天津市静海县第一中学2017_2018学年高一数学下学期期中试题
- 格式:doc
- 大小:430.02 KB
- 文档页数:8
2017-2018学年高一下学期期中数学试卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.a、b为非零实数,且a<b,则下列命题成立的是()A.a2<b2B.< C.a2b<ab2D.<2.已知集合A={x|x2≥1},,则A∩(∁RB)=()A.(2,+∞)B.(﹣∞,﹣1]∪(2,+∞)C.(﹣∞,﹣1)∪(2,+∞) D.[﹣1,0]∪[2,+∞)3.已知△ABC中,内角A,B,C的对边分别为a,b,c,若a2=b2+c2﹣bc,bc=2,则△ABC 的面积为()A.B.1 C.D.4.已知数列{an }中,a1=3,an+1=﹣(n∈N*),能使an=3的n可以等于()A.14 B.15 C.16 D.175.在三角形△ABC中,角A,B,C的对边分别为a,b,c,且满足==,则=()A.B.C.D.6.在1和16之间插入3个数,使它们与这两个数依次构成等比数列,则这3个数的积()A.128 B.±128 C.64 D.±647.等差数列{an }的前n项和记为Sn,若a2+a6+a10=3,则下列各和数中可确定值的是()A.S6B.S11C.S12D.S138.在△ABC中,A=60°,a2=bc,则△ABC一定是()A.锐角三角形 B.钝角三角形 C.等腰三角形 D.等边三角形9.已知数列{an }的前n项和Sn=2n+t(t是实常数),下列结论正确的是()A.t为任意实数,{an}均是等比数列B.当且仅当t=﹣1时,{an}是等比数列C.当且仅当t=0时,{an}是等比数列D.当且仅当t=﹣2时,{an}是等比数列10.如果不等式<1对一切实数x均成立,则实数m的取值范围是()A.(1,3)B.(﹣∞,3) C.(﹣∞,1)∪(2,+∞)D.(﹣∞,+∞)11.已知正项等差数列{an }满足a1+a2015=2,则的最小值为()A.1 B.2 C.2014 D.201512.不等式2x2﹣axy+3y2≥0对于任意x∈[1,2]及y∈[1,3]恒成立,则实数a的取值范围是()A.a≤2 B.a≤2 C.a≤5 D.a≤二、填空题:本大题共4小题,每小题5分.13.一元二次不等式x2+ax+b>0的解集为x∈(﹣∞,﹣3)∪(1,+∞),则一元一次不等式ax+b<0的解集为.14.已知函数f(x)=,若使不等式f(x)<成立,则x的取值范围为.15.设{an } 为公比q>1的等比数列,若a2013和a2014是方程4x2﹣8x+3=0的两根,则a2015+a2016= .16.在△ABC中,a,b,c分别为三个内角A,B,C所对的边,设向量,,且,b和c的等差中项为,则△ABC面积的最大值为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知函数f(x)=x2+3x+a(1)当a=﹣2时,求不等式f(x)>2的解集(2)若对任意的x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围.18.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且=2csinA(1)确定角C的大小;(2)若c=,且△ABC的面积为,求a+b的值.19.设等差数列{an }的前n项和为Sn,n∈N*,公差d≠0,S3=15,已知a1,a4,a13成等比数列.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =a 2n ,求数列{b n }的前n 项和T n .20.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c 且acosC ,bcosB ,ccosA 成等差数列. (1)求B 的值;(2)求2sin 2A ﹣1+cos (A ﹣C )的取值范围.21.某房地产开发公司计划在一楼区内建造一个长方形公园ABCD ,公园由长方形的休闲区A 1B 1C 1D 1(阴影部分)和环公园人行道组成.已知休闲区A 1B 1C 1D 1的面积为4000平方米,人行道的宽分别为4米和10米.(1)若设休闲区的长A 1B 1=x 米,求公园ABCD 所占面积S 关于x 的函数S (x )的解析式; (2)要使公园所占面积最小,休闲区A 1B 1C 1D 1的长和宽该如何设计?22.已知数列{a n }的通项为a n ,前n 项和为s n ,且a n 是s n 与2的等差中项,数列{b n }中,b 1=1,点P (b n ,b n+1)在直线x ﹣y+2=0上. (Ⅰ)求数列{a n }、{b n }的通项公式a n ,b n (Ⅱ)设{b n }的前n 项和为B n ,试比较与2的大小.(Ⅲ)设T n =,若对一切正整数n ,T n <c (c ∈Z )恒成立,求c 的最小值.2017-2018学年高一下学期期中数学试卷参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.a、b为非零实数,且a<b,则下列命题成立的是()A.a2<b2B.< C.a2b<ab2D.<【考点】2K:命题的真假判断与应用.