基于ANSYS的之字型微谐振器的仿真分析
- 格式:pdf
- 大小:330.59 KB
- 文档页数:5
1.前期用ANSYS对模型进行动力学分析,然后保存结果文件.rst格式的,然后导入到Vrituallab12中进行声学分析,可能步骤有些长,大家尽量慢慢看,如果有不明白的,或者我的步骤有错误的,大家可以指正,还有我的VL版本是12的,12的版本和以前的微有不同,在后边大家会发现的。
我的Q1728993717.2.进入声学模块:开始—Acoustics—Acoustics Harmonic BEM ;3.导入Ansys分析结果文件.rst格式:文件—Import—默认即可,看好单位,与模型统一;4.更改文件名称,便于后续操作:在特征树中点开Nodes and Elements—右键点其子选项(就是带有齿轮标志那个)—属性—特征属性—更改名称—StructuresMesh.5.提取声学面网格:开始—Structures—Cavity Meshing—插入—Pre/Acoustics Meshers—Pre/Acoustics Meshers—Skin Meshers,出现一下图框,在Grid to Skin 区域选择结构网格即:StructuresMesh,其余都默认不用改,之后点击应用,Close。
6.在次回到声学模块:开始—Acoustics—Acoustics Harmonic BEM ;7.命名声学网格:点开特征树中的Nodes and Elements—右键Skin Meshpar1.—属性—特征属性—改名称—AcousticsMesh;到这步之后为了方便起见,可以将结构网格StructuresMesh隐藏:右键StructuresMesh—Hide/Show;8.设定分析类型:工具—Edit the Model Type Definitions—点击“是”出现对话框如下:按照图所示设置即可;9.设置网格类型:工具—Set Mesh parts Type:之后,在左边选中StructuresMesh,然后点右边的Set as Structures;同理,选中AcousticsMesh点击右边Set as Acoustics;然后确定即可;10.声学网格前处理:插入—Acoustic Mesh Prepocessing set 出现如下:在Mesh Parts 中选声学网格AcousticsMesh—确定即可;11.定义材料:插入—Materials—New Materials—New Fluid Materials按下图选着填写即可:其实就更改个Materials ID为Air 其余就都是默认即可,不用更改什么,然后点击确定。
基于 ANSYS 的振动台模型分析与优化设计振动台模型是一种常用的测试设备,可以模拟真实环境下的振动情况,对产品的耐用性、可靠性、安全性等性能进行测试。
在振动台的设计和优化过程中,借助计算机辅助工程技术,以 ANSYS 为代表的软件平台可以提供全面的分析和优化解决方案,使振动台具有更高的测试精度和可靠性。
一、振动台的原理与分类振动台是一种通过机械震动产生振动的装置,可用于模拟机械、电子、航空、航天、军事等领域中的不同工况和环境条件,以检测产品在振动环境下的耐久性、可靠性和安全性等性能。
振动台主要包括振动源、控制系统、传感器和测试样品等部分。
振动源是产生振动的设备,常见的振源包括电动机、液压马达等。
控制系统可对振动源进行调和,使其实现预设的振动模式。
传感器主要用于测量振幅、频率、相位等振动参数信息。
测试样品则是受试物体,放在振动台上进行振动测试。
振动台按照振动模式的不同,可分为以下几类:1.单轴振动台:振动轴只有一根,能够模拟物体在单个振动方向上的振动情况。
2.多轴振动台:振动轴有两个或以上,可以模拟物体同时在多个方向上的振动情况。
3.模态振动台:模拟物体在不同模态下的振动,它是一种高精度的振动台,可用于研究物体在不同振动模式下的应力、变形等参数。
4.旋转振动台:可以产生物体的径向和轴向振动,常用于模拟飞行器或发动机的振动环境。
二、基于 ANSYS 的振动台模型分析流程在进行振动台的设计和优化时,最重要的是能够准确分析其工作状态下的振动特性,并进行有效的优化设计。
ANSYS 是一种专业化的有限元分析软件,具有高精度和强扩展性等优点,在振动台模型分析时得到了广泛应用。
基于 ANSYS 进行振动台分析的流程如下:1.建立振动台有限元模型,包括振动源、传感器和测试样品等部分,以及相应的约束和加载等边界条件。
2.进行模型预处理,对模型进行网格划分、加载和约束等前置处理步骤。
3.进行模态分析,对模型进行模态特征计算,得到其结构特性和振动特征,比如固有频率、振型等信息。
