轮式移动机器人组合导航方法及试验研究_沈猛
- 格式:pdf
- 大小:171.00 KB
- 文档页数:4
基于视觉导航的轮式移动机器人设计摘要本设计的研究内容是视觉导航轮式移动机器人的底层控制,其核心内容是应用单片机控制步进电机实现机器人的左转弯、右转弯、前进和停止等动作。
论文内容包括四个部分:简要介绍了移动机器人研究现状、对所设计移动机器人系统进行了描述、视觉导航轮式移动机器人底层硬件设计和视觉轮式移动移动机器人的底层控制。
论文详细地介绍了移动机器人底层硬件系统元件的选型和原理电路图的设计。
我们选用PIC16F877单片机作为下位机接收上位机传来的命令和产生驱动信号。
步进电机的驱动电路采用两个步进电机驱动器-L298,驱动程序写入PIC16F877单片机,通过程序控制步进电机的转速和转向。
采用Propel设计了底层控制系统的原理图和PCB版图,采用Proteus进行程序和硬件系统的仿真。
仿真结果表明:步进电机运行稳定、可靠性高,实现了对步进电机的预期控制。
关键词:移动机器人,运动控制,底层控制,PIC16F877,步进电机VISION-GUIDED WHEELED MOBILE ROBOT(BOTTOM CONTROL)ABSTRACTThe final year project focus on the bottom control for the vision-guided wheeled mobile robot. The core content is to achieve such actions as turning left, turning right, running forward and stopping by using single-chip microcomputer to control stepper motors.The thesis includes four parts: a brief introduction of the-state-of-the-art on mobile robot researches, the framework of the mobile robot system designed in this project, the hardware design and bottom control of vision-guided wheeled mobile robot.Component selection and the principle of circuit design are described in detail for the underlying hardware system of the mobile robot. We choose the PIC16F877 MCU as the slave computer to receive the command from the host computer and to generate the control signals for stepper motors. Stepper motor drive circuits use two stepper motor drivers driver program is written into PIC16F877 microcontroller to control the rotating speed and direction of the stepper motor. Protel, software for circuit and PCB design, is used to design schematic diagram and PCB layout of the bottom control system, and Proteus is used to conduct the simulation experiments for programs and hardware systems testing. The simulation results show that stepper motor can run with stability, high reliability, and the expected motion controls of stepper motor are achieved.KEY WORDS: Mobile robot, motion control, bottom control, PIC16F877; stepper motor前言 (3)第一章移动机器人 (4)§移动机器人的研究历史 (4)§移动机器人的国际现状 (5)§移动机器人研究的国内现状 (7)第2章视觉导航的轮式移动机器人综述 (9)§视觉导航的轮式移动机器人 (9)§视觉导航系统构成及工作过程 (9)§视觉导航的图像预处理 (10)§视觉导航机器人的运动控制 (11)第3章视觉导航轮式移动机器人底层硬件设计 (13)§电子元件的选型 (13)§开关电压调节器 LM7805 (13)§步进电机驱动芯片 L298 (13)§单片机PIC16F877 (14)§步进电机 (16)§电路的设计 (17)§方案论证与比较 (17)§电路图的设计 (18)第4章视觉轮式移动移动机器人的底层控制 (23)§步进电机控制原理 (23)§移动机器人的运动模型 (24)§控制器的软件设计 (26)结论 (29)参考文献 (30)致谢 (32)附录 (33)单片机诞生于20世纪70年代末,经历了SCM、MCU、SoC三大阶段。