【分析】举例说明A、C、D错误,利用反证法说明B正确.【解答】解:a、b为非零实数,且a<b.当a=﹣2,b=1时,有a<b,但a2>b2,故A错误;若a<0,b>0,则<;若a<b<0,假设<,则ab2>a2b,即b>a,假设成立;若b>a>0,假设<,则ab2>a2b,即b>a,假设成立.综上,<,故B正确;当a=﹣2,b=1时,有a<b,但a2b>ab2,故C错误;当a=﹣2,b=1时,有a<b,但,故D错误.故选:B.2.已知集合A={x|x2≥1},,则A∩(∁B)=()RA.(2,+∞)B.(﹣∞,﹣1]∪(2,+∞)C.(﹣∞,﹣1)∪(2,+∞) D.[﹣1,0]∪[2,+∞)【考点】1H:交、并、补集的混合运算.【分析】分别求解一元二次不等式和分式不等式化简集合A,B,然后利用交、并、补集的混合运算得答案.【解答】解:A={x|x2≥1}={x|x≤﹣1或x≥1},由,得0<x≤2,∴={x|0<x≤2},∴∁RB={x|x≤0或x>2},∴A∩(∁RB)=(﹣∞,﹣1)∪(2,+∞).故选:C.3.已知△ABC中,内角A,B,C的对边分别为a,b,c,若a2=b2+c2﹣bc,bc=2,则△ABC 的面积为()A.B.1 C.D.【考点】HR:余弦定理.【分析】利用余弦定理可得A,再利用三角形面积计算公式即可得出.【解答】解:△ABC中,∵a2=b2+c2﹣bc,∴cosA==,又A∈(0,π),∴A=,又bc=2,∴△ABC的面积S=sinA==,故选:D.4.已知数列{an }中,a1=3,an+1=﹣(n∈N*),能使an=3的n可以等于()A.14 B.15 C.16 D.17【考点】8H:数列递推式.【分析】利用递推关系可得:an+3=an,再利用数列的周期性即可得出.【解答】解:∵a1=3,an+1=﹣(n∈N*),∴a2=﹣,同理可得:a3=,a4=3,…,∴an+3=an,∴a16=a1=3,能使an=3的n可以等于16.故选:C.5.在三角形△ABC中,角A,B,C的对边分别为a,b,c,且满足==,则=()A.B.C.D.【考点】HP:正弦定理.【分析】由题意设a=7k、b=4k、c=5k(k>0),由余弦定理求出cosA的值,由正弦定理和二倍角的正弦公式化简所求的式子,可得答案.【解答】解:∵,∴设a=7k、b=4k、c=5k,(k>0)在△ABC中,由余弦定理得cosA==,由正弦定理得===,故选:C.6.在1和16之间插入3个数,使它们与这两个数依次构成等比数列,则这3个数的积()A.128 B.±128 C.64 D.±64【考点】88:等比数列的通项公式.【分析】利用等比数列通项公式及其性质即可得出.【解答】解:设此等比数列为{an },公比为q,a1=1,a5=16,∴a3==4.则a2a3a4==64.故选:C.7.等差数列{an }的前n项和记为Sn,若a2+a6+a10=3,则下列各和数中可确定值的是()A.S6B.S11C.S12D.S13【考点】84:等差数列的通项公式.【分析】由已知条件利用等差数列的通项公式能求出a6=1,从而利用等差数列的前n项和公式能求出S11.【解答】解:∵等差数列{an }的前n项和记为Sn,a2+a6+a10=3,∴3a6=3,解得a6=1,∴.∴各和数S6,S11,S12,S13中可确定值的是S11.故选:B.8.在△ABC中,A=60°,a2=bc,则△ABC一定是()A.锐角三角形 B.钝角三角形 C.等腰三角形 D.等边三角形【考点】HR:余弦定理;HP:正弦定理.【分析】由题意和余弦定理变形已知式子可得b=c,结合A=60°可判.【解答】解:∵在△ABC中A=60°,a2=bc,∴由余弦定理可得a2=b2+c2﹣2bccosA=b2+c2﹣bc,∴bc=b2+c2﹣bc,即(b﹣c)2=0,∴b=c,结合A=60°可得△ABC一定是等边三角形.故选:D9.已知数列{an }的前n项和Sn=2n+t(t是实常数),下列结论正确的是()A.t为任意实数,{an}均是等比数列B.当且仅当t=﹣1时,{an}是等比数列C.当且仅当t=0时,{an}是等比数列D.当且仅当t=﹣2时,{an}是等比数列【考点】87:等比数列.【分析】可根据数列{an }的前n项和Sn=2n+t(t是实常数),求出a1,以及n≥2时,an,再观察,t等于多少时,{an}是等比数列即可.【解答】解:∵数列{an }的前n项和Sn=2n+t(t为常数),∴a1=s1=2+t,n≥2时,an =sn﹣sn﹣1=2n+t﹣(2n﹣1+t)=2n﹣2n﹣1=2n﹣1当t=﹣1时,a1=1满足an=2n﹣1故选:B10.如果不等式<1对一切实数x均成立,则实数m的取值范围是()A.(1,3)B.(﹣∞,3) C.(﹣∞,1)∪(2,+∞)D.(﹣∞,+∞)【考点】3R:函数恒成立问题.【分析】不等式式<1对一切实数x均成立,等价于 2x2+2(3﹣m)x+(3﹣m)>0 对一切实数x均成立,利用判别式小于0,即可求出实数m的取值范围.【解答】解:不等式式<1对一切实数x均成立,等价于 2x2+2(3﹣m)x+(3﹣m)>0 对一切实数x均成立∴[2(3﹣m)]2﹣4×2×(3﹣m)<0,故m的取值范围为(1,3).故选:A.11.已知正项等差数列{an }满足a1+a2015=2,则的最小值为()A.1 B.2 C.2014 D.2015【考点】8F:等差数列的性质.