]ansys谐响应分析7-实例问题描述本实例是对如下图所示的有预应力的吉他弦进行谐响应分析。
形状均匀的吉他弦直径为d ,长为l 。
在施加上拉伸力F1后紧绷在两个刚性支点间,用于调出C 音阶的E 音符。
在弦的四分之一长度处以力F2弹击此弦,要求计算弦的一阶固有频率f1,并验证仅当弹击力的频率为弦的奇数阶固有频率时才会产生谐响应。
几何尺寸:l =710mm c =165mm d =0.254mm材料特性:杨氏模量EX =1.9E5 Mpa ,泊松比PRXY =0.3,密度DENS =7.92E-9Tn/mm 3。
载荷为:F1=84N F2=1N取弹击力的频率范围为从0到2000Hz ,并求解频率间隔为2000/8=250Hz 的所有解,以便观察在弦的前几阶固有频率处的响应,并用POST26时间-历程后处理器绘制出位移响应与频率的关系曲线。
一.选取菜单路径Utility Menu | File | Change Jobname ,将弹出Change Jobname (修改文件名)对话框,如图13.2所示。
在Enter new jobname (输入新文件名)文本框中输入文字“CH13”,然后单击对话框中的ok 按钮,完成对本实例数据库文件名的修改。
选取菜单路径Main Menu | Preference ,将弹出Preference of GUI Filtering (菜单过滤参数选择)对话框,单击Structural(结构)选项使之被选中,以将菜单设置为与结构分析相关的选项。
单击按钮,完成分析范畴的指定。
二.定义单元类型1.选取菜单路径Main Menu | Preprocessor | Element Type |Add/Edit/Delete ,将弹出Element Types (单元类型定义)对话框。
单击对话框中的按钮,将会弹出Library of Element Types (单元类型库)对话框2.在图13.4所示的对话框左边的滚动框中单击“Structural Link ”,选择结构连接单元类型。
1.前期用ANSYS寸模型进行动力学分析,然后保存结果文件.rst格式的,然后导入到Vritual Iab12中进行声学分析,可能步骤有些长,大家尽量慢慢看,如果有不明白的,或者我的步骤有错误的,大家可以指正,还有我的VL版本是12的,12的版本和以前的微有不同,在后边大家会发现的。
我的Q1728993717.2.进入声学模块:开始一Acoustics—Acoustics Harm on ic BEM ;3.导入Ansys分析结果文件.rst格式:文件一Import —默认即可,看好单位,与模型统一;4.更改文件名称,便于后续操作:在特征树中点开Nodes and Eleme nts —右键点其子选项(就是带有齿轮标志那个)一属性一特征属性一更改名称一StructuresMesh.5.提取声学面网格:开始一Structures —Cavity Meshing —插入一Pre/Acoustics Meshers —Pre/AcousticsMeshers —Ski n Meshers,出现一下图框,在Grid to Skin区域选择结构网格即:StructuresMesh,其余都默认不用改,之后点击应用,Close。
6.在次回到声学模块:开始一Acoustics—Acoustics Harm on ic BEM ;7.命名声学网格:点开特征树中的Nodes and Elements —右键Skin Meshpar1.—属性一特征属性一改名称一AcousticsMesh ;到这步之后为了方便起见,可以将结构网格StructuresMesh 隐藏:右键StructuresMesh —Hide/Show ;8.设定分析类型:工具一Edit the Model Type Defi niti ons —点击"是”出现对话框如下:之后,在左边选中 StructuresMesh , 然后点右边的 Set as Structures ;同理,选中AcousticsMesh 点击右边 Set as Acoustics然 后确定即可;10. 声学网格前处理:插入 一Acoustic Mesh Prepocessing set 出现如下:在Mesh Parts 中选声学网格AcousticsMesh —确定即可;按照图所示设置即可;9.设置网格类型:工具一 Set Mesh parts Type :11. 定义材料:插入一Materials — New Materials — New Fluid Materials 按下图选着填写即可:就都是默认即可,不用更改什么,然后点击确定。