系统仿真学报JOURNAL OF SYSTEM SIMULATION2000 Vol.12 No.1 P.43-46带拖车的轮式移动机器人系统的建模与仿真杨凯 黄亚楼 徐国华摘 要: 带拖车的轮式移动机器人系统是一种典型的非完整、欠驱动系统。
本文建立了带多个拖车的移动机器人系统的运动学模型,对系统的运动特性进行了分析,并在此基础上对系统的运动进行了数值仿真和图形仿真,验证了理论分析的正确性。
关键词: 移动机器人系统; 运动学模型; 龙格-库塔法; 计算机仿真中图分类号: TP242.3 文献标识码:A文章编号:1004-731X (2000) 01-0043-4Modeling and Simulation of Tractor-trailorRobot Systems' KinematicsYANG Kai, HUANG Ya-lou(Department of Computer and System Science, Nankai University, Tianjin 300071)XU Guo-hua(Institute of Automation, Chinese Academy of Sciences, Beijing 100080,China) Abstract: A mobile robot with multi-trailers is a typical nonholonomic, underactuated system. This paper establishes a kinematic model for such system. Based on the kinematic model, the motion of the system is analytically studied, and the simulation of the motion for this system is conducted with the means of Runge-Kutta method and computer graphics. It proves that the theoretical analysis is right.Keywords: mobile robot; underactuated system; Runge-Kutta; computer simulation1 引言 移动机器人是机器人学中的一个重要分支,本文所讨论的是一种特殊类型的移动机器人系统——带拖车的轮式移动机器人(Tractor-trailer robot),它由一系列相互铰链在一起的多个二轮式刚体小车组成,运行在一个平面上。
基于视觉导航的轮式移动机器人设计方案第一章移动机器人§1.1移动机器人的研究历史机器人是一种自动化的机器,所不同的是这种机器具备一些与人或生物相似的智能,如感知能力、规划能力、动作能力和协同能力,是一种具有高度灵活性的自动化机器)。
1962年,美国Unimation公司的第一台机器人Unimate。
在美国通用汽车公司(GM)投入使用,标志着第一代机器人的诞生。
智能移动机器人更加强调了机器人具有的移动能力,从而面临比固定式机器人更为复杂的不确定性环境,也增加了智能系统的设计复杂度。
1968年到1972年间,美国斯坦福国际研究所(Stanford Research Institute, SRI)研制了移动式机器人Shaky,这是首台采用了人工智能学的移动机器人。
Shaky具备一定人工智能,能够自主进行感知、环境建模、行为规划并执行任务(如寻找木箱并将其推到指定目的位置)。
它装备了电视摄像机、三角法测距仪、碰撞传感器、驱动电机以及编码器,并通过无线通讯系统由二台计算机控制。
当时计算机的体积庞大,但运算速度缓慢,导致Shaky往往需要数小时的时间来分析环境并规划行动路径。
1970年前联月球17号探测器把世界第一个无人驾驶的月球车送七月球,月球车行驶0.5公里,考察了8万平方米的月面。
后来的月球车行驶37公里,向地球发回88幅月面全景图。
在同一时代,美国喷气推进实验室也研制了月球车(Lunar rover),应用于行星探测的研究。
采用了摄像机,激光测距仪以及触觉传感器。