【分析】正项等差数列{an }满足a1+a2015=2,可得a1+a2015=2=a2+a2014,再利用“乘1法”与基本不等式的性质即可得出.【解答】解:∵正项等差数列{an }满足a1+a2015=2,∴a1+a2015=2=a2+a2014,则=(a2+a2014)=≥=2,当且仅当a2=a2014=1时取等号.故选:B.12.不等式2x2﹣axy+3y2≥0对于任意x∈[1,2]及y∈[1,3]恒成立,则实数a的取值范围是()A.a≤2 B.a≤2 C.a≤5 D.a≤【考点】3W:二次函数的性质.【分析】不等式等价变化为a≤=+,则求出函数Z=+的最小值即可.【解答】解:依题意,不等式2x2﹣axy+y2≤0等价为a≤=+,设t=,∵x∈[1,2]及y∈[1,3],∴≤≤1,即≤≤3,∴≤t≤3,则Z=+=3t+,∵3t+≥2=2,当且仅当3t=,即t=时取等号,故a≤2,故选:B.二、填空题:本大题共4小题,每小题5分.13.一元二次不等式x2+ax+b>0的解集为x∈(﹣∞,﹣3)∪(1,+∞),则一元一次不等式ax+b<0的解集为.【考点】74:一元二次不等式的解法.【分析】由一元二次不等式x2+ax+b>0的解集为x∈(﹣∞,﹣3)∪(1,+∞),可知:﹣3,1是一元二次方程式x2+ax+b=0的两个实数根,利用根与系数的关系可得a,b.进而解出一元一次不等式ax+b<0的解集.【解答】解:∵一元二次不等式x2+ax+b>0的解集为x∈(﹣∞,﹣3)∪(1,+∞),∴﹣3,1是一元二次方程式x2+ax+b=0的两个实数根,∴﹣3+1=﹣a,﹣3×1=b,解得a=2,b=﹣3.∴一元一次不等式ax+b<0即2x﹣3<0,解得.∴一元一次不等式ax+b<0的解集为.故答案为:.14.已知函数f(x)=,若使不等式f(x)<成立,则x的取值范围为{x|x<3} .【考点】7E:其他不等式的解法.【分析】根据函数的表达式解关于x≥2时的不等式f(x)<即可.【解答】解:∴f(x)=,∴x<2时,不等式f(x)<恒成立,x≥2时,x﹣<,解得:2≤x<3,综上,不等式的解集是:{x|x<3},故答案为:{x|x<3}.15.设{an } 为公比q>1的等比数列,若a2013和a2014是方程4x2﹣8x+3=0的两根,则a2015+a2016=18 .【考点】88:等比数列的通项公式.【分析】由4x2﹣8x+3=0,解得x=,.根据{an } 为公比q>1的等比数列,若a2013和a2014是方程4x2﹣8x+3=0的两根,可得a2013=,a2014=.q=3.即可得出.【解答】解:由4x2﹣8x+3=0,解得x=,.∵{an } 为公比q>1的等比数列,若a2013和a2014是方程4x2﹣8x+3=0的两根,∴a2013=,a2014=,∴q=3.∴a2015+a2016=q2(a2013+a2014)=18.故答案为:18.16.在△ABC中,a,b,c分别为三个内角A,B,C所对的边,设向量,,且,b和c的等差中项为,则△ABC面积的最大值为.【考点】HT:三角形中的几何计算.【分析】根据,利用向量的性质建立关系与余弦定理结合可得A的大小.b和c的等差中项为,根据等差中项性质,可得b+c=1.△ABC面积S=bcsinA,利用基本不等式可得最大值.【解答】解:向量,,∵,∴b(b﹣c)+(c﹣a)(c+a)=0.得:b2﹣bc=﹣c2+a2.即﹣a2+b2+c2=bc由余弦定理:b2+c2﹣a2=2bccosA可是:bc=2bccosA.∴cosA=.∵0<A<π∴A=又b和c的等差中项为,根据等差中项性质,可得b+c=1.∴b+c,(当且仅当b=c时取等号)可得:bc≤.则△ABC面积S=bcsinA≤=.故答案为:.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知函数f(x)=x2+3x+a(1)当a=﹣2时,求不等式f(x)>2的解集(2)若对任意的x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围.【考点】3W:二次函数的性质;74:一元二次不等式的解法.【分析】(1)直接利用二次不等式转化求解即可.(2)利用函数恒成立,分离变量,利用函数的最值求解即可.【解答】解:(1)当a=﹣2时,不等式f(x)>2可化为x2+3x﹣4>0,解得{x|x<﹣4或x>1} …(2)若对任意的x∈[1,+∞),f(x)>0恒成立,则a>﹣x2﹣3x在x∈[1,+∞)恒成立,设g(x)=﹣x2﹣3x则g(x)在区间x∈[1,+∞)上为减函数,当x=1时g(x)取最大值为﹣4,∴a得取值范围为{a|a>﹣4} ….18.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且=2csinA(1)确定角C的大小;(2)若c=,且△ABC的面积为,求a+b的值.【考点】HX:解三角形.【分析】(1)利用正弦定理把已知条件转化成角的正弦,整理可求得sinC,进而求得C.(2)利用三角形面积求得ab的值,利用余弦定理求得a2+b2的值,最后求得a+b的值.【解答】解:(1)∵=2csinA∴正弦定理得,∵A锐角,∴sinA>0,∴,又∵C锐角,∴(2)三角形ABC中,由余弦定理得c2=a2+b2﹣2abcosC即7=a2+b2﹣ab,又由△ABC的面积得.