声 学 技 术 Technical Acoustics基金项目:适配子乐甫波生物传感器的构建方法及响应机理研究(1077 4159)作者简介:付琛1982年出生, 男 湖南岳阳, 汉族, 中国科学院声学所在读研究生,研究方向为声表面波传感器与滤波器FEM/BEM 分析; 通信作者:何世堂,heshitang@ 。
声表面波谐振器的ANSYS 分析付琛, 李红浪,柯亚兵,何世堂(中国科学院声学研究所,北京,100190)Surface acoustic wave resonators analysis by ANSYSFU Chen , LI Hong-lang ,KE Ya-bing ,HE Shi-tang(Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190,,China)1 引 言随着移动通讯的发展,对声表面波(Surface acoustic wave, SAW)器件的设计要求越来越高,早期对SAW 器件的设计的唯象模型的方法因为采取了较多的近似,模拟的结果精确度不高。
随着计算机技术的迅猛发展,有限元法 (Finite element method, FEM)和有限元/边界元方法 (Boundary element method, BEM)的方法能够采用数值方法有效地求解波动方程,而且能考虑到多种效应,能够精确地仿真SAW 器件,因此越来越广泛地应用于声表面波器件的设计中。
其中ANSYS 作为一种商业有限元分析软件由于它具有良好的用户界面,强大的求解器和通用性等优点而成为进行SAW 器件的仿真的一个热点[1] [2]。
2 SAW 谐振器分析2.1 SAW 谐振器结构如图1是一个单端口SAW 谐振器的结构示意图。
由IDT 电极,左反射栅,右反射栅和基底压电介质组成。
反射栅的指条宽度和指条间隔与IDT 的都是相等的。
SIwave电源完整性仿真教程V1.0目录1软件介绍 (2)2.1功能概述 (2)2.2操作界面 (3)2.3常用热键 (4)2仿真的前期准备 (5)2.1软件的准备 (5)2.2 PCB文件导入 (5)2.2.1 Launch SIwave方式 (5)2.2.1 ANF+CMP方式 (6)2.3 PCB的Validation Check (8)2.4 PCB叠层结构设置 (11)2.5仿真参数设置 (12)2.6 RLC参数修正 (13)2.6.1 RLC的自动导入 (13)2.6.2检视自动导入的RLC默认值 (15)2.6.3批量修改RLC值 (18)2.6.4套用大厂的RLC参数 (19)3 SIwave仿真模式 (20)3.1谐振模式 (20)3.2激励源模式 (25)3.3 S参数分析 (30)4实例仿真分析 (31)4.1从Allegro中导入SIwave (31)4.2 Validation Check (32)4.3叠层结构设置 (33)4.4无源参数RLC修正 (33)4.5平面谐振分析 (36)4.6目标阻抗(Z参数)分析 (39)4.7选取退耦电容并添加 (43)4.8再次运行仿真查看结果 (44)5问题总结 (46)5.1 PCB谐振的概念 (46)5.2为何频率会有实部和虚部 (47)5.3电容的非理想特性影响 (47)5.4地平面完整与回流路径连续 (48)5.5电源目标阻抗 (48)1软件介绍2.1功能概述Ansoft SIwave主要用于解决电源完整性问题,采用全波有限元算法,只能进行无源的仿真分析。
Ansoft SIwave虽然功能强大,但并非把PCB导入,就能算出整块板子的问题在哪里。
还需要有经验的工程设计人员,以系统化的设计步骤导入此软件检查PCB设计。
主要功能如下:1.计算共振模式在PDS电源地系统结构(层结构、材料、形状)的LAYOUT之前,我们可以计算出PDS电源地系统的共有的、内在的共振模式。
第27卷 第9期计 算 机 仿 真2010年9月 文章编号:1006-9348(2010)09-0088-04基于A N S Y S/C F X耦合的机翼颤振分析卢学成,叶正寅,张陈安(西北工业大学翼型、叶栅空气动力学国防科技重点实验室,陕西西安710072)摘要:在飞行器飞行气动特性的研究中,为避免传统方法进行颤振点预测时的“准模态”假设,能够更加准确地仿真机翼在流场中的真实运动情况,根据C F D/C S D一体化设计思想,采用了A N S Y S/C F X紧耦合算法,对国际标准气动弹性模型A G A R D445.6机翼作了颤振分析,验证性地研究了亚音速和跨音速颤振机理,将仿真计算结果和实验数据进行了比较。