机器人能够把环境区分为可通行、不可通行以及未知等类型区域。
1973年到1979年,斯坦福大学人工智能实验室研制了CART移动机器人,CART可以自主地在办公室环境运行。
CART每移动1米,就停下来通过摄像机的图片对环境进行分析,规划下一步的运行路径。
由于当时计算机性能的限制,CART每一次规划都需要耗时约15分钟。
CMU Rover由卡耐基梅隆大学机器人学研究所在1981年开始研制,它具有12个微处理器来处理实时任务,一个大型的远程计算机通过遥控方式来进行复杂规划与环境分析。
不确定非完整轮式移动机器人的运动控制研究非完整轮式移动机器人(wheeled mobile robot,WMR)是典型的多输入多输出耦合欠驱动非线性系统, 其运动控制问题极具挑战性。
轮式移动机器人大多工作在复杂未知环境之下, 容易受到多种不确定性和扰动的综合影响, 因此, 解决复杂不确定下非完整轮式移动机器人的运动控制问题意义深刻且现实需求迫切。
本文研究了轮式机器人包含定位不确定性、参数和非参数不确定性、侧滑和打滑干扰等情形下的运动控制策略, 探讨了非完整单链系统的有限时间控制以及力矩受限下轮式移动机器人的动力学控制。
主要的研究成果包括: (1)研究了定位不确定的轮式移动机器人路径跟随问题, 提出一种基于改进遗传算法优化自适应扩展卡尔曼滤波的全局一致渐进稳定控制器。
(2)提出了一类n维不确定非完整单链系统的鲁棒有限时间镇定控制律。
通过不连续变换将原系统分解为1阶和n-1阶两个解耦的独立子系统, 对1阶子系统采用分段控制策略解决不连续变换引起n-1阶子系统奇异问题, 保证控制律的全局性, 对n-1阶子系统采用反演(backstepping)设计方法, 降低设计复杂度, 设计过程基于有限时间Lyapunov理论, 保证系统的有限时间稳定。
(3)研究了本体动力学模型包含参数和非参数不确定性的轮式移动机器人轨迹跟踪问题, 提出基于自适应反演滑模控制的全局渐进稳定饱和控制方案。
通过运动学输入-输出非线性反馈和动力学输入变换, 建立包含系统总体不确定性项的线性模型, 采用一种动态调整机制实现控制输入饱和约束, 基于幂次趋近律提高了滑模控制的平滑性和快速性, 自适应估计总体不确定性的上界有效削弱了滑模控制的抖振现象。
(4)提出了执行器动力学模型包含参数和非参数不确定性的轮式移动机器人轨迹跟踪与镇定统一控制方法。
通过backstepping分别设计系统的运动学、本体动力学和执行器动力学控制器, 运动学控制器引入了时变控制量, 使跟踪误差模型用于镇定控制时不存在奇异, 本体和执行器动力学控制器分别采用带鲁棒项的强化学习自适应模糊控制补偿系统的复杂不确定性, 采用非线性跟踪-微分器避免了backstepping过程的“计算膨胀”, 闭环系统为最终一致有界收敛。
轮式机器人的路径规划与控制技术研究随着科技的不断进步,轮式机器人已经成为了人工智能领域中的重要组成部分。
轮式机器人可广泛应用于各种环境下,包括室内、室外、平地、山地、水下等多种环境,使其具有广泛的应用前景。
但是,要让轮式机器人能够在复杂的环境下进行准确的路径规划并执行动作,需要借助于强大的技术支持。
本文将主要介绍轮式机器人的路径规划与控制技术研究。
一、路径规划技术路径规划是一项基本但十分关键的技术,它需要根据机器人所处的环境及任务需求,选择适当的路径来实现任务。
对于轮式机器人,我们通常采用三种不同的技术来完成路径规划:传统的基于轨迹的技术、图形化的技术以及基于学习的强化学习技术。
1. 基于轨迹的路径规划基于轨迹的路径规划是一种较为传统且较为简单的路径规划方式,适用于较为简单的环境。
该方法通过计算机模拟机器人的运动轨迹,进而进行路径规划。
这种方法的优点是计算速度较快,适用于较为简单的机器人应用场合。
但是该方法在复杂环境下的精度会受到很大的影响。
2. 图形化的路径规划图形化的路径规划方法是一种基于图形化交互的路径规划技术。
这种方法主要利用计算机程序来模拟出机器人及其周围的环境,通过交互式屏幕及热键的控制来对机器人进行路径规划。
相对于传统的基于轨迹的路径规划方法,该方法克服了精度不够高的问题,具有更好的精度和适用性。
但是该方法需要进行大量的手动操作,并且需要较高的人机交互能力。
3. 基于学习的强化学习技术基于学习的强化学习技术是一种先进而全新的路径规划技术,该技术运用了神经网络的方法,对机器人进行实时学习,使其能够适应更加复杂的环境,并识别出各种条件下的最佳路径。
该方法不仅可以减少规划过程的工作量,而且还能够自动对机器人进行学习和优化,大大提高了机器人的工作效率和速度。
但是由于该方法需要高度的计算能力和运算时间,所以目前还不引导广泛使用。
二、控制技术控制技术是机器人完成任务的基本技术之一,对于轮式机器人这样的移动式机器人,准确的控制其运动轨迹是十分重要的。
基于 Mecanum 轮的全向运动视觉导引 AGV 研制
喻俊;武星;沈伟良
【期刊名称】《机械设计与制造工程》
【年(卷),期】2015(000)009