即ab=6,∴(a+b)2=a2+b2+2ab=25由于a+b为正,所以a+b=5.19.设等差数列{an }的前n项和为Sn,n∈N*,公差d≠0,S3=15,已知a1,a4,a13成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn =a2n,求数列{bn}的前n项和Tn.【考点】8M:等差数列与等比数列的综合.【分析】(Ⅰ)运用等比数列的性质和等差数列的通项公式和求和公式,解方程可得首项和公差,即可得到所求通项公式;(Ⅱ)设bn =a2n=2n+1+1,运用分组求和的方法,结合等比数列的求和公式,计算即可得到Tn.【解答】解:(I)依题意,a1,a4,a13成等比数列.即有a42=a1a13,则,解得,因此an =a1+(n﹣1)d=3+2(n﹣1)=2n+1,即an=2n+1.(Ⅱ)依题意,.Tn =b1+b2+…+bn=(22+1)+(23+1)+…+(2n+1+1),=22+23+…+2n+1+n==2n+2+n﹣4.20.在△ABC中,角A,B,C所对边分别为a,b,c且acosC,bcosB,ccosA成等差数列.(1)求B的值;(2)求2sin2A﹣1+cos(A﹣C)的取值范围.【考点】HR:余弦定理;HP:正弦定理.【分析】(1)由于acosC,bcosB,ccosA成等差数列,可得2bcosB=acosC+ccosA,再利用正弦定理、和差化积、诱导公式等即可得出.(2)由,可得A﹣C=2A﹣,再利用倍角公式即可化为2sin2A﹣1+cos(A﹣C)=,由于,可得<π,即可得出.【解答】解:(1)∵acosC,bcosB,ccosA成等差数列,∴2bcosB=acosC+ccosA,由正弦定理可得:2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,∵B∈(0,π),sinB ≠0,∴cosB=,B=.(2)∵,∴A﹣C=2A﹣,∴=,∵,∴<π,∴<≤1,∴2sin2A﹣1+cos(A﹣C)的取值范.21.某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由长方形的休闲区A1B1C1D1(阴影部分)和环公园人行道组成.已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米.(1)若设休闲区的长A1B1=x米,求公园ABCD所占面积S关于x的函数S(x)的解析式;(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽该如何设计?【考点】7G:基本不等式在最值问题中的应用;5C:根据实际问题选择函数类型.【分析】(1)利用休闲区A1B1C1D1的面积为4000平方米,表示出,进而可得公园ABCD所占面积S关于x的函数S(x)的解析式;(2)利用基本不等式确定公园所占最小面积,即可得到结论.【解答】解:(1)由A1B1=x米,知米∴=(2)当且仅当,即x=100时取等号∴要使公园所占面积最小,休闲区A 1B 1C 1D 1的长为100米、宽为40米.22.已知数列{a n }的通项为a n ,前n 项和为s n ,且a n 是s n 与2的等差中项,数列{b n }中,b 1=1,点P (b n ,b n+1)在直线x ﹣y+2=0上. (Ⅰ)求数列{a n }、{b n }的通项公式a n ,b n (Ⅱ)设{b n }的前n 项和为B n ,试比较与2的大小.(Ⅲ)设T n =,若对一切正整数n ,T n <c (c ∈Z )恒成立,求c 的最小值.【考点】8K :数列与不等式的综合;8E :数列的求和;8I :数列与函数的综合.【分析】(Ⅰ)利用已知条件得出数列的通项和前n 项和之间的等式关系,再结合二者间的基本关系,得出数列{a n }的通项公式,根据{b n }的相邻两项满足的关系得出递推关系,进一步求出其通项公式;(Ⅱ)利用放缩法转化各项是解决该问题的关键,将所求的各项放缩转化为能求和的一个数列的各项估计其和,进而达到比较大小的目的;(Ⅲ)利用错位相减法进行求解T n 是解决本题的关键,然后对相应的和式进行估计加以解决.【解答】解:(Ⅰ)由题意可得2a n =s n+2, 当n=1时,a 1=2,当n ≥2时,有2a n ﹣1=s n ﹣1+2,两式相减,整理得a n =2a n ﹣1即数列{a n }是以2为首项,2为公比的等比数列,故a n =2n .点P (b n ,b n+1)在直线x ﹣y+2=0上得出b n ﹣b n+1+2=0,即b n+1﹣b n =2, 即数列{b n }是以1为首项,2为公差的等差数列, 因此b n =2n ﹣1.(Ⅱ)B n =1+3+5+…+(2n ﹣1)=n 2 ∴=. (Ⅲ)T n =①②①﹣②得∴又∴满足条件Tn<c的最小值整数c=3.。