表明耦合计算所得的颤振速度和颤振频率和实验值吻合,在亚音速阶段,机翼颤振主要是机翼的弯曲扭转耦合运动引起,而跨音速阶段则主要是机翼的弯曲运动的不稳定性引起,与理论定性分析得到的结果一致,证明A N S Y S/C F X全耦合的应用为求解非线性流固耦合问题提供了有效的方法。
关键词:弹性变形;颤振;强耦合;流固耦合中图分类号:V211.47 文献标识码:AAC o u p l e dA N S Y S/C F XMe t h o dF o r T h e A G A R D445.6Wi n g F l u t t e r C a l c u l a t i o nL UX u e-c h e n g,Y EZ h e n g-y i n,Z H A N GC h e n-a n(N a t i o n a l K e y L a b o r a t o r y o f A e r o d y n a m i c D e s i g na n dR e s e a r c h,N o r t h w e s t e r nP o l y t e c h n i c a lU n i v e r s i t y,X i'a nS h a n x i710072,C h i n a.)A B S T R A C T:I no r d e r t o a v o i d t h e“q u s i-m o d e”a s s u m p t i o n f o r t h e w i n g f l u t t e r p r e d i c t i o n,a C o u p l e d A N S Y S/C F Xm e t h o d i s e m p l o y e df o r t h e A G A R D445.6w i n g f l u t t e r c a l c u l a t i o n a n d i n v e s t i g a t i o n o f t h e d i f f e r e n t f l u t t e r m e c h a n i s m si nt h es u b s o n i c a n dt r a n s o n i c r e g i o n s.T h e s i m u l a t i o n r e s u l t s,b o t hi nf l u t t e r f r e q u e n c y a n df l u t t e r s p e e d a r ei ng o o da g r e e m e n t w i t h e x p e r i m e n t s.F i n a l a n a l y s i s s h o w st h a t t h ef l u t t e r m o t i o ni nt h e s ub s o n ic r e g i o ni s c h a r a c t e r i z e da sc l a s s i c a l f l u t t e r w i t h a c o m b i n a t i o no f t h e w i n g-b e nd i n g a n d w i n g-t o r s i o n m o t i o n,w h i le t h e t r a n s o n i cf l u t t e r i s c h a r-a c t e r i z e da s ab e n d i n g m o t i o ni n s t a b i l i t y.I t a l s o s h o w s t h a t t h ec o u p l i n g m e t h od i s re l i a b l e t o s o l v e n o n l i n e a rf l u i d-s t r u c t u r ei n t e r a c t i o n(F S I)p r o b l e m s.K E Y WO R D S:A e r o e l a s t i c i t y;F l u t t e r;S t r o n g-c o u p l e d;F S I1 引言颤振是飞行器飞行时常见的一种气动弹性现象,它对飞行器的破坏是灾难性的。