【摘要】介绍了自主研发的Mecanum 全向运动视觉导引AGV。
该AGV采用视觉导引方式,利用CCD摄像机采集地面路径信息,对采集的每一帧图像做畸变校正及光照补偿后进行阈值分割,采用场扫描法扫描路径,获得当前路径相对视野的角度偏差与距离偏差;主控制器调整Mecanum轮速度,使车体沿导引线行进。
采用Mecanum轮驱动的AGV具备全向运动能力。
实验表明,研制的全向运动视觉导引AGV能够实现可靠的导引。
【总页数】5页(P35-39)
【作者】喻俊;武星;沈伟良
【作者单位】中国船舶重工集团公司第713研究所,河南郑州 450015;南京航空航天大学机电学院,江苏南京 210016;南京航空航天大学机电学院,江苏南京210016
【正文语种】中文
【中图分类】TP242.2
【相关文献】
1.基于Mecanum轮配送车的视觉与磁带双重导引技术研究 [J], 潘尚洁;赵璐;于洋
2.基于Mecanum轮的全向移动机器人的研制 [J], 石维亮;王兴松;贾茜
3.基于ADAMS的Mecanum八轮全向移动平台运动学分析与仿真 [J], 邢雯丽;朱建江
4.基于Mecanum四轮全向移动平台运动特性仿真与研究 [J], 许鹏;郑再象;陆秋懿;张振越;王凯强
5.基于视觉导引全向行驶的智能AGV系统设计 [J], 张贵华
因版权原因,仅展示原文概要,查看原文内容请购买。
毕业设计(论文)外文资料翻译系部:机械工程专业:机械工程及自动化姓名:学号:外文出处:Control and(用外文写)Robotics(CRB) Technical Report 附件:1.外文资料翻译译文;2.外文原文。
附件1:外文资料翻译译文轮式移动机器人的导航与控制摘要:本文研究了把几种具有导航功能的方法运用于不同的控制器开发,以实现在一个已知障碍物前面控制一个开环系统(例如:轮式移动机器人)执行任务。
第一种方法是基于三维坐标路径规划的控制方法。
具有导航功能的控制器在自由配置的空间中生成一条从初始位置到目标位置的路径。
位移控制器控制移动机器人沿设置的路径运动并停止在目标位置。
第二种方法是基于二维坐标路径规划的控制方法。
在二维平面坐标系中建立导航函数,基于这种导航函数设计的微控制器是渐进收敛控制系统。
仿真结果被用来说明第二种控制方法的性能。
1介绍很多研究者已经提出不同算法以解决在障碍物杂乱的环境下机器人的运动控制问题。
对与建立无碰撞路径和传统的路径规划算法,参考文献[19]的第一章第九部分中提供了的全面总结。
从Khatib在参考文献[13]的开创性工作以来,很显然控制机器人在已知障碍物下执行任务的主流方法之一依然是构建和应用位函数。
总之,位函数能够提供机器人工作空间、障碍位置和目标的位场。
在参考文献[19]中提供对于位函数的全面研究。
应用位函数的一个问题是局部极小化的情况可能发生以至于机器人无法到达目标位置。
不少研究人士提出了解决局部极小化错误的方法(例如参考文献[2], [3],[5], [14], [25])。
其中Koditschek在参考文献[16]中提供了一种解决局部极小化错误的方法,那是通过基于一种特殊的位函数的完整系统构建导航函数,此函数有精确的数学结构,它能够保证存在唯一最小值。
在针对标准的 (完整的)系统的先前的结果的影响下, 面对更多的具有挑战性的非完整系统,越来越多的研究集中于位函数方法的发展(例如.,机器人)。
WMR具有结构简单、控制方便、运动灵活、维护容易等优点,但也存在一些局限性,如对环境的适应性、运动稳定性、导航精度等方面的问题。
轮式移动机器人的定义与特点特点定义军事应用用于生产线上的物料运输、仓库管理等,也可用于执行一些危险或者高强度任务,如核辐射环境下的作业。
工业应用医疗应用第一代WMR第二代WMR第三代WMRLagrange方程控制理论牛顿-Euler方程动力学建模的基本原理车轮模型机器人模型控制系统模型030201轮式移动机器人的动力学模型仿真环境模型验证性能评估动力学模型的仿真与分析开环控制开环控制是指没有反馈环节的控制,通过输入控制信号直接驱动机器人运动。
反馈控制理论反馈控制理论是运动控制的基本原理,通过比较期望输出与实际输出之间的误差,调整控制输入以减小误差。
闭环控制闭环控制是指具有反馈环节的控制,通过比较实际输出与期望输出的误差,调整控制输入以减小误差。
运动控制的基本原理PID控制算法模糊控制算法神经网络控制算法轮式移动机器人的运动控制算法1 2 3硬件实现软件实现优化算法运动控制的实现与优化路径规划的基本原理路径规划的基本概念路径规划的分类路径规划的基本步骤轮式移动机器人的路径规划方法基于规则的路径规划方法基于规则的路径规划方法是一种常见的路径规划方法,它根据预先设定的规则来寻找路径。
其中比较常用的有A*算法和Dijkstra算法等。
这些算法都具有较高的效率和可靠性,但是需要预先设定规则,对于复杂的环境适应性较差。