高一下期中数学试题精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-2017-2018学年度第二学期高一年级期中考试数学试题(考试时间:120分钟,满分160分)一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上.)1.若直线l 过两点()()6,3,2,1B A ,则l 的斜率为 .2.已知等差数列{}n a 中,7,141==a a ,则它的第5项为__________. 3.在△ABC 中,角A,B,C 的对边分别为,,a b c,若60a A ︒==,则=Bbsin ________. 4.不等式01<-xx 的解集为 .5.在△ABC 中,角A,B,C 的对边分别为,,a b c ,若(a +c )(a -c )=b (b +c ),则A =________.6.若点()t P ,2-在直线062:=++y x l 的上方,则t 的取值范围是 .7.已知点()1,1-A 与点B 关于直线03:=+-y x l 对称,则点B 坐标为 .8.若圆M 过三点()()()1,3,4,2,1,7A B C -,则圆M 的面积为__________.9.若方程组23{22ax y x ay +=+=无解,则实数a =_____. 10.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,若15323S S S +=,则{}n a 的公比等于__________.11.已知实数x,y 满足⎪⎩⎪⎨⎧≤+≥≥200y x y x ,若{}y x y x z 24,3m ax --=,则z 的取值范围是____________.({}b a ,m ax 表示b a ,中的较大数) 12.已知实数x,y 满足322=+y x ,22y x ≠,则()()22222122y x y x y x -+++的最小值为____________.13.已知数列{}n a 的前n 项和为n S ,若1,,51221=-=+=+n n n n a a n a a a ,则100S =___________.14.在△ABC 中,角A,B,C 所对的边分别为c b a ,,,且32cos 422=-+C ab b a ,则ABC ∆的面积的最大值为___________.二、解答题:(本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.)15.(本小题满分14分)如图,在ABC ∆中, 36,4AB B π=∠=, D 是BC 边上一点,且3ADB π∠=.(1)求AD 的长;(2)若10CD =,求AC 的长.16.(本小题满分14分)已知函数1)1()(2++-=x a a x x f ,(1)当2a =时,解关于x 的不等式0)(≤x f ; (2)若0>a ,解关于x 的不等式0)(≤x f .17.(本小题满分14分)已知正项等差数列{}n a 的前n 项和为n S ,且满足63,7272351==+S a a a . (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足1111,++=-=n n n a b b a b ,若数列⎭⎬⎫⎩⎨⎧n b 1的前n 项和为n T ,求使得20kT n <对任意的*N n ∈都成立的最小正整数k 的值.18.(本小题满分16分)如图所示,直角三角形ABC 是一块绿地,90C =,20AC =米,50BC =米,现要扩大成更大的直角三角形DEF 绿地,其斜边EF 过点A ,且与BC 平行,DE 过点C ,DF 过点B .(1)设∠=BCD α,试用α表示出三角形DEF 面积S (平方米);(2)如果在新增绿地上种植草皮,且种植草皮的费用是每平方米100元,那么在新增绿地上种植草皮的费用最少需要多少元?19.(本小题满分16分)已知圆C 过A (0,2)且与圆M :04822=+++y x y x 切于原点. (1)求圆C 的方程;(2)已知D 为y 轴上一点,若圆C 上存在两点M ,N ,使得2π=∠MDN ,求D 点纵坐标的取值范围;(3)12,l l 是过点B (1,0)且互相垂直的两条直线,其中1l 交y 轴于点E ,2l 交圆C 于P 、Q 两点.求三角形EPQ 的面积的最小值.F EDABC20. (本小题满分16分)已知数列{}n a 满足112++-=n n n n a a a a ,且*1,21N n a ∈=. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足:⎪⎪⎩⎪⎪⎨⎧=-=++-=+k n a a k n n n b nn n 2,12,111122()*∈N k ,求{}n b 的前n 项和n S (用n 表示); (3)设nn a C 1=,n T 为{}n C 前n 项和,从{}n C 中抽取一个公比为q 的等比数列{}nk C ,其中11=k,且*∈<<<<N k k k k n n ,21 ,若关于()*∈N n n 的不等式12+>n n k T 有解,求q 的值.数学试题参考答案1.2 2.9 3.2 4.{}10<<x x 5.120° 6.()+∞-,2 7.()2,2- 8.π25 9.2± 10.2 11.[]8,2- 12.5913.1314 14.5515.解:(1)在ABD ∆中,由正弦定理得sin sin AD ABB ADB=∠,2=∴6AD=(2)∵3ADBπ∠=,∴23ADCπ∠=在ACD∆中,由余弦定理得22222cos3AC AD DC AD DCπ=+-⋅⋅13610026101962⎛⎫=+-⨯⨯⨯-=⎪⎝⎭∴14AC=16.