6.请赋予单项式0.85a 一个实际意义..
7.如果21335=n m m x
y x y n 与是同次单项式,( )。