基于学习的路径规划方法基于学习的路径规划方法是一种通过学习来寻找最优路径的方法。
它通过对大量的数据进行学习,从中提取出有用的特征,并利用这些特征来寻找最优的路径。
其中比较常用的有强化学习、深度学习等。
这些算法具有较高的自适应性,但是对于大规模的环境和复杂的环境适应性较差。
基于决策树的路径规划方法基于强化学习的路径规划方法决策算法在轮式移动机器人中的应用03姿态与平衡控制01传感器融合技术02障碍物识别与避障地图构建与定位通过SLAM(同时定位与地图构建)技术构建环境地图,实现精准定位。
轮式移动机器人运动控制的研究的开题报告一、选题背景随着智能制造和物流的快速发展,轮式移动机器人的应用越来越广泛。
在自动化工厂、仓库、医院、学校等场所,轮式移动机器人能够为人们带来极大的便利,提高工作效率和安全性。
而轮式移动机器人的运动控制技术是其实现自主导航、避障、路径规划等功能的核心技术。
目前,常见的轮式移动机器人运动控制方式包括PID控制、模糊控制、神经网络控制等多种方法。
然而,不同的控制方法适用于不同的场合和不同的任务,如何选取合适的控制策略是一个值得研究的问题。
二、选题意义本项目旨在通过对轮式移动机器人运动控制方法的分析与比较,寻找最优控制策略,提高轮式移动机器人的导航精度和运动效率。
同时,研究成果还有助于促进智能制造和物流等领域的发展,推进相关产业的升级。
三、研究内容和方法本项目主要研究内容如下:1. 轮式移动机器人运动学和动力学模型的建立;2. 常见的轮式移动机器人运动控制方法的介绍和分析;3. 对比不同控制方法的优缺点,建立合适的评价指标体系;4. 设计和实现最优控制策略,通过仿真和实验验证其有效性。
研究方法主要包括:1. 理论分析法:对轮式移动机器人的运动学和动力学模型进行分析和建模,结合不同控制方法的理论基础进行比较;2. 实验研究法:通过对轮式移动机器人的实际运动控制,数据采集和分析,验证最优控制策略的有效性;3. 数学模拟法:利用计算机进行轮式移动机器人运动控制仿真,快速评估不同控制方法的优劣和效果。
四、预期成果和实施方案预期成果包括:1. 轮式移动机器人运动学和动力学模型的建立;2. 常见的轮式移动机器人运动控制方法的分类和比较;3. 基于评价指标体系的最优控制策略的设计和实现;4. 仿真和实验验证最优控制策略的有效性。
实施方案:1. 着手进行轮式移动机器人运动学和动力学模型的建立;2. 搜集和整理相关文献资料,对比研究不同的控制方法;3. 设计实验方案并进行实验数据采集和分析;4. 利用计算机进行仿真实验;5. 组织撰写论文,完成研究成果的汇总和整理。
轮式移动机器人动力学控制研究及应用近年来,随着技术的不断发展和人工智能的不断壮大,机器人技术领域吸引了越来越多的关注和研究。
轮式移动机器人是一种常见的机器人类型,因其机动性强、灵活性高等特点,被广泛应用于工业制造、军事、医疗等领域。
其中,动力学控制是轮式移动机器人研究的重要方向之一。
轮式移动机器人作为一种双轮自平衡运动系统,其动力学控制研究重点在于掌握机器人的运动状态,并在此基础上进行精准的控制。
一方面,机器人需要通过运动状态分析确定自身位置、速度和方向等信息,以保证对环境的认知行为。
另一方面,机器人还需要进行运动控制,根据输入信号对机器人速度、方向等进行精确控制,实现行动的自主决策。
在动力学控制研究中,机器人模型是关键因素之一。
轮式移动机器人模型通常采取双轮模型或三轮模型。
其中,双轮模型是轮式移动机器人动力学控制研究的基础,其模型侧重于机器人的旋转运动和线性运动,包括转向、加速度控制等内容。
而三轮模型在双轮模型的基础上进行了扩展,能够对多种移动方式进行控制,如直线行驶、弯道行驶、斜角行驶等。
在实际应用中,轮式移动机器人动力学控制研究有着广泛的应用前景。
首先,在制造业中,机器人能够替代人力完成重复性、危险或高难度的任务,提高生产效率,减少工业事故的发生。
其次,轮式移动机器人在医疗领域也发挥着重要作用。
如开展手术、输送药品和物资等。
此外,在军事和公共安全领域,轮式移动机器人不仅可以进行实时监控,也可以在紧急状态下进行侦查、搜救等任务。
然而,轮式移动机器人动力学控制研究也存在一些尚未解决的问题。
例如,机器人在复杂环境下行驶容易受到干扰,从而导致行进路径出现误差;机器人的运动控制也存在精度不足、响应时间慢等问题。
此外,随着机器人技术不断发展,信息安全问题也愈来愈受到关注。
综上所述,轮式移动机器人动力学控制研究是机器人领域的热门研究方向,其应用前景广阔。
未来,在机器人技术和理论基础不断深入的同时,也需要不断探索实际应用场景,进一步完善轮式移动机器人的动力学控制方法。
信 息 技 术DOI:10.16661/ki.1672-3791.2004-5154-8568轮式移动机器人定位和导航系统设计董明泽1 韩雨薇1 许凯成2 段睿劼1 朱天宇1(1.中国计量大学量新学院; 2.中国计量大学机电工程学院 浙江杭州 310018)摘 要:该文设计了一套基于开源机器人操作系统(ROS)和激光雷达的移动机器人控制系统方案,以满足当前室内机器人在定位与地图构建上的需求。