第30卷第1期2008年3月湖北大学学报(自然科学版)Journal of Hubei University (Natural Science )Vol.30 No.1 Mar.,2008 收稿日期:2006206202作者简介:雷辉(19812 ),男,硕士生文章编号:100022375(2008)0120029205用ANSYS 软件分析压电陶瓷的振动状态雷辉,周双娥(湖北大学数学与计算机学院,湖北武汉430062)摘 要:近年来,压电陶瓷的应用日趋广泛.但是由于压电陶瓷片的边界条件和应力状况比较复杂,利用传统实验手段对其研究不仅耗时费力,而且其结果具有很强的局部性,因此利用大型通用仿真软件ANSYS 8.0来进行计算机仿真.通过对压电陶瓷片中的耦合效应进行计算机模拟分析,得出压电陶瓷的振动状态图.实验结果表明ANSYS 8.0在处理压电耦合场这方面有很强的处理能力,大大简化了建模和计算,强大的后处理功能更是让研究者能够很直观地获得数据结果和模拟图像. 关键词:仿真;压电陶瓷;振动状态 中图分类号:TP302 文献标志码:A1 引言计算机仿真技术是以多种学科和理论为基础,以计算机及其相应构件为工具,通过虚拟试验的方法来分析和解决问题的一门综合性技术[1].近年来,压电陶瓷的应用日趋广泛,而在实际应用中,特别是将压电陶瓷技术应用于混凝土结构的监测中,由于压电陶瓷片的边界条件和应力状况比较复杂,利用传统实验手段对其研究不仅耗时费力,而且其结果具有很强的局部性[2].因此利用计算机仿真技术对压电陶瓷进行研究具有较好的理论与实际意义.本文中利用大型通用有限元分析软件ANS YS 8.0,对压电陶瓷片中的耦合效应进行模拟分析,并得出其模态和谐振态,实验表明ANS YS 8.0能很好地解决压电陶瓷片的压电耦合问题.图1 处理器模型2 ANSYS 仿真原理ANS YS 软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件,由世界上最大的有限元分析软件公司之一的美国ANS YS 开发,它能与多数CAD 软件接口,实现数据的共享和交换.20世纪90年代该软件开始在我国的机械制造、航空航天、汽车交通、铁道、石油化工、能源等领域得到应用,为各领域中产品设计、科学研究作出了很大的贡献[3].ANS YS 软件使用统一的集中式数据库来存储所有模型数据和求解结果(见图1)[4].模型数据(包括实体模型和有限元模型、材料等)通过前处理器写入数据库;载荷和求解结果通过求解器写入数据库;后处理结果通过后处理器写入数据库.3 处理过程3.1 定义材料参数 材料参数包括定义单元类型,这里选取了solid226,并在它的option 选项里选择压 湖北大学学报(自然科学版)第30卷30电这个选项.然后定义压电陶瓷的密度、介电常数、刚度系数和压电常数,后两个参数是用矩阵的形式来表示的.为了方便后期的网格划分处理,添加了一个单元类型mesh200,它主要用来进行面划分,下一节将详细介绍.定义材料参数的部分代码及注释如下所示:ET,1,SOL ID226,101 !定义solid226单元类型KEYOP T,1,1,1001!在solid226选项中选择压电选项ET,2,M ESH200!3!定义mesh200单元类型KEYOP T,2,1,7KEYOP T,2,2,0MPTEMP,,,,,,,,MPTEMP,1,0MPDA TA,DENS,1,7600!定义压电陶瓷密度TB,AN EL,1,1,21,0!定义压电陶瓷的刚度系数TB TEMP,0TBDA TA,,1.32e11,7.1e10,7.3e10,,,TBDA TA,,1.32e11,7.3e10,,,,1.15e11TBDA TA,,,,,3.0e10,,TBDA TA,,2.6e10,,2.6e10,,,MPTEMP,,,,,,,,!定义压电陶瓷的介电常数MPTEMP,1,0MPDA TA,PERX,1,,7.124e-9MPDA TA,PER Y,1,,7.124e-9MPDA TA,PERZ,1,,5.841e-9TB,PIEZ,1,,,0!定义压电陶瓷的压电系数TBMODIF,1,1,TBMODIF,1,2,TBMODIF,1,3,-4.1TBMODIF,2,1,TBMODIF,2,2,TBMODIF,2,3,-4.1TBMODIF,3,1,TBMODIF,3,2,TBMODIF,3,3,14.1TBMODIF,4,1,TBMODIF,4,2,TBMODIF,4,3,TBMODIF,5,1,TBMODIF,5,2,10.5TBMODIF,5,3,TBMODIF,6,1,10.5TBMODIF,6,2,TBMODIF,6,3,3.2 建立模型及网格划分 首先新建一个长为0.005m,宽为0.001m的矩形.然后选取单元类型为mesh200,对该矩形进行面划分,其中长和宽分别划分8份和10份,结果如图2所示.然后用操作选项中的Ext rude命令将其扩展成一个已划分好的圆盘体,其中要在Extrude选项中将单元类型选择为solid226,并在要划分的数目中填入10.