解:(1)当2a=时得()2111210202222x x x x x⎛⎫⎛⎫-++≤∴--≤∴≤≤⎪ ⎪⎝⎭⎝⎭,解集为1[,2]2(2)∵不等式))(1()(≤--=axaxxf,>a当10<<a时,有aa>1,∴不等式的解集为}1|{axax≤≤;当1>a时,有aa<1,∴不等式的解集为}1|{axax≤≤;当1=a时,不等式的解集为{1}.17.解:(1)12+=nan(2)321+=-+nbbnn,当2≥n时,()()()112211bbbbbbbbnnnnn+-++-+-=---=()2+n n又31=b也满足上式,所以()2+=nnbn()⎪⎭⎫⎝⎛+-=+=∴21121211nnnnbn⎪⎭⎫⎝⎛+++-=⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛+-+⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-=∴21112143211412131121nnnnTnkkTn∴≤∴<204343的最小正整数值为15.18.(1)αααααcos 20sin 50tan ,sin 20cos 50+==+=DE DF DE ⎪⎭⎫⎝⎛∈+⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+=⋅=∴∆2,0,1000cos sin 4cos sin 2550cos 20sin 50sin 20cos 502121παααααααααDF DE S DEF(2)设新增绿地上种植草皮的费用为()15000050000cos sin 4cos sin 2550001005001000cos sin 4cos sin 2550≥+⎪⎭⎫⎝⎛+=⨯⎥⎦⎤⎢⎣⎡-+⎪⎭⎫⎝⎛+=αααααααααf当且仅当52cos sin =αα即542sin =α时等号成立 答:(1)⎪⎭⎫⎝⎛∈+⎪⎭⎫ ⎝⎛+=∆2,0,1000cos sin 4cos sin 2550παααααDEF S(2)新增绿地上种植草皮的费用最少需要15万元.19.(1)圆C 方程为:22(2)(1)5x y -+-= (2)设()t D ,0,则()61611014102+≤≤-∴≤-+∴≤t t CD所以D 点纵坐标范围是[]61,61+-;(3)(i )当直线2l :1x =时,直线1l 的方程为0y =,此时,2EPQS=;(ii )当直线2l 的斜率存在时,设2l 的方程为:(1)y k x =-(0k ≠),则1l 的方程为:1(1)y x k =--,点1(0,)E k.所以,BE =.又圆心C到2l 的距离为1|1|2+-k k ,所以,222214242)1|1|(52k k k k k PQ +++=+--=.故12EPQSBE PQ =⋅=2<所以,()EPQ min S =20.解:(1)由112++-=n n n n a a a a ,得:21,21111==-+a a a n n ⎭⎬⎫⎩⎨⎧∴n a 1是首项为2公差为2的等差数列,所以()na n n a n n 2122121=∴=-+= (2)由(1)可得()⎪⎭⎫⎝⎛+-=+=+111411411n n n n a a n n , ,211111--+=++-n n n n当n 为偶数时,()2422214121212131212114122224202++=⎪⎭⎫ ⎝⎛+-+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛--++⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=∴n n n n n n n n n S n 当n 为奇数时,()211141211--+++-+-=+=-n n n n n b S S n n n =()14121+-++n n n ()()⎪⎪⎩⎪⎪⎨⎧+-++++=∴为奇数为偶数n n n n n n nn S n ,14121,242; (3)()1,2+==n n T n C n n ,1122--=∴==n n n n k q k q k C n , 由*∈<<<<N k k k k n n ,21 ,得*∈>N q q ,112+>n n k T 即()()11212>+∴>+nn qn n q n n 当3,2=q 时均存在n 满足上式,下面证明*∈≥N q q ,4时,不满足题意, 设()nn qn n e 12+=, ()()[]()n n n n n e e q n q q q n q n e e <∴<+-≤+-∴≥+-+=-+++1110221221422112{}n e ∴递减,()112141≤+=∴≤=n n qn n e q e 综上, 3,2=q .。