该系统以开源卡片式电脑树莓派3B+为核心控制器,使用STM32作为驱动控制板,在Linux系统下使用ROS分布式框架下进行软件算法的开发。
根据机器人的状态和用户命令可实现人机交互、SLAM地图扫描绘制、WiFi远程控制、即时定位和室内导航的功能。
实际调试结果表明,系统能够构建出与实际环境差别较小的特征图,并对平台实时位置进行精确的定位,能有效完成定位和导航的任务。
关键词:ROS SLAM 激光雷达 同步定位与地图构建 自主导航中图分类号:TP242 文献标识码:A 文章编号:1672-3791(2020)11(a)-0031-03 Design of Wheeled Mobile Robot Positioning and NavigationSystemDONG Mingze1 HAN Yuwei1 XU Kaicheng2 DUAN Ruijie1 ZHU Tianyu1(1.Liangxin College, China Jiliang University; 2.College of Mechanical and Electrical Engineering, ChinaJiliang University, Hangzhou, Zhejiang Province, 310018 China) Abstract: This paper designs a set of mobile robot control system solutions based on open source robot operating system (ROS) and lidar to meet the needs of current indoor robots in positioning and map construction. This system uses the open source card computer Raspberry Pi 3B+ as the core controller, uses STM32 as the drive control board, and uses the ROS distributed framework to develop software algorithms under the Linux system. According to the state of the robot and user commands, it can realize the functions of human-computer interaction, SLAM map scanning and drawing, WiFi remote control, instant positioning and indoor navigation. The actual debugging results show that the system can construct a feature map witha small difference from the actual environment, and accurately locate the real-time position of the platform,which can effectively complete the positioning and navigation tasks.Key Words: ROS; SLAM; Lidar; Synchronous positioning and map construction; Autonomous navigation机器人技术是一门快速发展的学科,它包含着深厚的科学理论,长期以来吸引了许多研究人员。
大连理工大学硕士学位论文目录摘要………………………………………………………………………………………………………………IAbstract…………….……….....….……….…..….….….………………….......……………………….………II1绪论……………………………………………………………………………………l1.1课题研究的背景及意义………………………………………………………11.2移动机器人的发展历史及趋势………………………………………………l1.2.1国内外移动机器人的发展历史………………………………………11.2.2移动机器人的新发展与发展趋势……………………………………31.3本文主要研究内容………‰…………………………………………………32移动机器人的体系结构设计…………………………………………………………52.1移动机器人的机械结构设计和运动学模型建立……………………………52.1.1移动机器人的机械结构………………………………………………52.