接着用Extrude命令将其扩展成一个圆盘,其扩展结果如图3所示.第1期雷辉等:用ANSYS 软件分析压电陶瓷的振动状态31 图2 面划分图 图3 体划分图3.3 添加约束条件和负载 添加的约束条件是在上、下表面的圆心处分别添加位移约束,使其只能沿纵向方向移动.具体代码及注释如下:nsel ,s ,loc ,y ,0nsel ,r ,loc ,z ,0nsel ,r ,loc ,x ,0!选取下表面圆心上的点d ,all ,ux ,0!使其不能沿x 方向运动d ,all ,uz ,0!使其不能沿y 方向运动nsel ,s ,loc ,y ,0.001!选取上表面圆心上的点nsel ,r ,loc ,z ,0!同理nsel ,r ,loc ,x ,0d ,all ,ux ,0d ,all ,uz ,0给圆盘添加的电压负载是在圆盘的上下表面的两个电极上加上耦合电压,其电压值分别为5伏和0伏.这样使得圆盘上下电势差为5伏.其代码及注释如下:nsel ,s ,loc ,y ,0!选取下表面所有节点cp ,1,volt ,all !为下表面添加耦合电压3get ,n_bot ,node ,0,num ,min !定义下表面的电极节点nsel ,s ,loc ,y ,0.001!选取上表面所有节点cp ,2,volt ,all !为上表面添加耦合电压3get ,n_top ,node ,0,num ,min !定义上表面的电极节点nsel ,all !选取所有节点d ,n_bot ,volt ,0!下表面加0伏电压d ,n_top ,volt ,5!上表面加5伏电压3.4 静态和模态下的处理 首先选择处理状态为静态,并在此状态下得出其静态电容,代码及注释如下:/SOL !进入处理环节AN T YPE ,0!选择静态处理/STA TUS ,SOL U SOL V E !求解3get ,cs ,node ,n_top ,rf ,chrg !得到上电极电量值fini !处理结束3SET ,cs ,abs (cs )/5!得到静态电容接着进行模态分析,设定它有20个子步,频率范围为02200000Hz ,并且将上表面短路,代码及注释如下:/SOL U !进入处理环节AN T YPE ,2!选择模态处理MODOPT ,L ANB ,20!定义处理方法和子步数EQSL V ,SPAR !选择处理器MXPAND ,20,,,1!要显示的子步数L UMPM ,0PSTRES ,0MODOPT ,L ANB ,20,0,2000000,,OFF !定义频率范围32 湖北大学学报(自然科学版)第30卷d ,n_top ,volt ,0!上表面短路nsel ,all!选择所有节点/STA TUS ,SOL USOL V E !求解3.5 后处理 后处理是指检查并分析求解的结果的相关操作.这是分析中最重要的环节之一,因为任何分析的最终目的都是为了研究作用在模型上的的载荷是如何影响设计的[5].检查分析结果可使用两个后处理器:POST1(通用后处理器)和POST26(时间历程后处理器).POST1允许检查整个模型在某一载荷步和子步(或对某一特定时间点或频率)的结果.POST26可以检查模型的指定节点的某一结果项相对于时间、频率或其它结果项的变化.在求解时,ANS YS 将结果写入结果文件,进行后处理时,结果文件必须存在且可用.结果文件名的后缀取决于分析类型,对于结构分析的结果文件的后缀为RST [6].本次实验只用到了POST1.在后处理中利用一个循环语句可以得出不同频率下的动态电容、动态电感、电量以及阻抗值.其代码和注释如下:/POST13SET ,nmodes ,20!定义nmodes =203dim ,C ,array ,nmodes!定义电容数组3dim ,L ,array ,nmodes!定义电感数组3SET ,PI2,233.14159!定义PI2=233.14159set ,first!设定第一个子步/com ,3do ,i ,1,nmodes !定义一个循环,从1到20步3get ,Fi ,mode ,i ,freq !得到该步的频率值3get ,Qi ,node ,n_top ,rf ,chrg !得到该步的电量值3SET ,Omi ,Pi23Fi !将线速度转化为角速度3SET ,C (i ),(Qi/Omi )332!计算相关的动态电容3SET ,L (i ),1/(Omi 3323C (i ))!计算相关的动态电感/com ,Mode %i %!在输出窗口中显示第几步/com ,Resonant f requency F =%Fi %Hz !在输出窗口中显示频率值/com ,Dynamic capacitance C =%C (i )%F !