2017—2018学年人教版高一数学第二学期期中考试卷题库(共10套)2017—2018学年人教版高一数学第二学期期中考试卷(一)(考试时间120分钟满分150分)一.单项选择题(共4小题,每小题5分,共20分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项)1.已知全集U={1,2,3,4,5},集合M={3,4,5},N={1,2,5},则集合{1,2}可以表示为()A.M∩N B.(?U M)∩N C.M∩(?U N)D.(?U M)∩(?U N)2.设函数f(x)=,g(x)=x2f(x﹣1),则函数g(x)的递减区间是()A.(﹣∞,0]B.[0,1)C.[1,+∞)D.[﹣1,0]3.如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为()A.B.4 C. D.24.函数f(x)=2x﹣的一个零点在区间(1,2)内,则实数a的取值范围是()A.(1,3)B.(1,2)C.(0,3)D.(0,2)二.填空题:共2小题,每小题5分,共10分.5.已知点A(1,2)、B(3,1),则线段AB的垂直平分线的方程是______.6.若正三棱锥的侧面都是直角三角形,则侧面与底面所成的二面角的余弦值为______.三、解答题:解答应写出文字说明,证明过程或演算步骤.7.已知圆C:x2+y2﹣8y+12=0,直线l:ax+y+2a=0.若直线l与圆C相交于A,B两点,且,求直线l的方程.8.如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F分别为AC、DC的中点.(Ⅰ)求证:EF⊥BC;(Ⅱ)求二面角E﹣BF﹣C的正弦值.第二部分本学期知识和能力部分一.选择题:共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.9.下列函数中,周期为π,且在上为减函数的是()A.B.C.D.10.已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣B.0 C.3 D.11.已知tanθ=,θ∈(0,),则cos(﹣θ)=()A.B.﹣C. D.12.设向量,满足|+|=,|﹣|=,则?=()A.1 B.2 C.3 D.513.在△ABC中,若∠A=60°,∠B=45°,,则AC=()A. B. C.D.14.已知平面向量,的夹角为,且||=,||=2,在△ABC中,=2+2,=2﹣6,D为BC中点,则||=()A.2 B.4 C.6 D.815.函数是()A.周期为π的奇函数 B.周期为π的偶函数C.周期为2π的奇函数D.周期为2π的偶函数16.为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位二.填空题:共2小题,每小题5分,共10分.17.设θ为第二象限角,若,则sinθ+cosθ=______.18.已知,是单位向量,?=0.若向量满足|﹣﹣|=1,则||的取值范围是______.三、解答题:解答应写出文字说明,证明过程或演算步骤.19.已知函数f(x)=Asin(x+φ)(A>0,0<φ<π),x∈R的最大值是1,其图象经过点.(1)求f(x)的解析式;(2)已知,且,,求f(α﹣β)的值.20.已知向量=(3,﹣4),=(6,﹣3),=(5﹣m,﹣(3+m)).(1)若点A,B,C能构成三角形,求实数m应满足的条件;(2)若△ABC为直角三角形,且∠A为直角,求实数m的值.21.已知函数f(x)=Asin(ωx+φ)(A,ω>0,﹣π<φ<π)在一个周期内的图象如图所示.(1)求f(x)的表达式;(2)在△ABC中,f(C+)=﹣1且?<0,求角C.22.已知△ABC的三个内角A、B、C的对边分别为a、b、c,且b2+c2=a2+bc,求:(1)2sinBcosC﹣sin(B﹣C)的值;(2)若a=2,求△ABC周长的最大值.23.已知函数f(x)=4cosωx?sin(ωx+)(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间[0,]上的单调性;(3)当x∈[0,]时,关于x的方程f(x)=a 恰有两个不同的解,求实数a的取值范围.参考答案一.单项选择题:1. B 2.B.3.C4.C.二.填空题:5.答案为:4x﹣2y﹣5=06.答案为:.三、解答题:7.解:将圆C的方程x2+y2﹣8y+12=0配方得标准方程为x2+(y﹣4)2=4,则此圆的圆心坐标为(0,4),半径为2.…过圆心C作CD⊥AB,则D为AB的中点,,因为|BC|=2,所以.…由,解得a=﹣7,或a=﹣1.…即所求直线的方程为7x﹣y+14=0或x﹣y+2=0.…8.(Ⅰ)证明:由题意,以B为坐标原点,在平面DBC内过B作垂直BC的直线为x轴,BC所在直线为y轴,在平面ABC内过B作垂直BC的直线为z轴,建立如图所示空间直角坐标系,易得B(0,0,0),A(0,﹣1,),D(,﹣1,0),C(0,2,0),因而E(0,,),F(,,0),所以=(,0,﹣),=(0,2,0),因此=0,所以EF⊥BC.(Ⅱ)解:在图中,设平面BFC的一个法向量=(0,0,1),平面BEF的法向量=(x,y,z),又=(,,0),=(0,,),由得其中一个=(1,﹣,1),设二面角E﹣BF﹣C的大小为θ,由题意知θ为锐角,则cosθ=|cos<,>|=||=,因此sinθ==,即所求二面角正弦值为.第二部分本学期知识和能力部分一.选择题:9.A.10.C.11.C.12.A.13. B 14.A.15. C 16.C.二.填空题:17.解:∵tan(θ+)==,∴tanθ=﹣,而cos2θ==,∵θ为第二象限角,∴cosθ=﹣=﹣,sinθ==,则sinθ+cosθ=﹣=﹣.故答案为:﹣18.解:由,是单位向量,?=0.可设=(1,0),=(0,1),=(x,y).