1.2移动机器人的运动学模型……………………………………………52.2移动机器人的控制系统设计…………………………………………………72.2.1主控制器模块…………………………………………………………72.2.2驱动模块………………………………………………………………92.2.3PLC模块……………………………………………………………..122.2.4相机姿态调整模块…………………………………………………..192.2.5测距模块……………………………………………………………一202.2.6通信模块……………………………………………………………一222.2.7电源模块………………………………………………………………253Back—Stepping算法在移动机器人轨迹跟踪中的研究……………………………263.1移动机器人路径规划与轨迹跟踪………………………………………….263.1.1路径规划………………………………………………………………263.1.2轨迹跟踪………………………………………………………………273.2Back—Stepping算法…………………………………………………………273.2.1基于Lyapunov稳定性的最优状态反馈控制器…………………….283.2.2Back—Stepping算法的设计思想……………………………………..293.3Back—Stepping算法在基于运动学模型的轨迹跟踪中的实现……………3l3.4实验结果及分析…………………………………………………………….343.5本章小结…………………………………………………………………….364连续曲率曲线路径在局部路径规划中的研究……………………………………..37轮式移动机器人系统设计及控制研究4.1局部路径规划中的连续曲率曲线的建立………………………………….374.1.1直角坐标系中连续曲率曲线的建立方法……………………………374.1.2连续曲率曲线算法在移动机器人局部路径规划中的实现…………414.2实验结果及分析…………………………………………………………….434.3本章小结…………………………………………………………………….455基于模糊控制算法的移动机器人直线轨迹跟踪………………………………….465.1模糊控制理论……………………………………………………………….465.1.1模糊控制的概念……………………………………………………一465.1.2模糊控制的优点……………………………………………………一465.2模糊控制系统……………………………………………………………….475.2.1模糊控制系统的组成………………………………………………..475.2.2模糊控制器的设计…………………………………………………..485.3模糊控制算法在移动机器人轨迹跟踪中的实现………………………….495.3.1输入输出量模糊语言及其隶属度的建立…………………………一505.3.2模糊控制规则的设定………………………………………………。
55Internet Technology互联网+技术一、引言2022年第二十一届 ROBOTAC 赛事以“亚运荣耀”为竞赛主题[5]。
ROBOTAC 是红、蓝两方机器人在规定场地上的攻防对抗比赛。
比赛过程中机器人可以穿越障碍并相互攻击,率先达成速胜条件或在比赛结束时得分多的一方获胜。
当一方机器人获取到己方的火种并点燃场地中央的大火炬时该方立即取得比赛胜利。
每支参赛队最多可以有 1 台自动机器人和 5 台手动机器人,所有上场机器人总重量不得超过60kg。
总重包括能源和机器人所有部件的重量。
每台轮式机器人的尺寸不超过600mm×600mm ×750mm (比赛过程中任何时刻展开的最大尺寸)。
根据这些设计要求,本文设计机器人属于赛制机器人中的轮式机器人,气铲为攻击机构,抓取机构完成火种抓取和运送,投放机构将火种投送到大火炬盘中,还有一些机构完成辅助爬坡和被攻击倒地之后的处置位置复原任务。
二、硬件系统设计如图1所示,机器人硬件控制系统分为微控制器、电调,接收器及执行机构等。
接收器负责接收遥控器的指令信号并传递给微控制器,微处理器对接收到的指令解析并迅速传递给对应的执行单元,比如电调,电调再负责驱动四个电机的转速、转矩等。
传感器及执行机构为攻击机构和抓取机构的感应和执行元件。
三、器材选型(一)电机选型根据市面上有刷和无刷电机的优缺点,再根据比赛规则,机器人须达到5m/s 的移动速度,转矩达到20N.m一种具有越障、防侧翻、投掷等多功能一体化轮式机器人的设计与实现以上。
计算转速:轮胎直径120mm,求得周长约380mm,为达到5m/s 的速度,电机转速需要9r/s,也就是约500/M。
计算减速比,选用FAULHABER CR 3257G024CR 直流无刷微电机,24V 供电电压,空载转速为5900/M,最大转速7000/min,转速/转矩斜率/min/mNm,转速常数为253min/V。