在输出窗口中显示动态电容值/com ,Dynamic inductance L =%L (i )%H !在输出窗口中显示动态电感值/com ,charge Q =%Qi %C!在输出窗口中显示电量值/com ,Impedance R =%5/(233.141593Fi 3Qi )%!在输出窗口中显示阻抗值/com ,set ,next !进入下一个子步3enddo!循环结束FINISH同时可以在主菜单的Animation 选项下看一下压电圆盘在各个不同频率下的振动状态,这里截取了几个振动图,如图4所示:(a )频率为29728Hz (b )频率为65741Hz (c )频率为53476Hz图4 振动状态图第1期雷辉等:用ANSYS软件分析压电陶瓷的振动状态33 4 结束语本文对压电陶瓷圆盘添加了约束和对称负载,解决了压电陶瓷压电场与结构场的耦合问题,并且最终得到了压电圆盘在静态下的电容值,以及它在模态下的动态电容、动态电感、电量和阻抗,而且还可以观察圆盘在各个不同频率下的振动状态,以便于今后对材料性能的研究以及对材料的改进.同时,不难发现Ansys8.0在处理压电耦合场这方面有很强的处理能力,像Solid226就是专门针对压电分析而定义的,而且Ansys8.0在其材料库中建立了相关的压电材料,因此大大简化了有限元的建模和计算,强大的后处理功能更是让研究者能够很直观的获得数据结果和模拟图像.参考文献:[1]林书玉,张福成.压电陶瓷圆片振子的多模耦合振动[J].电子学报,1994,12:43249.[2]姜德义,郑拯宇.压电陶瓷片耦合振动模态的ANSYS模拟分析[J].传感技术学报,2003,12:9216.[3]陈大任.压电陶瓷微位移驱动器概述[J].电子元件与材料,1994,2:33240.[4]邵蕴秋.ANSYS8.0有限元分析实例导航[M].北京:中国铁道出版社,2004.[5]刘涛.精通ANSYS[M].北京:清华大学出版社,2002.[6]任重.ANSYS实用分析教程[M].北京:北京大学出版社,2003.Using ANSYS to analyze the vibration state of piezoelectric ceramicL EI Hui,ZHOU Shuang2e(School of Mathematics and Computer Science,Hubei University,Wuhan430062,China) Abstract:The application of piezoelect ric ceramic becomes more and more extensive,However,it needs to take much more time to st udy it by t raditional experiment s and t he result s are often unilateral for complex prezoelect ric ceramics boundary co ndition and st ress state.In t his view,we use big2scale general piezoelect ric ceramic’s boundary condition and st ress state simulating software ANS YS8.0to carry t hrough comp uter simulation.We gain t he pict ure of piezoelect ric ceramic’s vibration state by using comp uter to analyze t he coupling effect of piezoelect ric ceramic.The experiment result indicates t hat ANS YS8.0can competently deal wit h p roblems about piezoelectric coupling field.It optimizes t he time of creating model and comp uting largly,and it s st rong f unction of post dealing makes researchers can directly obtain data result s and simulating images.K ey w ords:simulation;piezoelect ric ceramic;vibratio n state(责任编辑肖铿,胡小洋)。