∵向量满足|﹣﹣|=1,∴|(x﹣1,y﹣1)|=1,∴=1,即(x﹣1)2+(y﹣1)2=1.其圆心C(1,1),半径r=1.∴|OC|=.∴≤||=.∴||的取值范围是.故答案为:.三、解答题:19.解:(1)依题意有A=1,则f(x)=sin(x+φ),将点代入得,而0<φ<π,∴,∴,故.(2)依题意有,而,∴,.20.解:(1)若点A、B、C能构成三角形,则这三点不共线,∵,故知3(1﹣m)≠2﹣m∴实数时,满足条件.(2)若△ABC为直角三角形,且∠A为直角,则,∴3(2﹣m)+(1﹣m)=0解得.21.解:(1)由图可知函数的最大值是2,最小值是﹣2,∴A=2,…∵T=+=,∴T=π=,可得:ω=2,…又∵f(x)过点(﹣,0),且根据图象特征得:﹣2×+φ=0+2kπ,k∈Z,∴φ=+2kπ,k∈Z,…而﹣π<φ<π,∴φ=.…∴f(x)=2sin(2x+).…(2)∵f(x)=2sin(2x+),∴f(C)=2sin(2C)=﹣1,…∴sin(2C)=﹣,…因为C为三角形内角,∴C=或,…又∵?=abcosC<0,0<C<π,∴cosC<0,<C<π,∴C=..…22.解:(1)∵b2+c2=a2+bc,∴a2=b2+c2﹣bc,结合余弦定理知cosA===,又A∈(0,π),∴A=,∴2sinBcosC﹣sin(B﹣C)=sinBcosC+cosBsinC=sin(B+C)=sin[π﹣A]=sinA=;(2)由a=2,结合正弦定理得:====,∴b=sinB,c=sinC,则a+b+c=2+sinB+sinC=2+sinB+sin(﹣B)=2+2sinB+2cosB=2+4sin(B+),可知周长的最大值为6.23.解:(1)f(x)=4cosωx?sin(ωx+)=2sinωx?cosωx+2cos2ωx,=(sin 2ωx+cos 2ωx)+,=2sin(2ωx+)+,因为f(x)的最小正周期为π,且ω>0,从而有=π,故ω=1.(2)由(1)知,f(x)=2sin(2x+)+.若0≤x≤,则≤2x+≤.当≤2x+≤,即0≤x≤时,f(x)单调递增;当≤2x+≤,即≤x≤时,f(x)单调递减.综上可知,f(x)在区间[0,]上单调递增,在区间[,]上单调递减;(3)x∈[0,]时,关于x的方程f(x)=a 恰有两个不同的解,即y=a与函数在[0,]上,与f(x)=2sin(2x+)+由两个交点,由函数图象可知:a∈[2,2+),实数a的取值范围[2,2+).2017—2018学年人教版高一数学第二学期期中考试卷(二)(考试时间120分钟满分150分)一.单项选择题(共4小题,每小题5分,共20分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.)1.已知集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A∩(?U B)=()A.{2}B.{2,3}C.{3}D.{1,3}2.一个几何体的三视图如图所示,已知这个几何体的体积为,则h=()A.B.C. D.3.过点A(2,3)且垂直于直线2x+y﹣5=0的直线方程为()A.x﹣2y+4=0 B.2x+y﹣7=0 C.x﹣2y+3=0 D.x﹣2y+5=04.在同一坐标系中画出函数y=log a x,y=a x,y=x+a的图象,可能正确的是()A.B.C.D.二.填空题:共2小题,每小题5分,共10分.5.函数f(x)=的定义域为______.6.已知圆C:(x﹣a)2+(y﹣2)2=4(a>0)及直线l:x﹣y+3=0,当直线l被C截得弦长为时,则a=______.三、解答题:解答应写出文字说明,证明过程或演算步骤.7.如图,矩形ABCD中,对角线AC、BD的交点为G,AD⊥平面ABE,AE⊥EB,AE=EB=BC=2,F为CE上的点,且BF⊥CE.(Ⅰ)求证:AE⊥平面BCE;(Ⅱ)求三棱锥C﹣GBF的体积.第二部分本学期知识和能力部分一.选择题:共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.8.下列函数中,周期为π,且在上为减函数的是()A.B.C.D.9.已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣B.0 C.3 D.10.已知tanθ=,θ∈(0,),则cos(﹣θ)=()A.B.﹣C. D.11.设向量,满足|+|=,|﹣|=,则?=()A.1 B.2 C.3 D.512.已知函数f(x)=sin(2x+φ)(|φ|<π)的图象过点P(0,),如图,则φ的值为()A.B. C.或D.﹣或13.已知函数y=f(x),将f(x)的图象上的每一点的纵坐标保持不变,横坐标扩大到原来的2倍,然后把所得的图象沿着x轴向左平移个单位,这样得到的是的图象,那么函数y=f(x)的解析式是()A.B.C. D.14.已知,O为平面内任意一点,则下列各式成立的是()A.B.C.D.15.函数是()A.周期为π的奇函数 B.周期为π的偶函数C.周期为2π的奇函数D.周期为2π的偶函数二.填空题:共2小题,每小题5分,共10分.16.已知tanα=﹣,则=______.17.已知为非零向量,且夹角为,若向量=,则||=______.三、解答题:解答应写出文字说明,证明过程或演算步骤.18.已知,且cos(α﹣β)=,sin(α+β)=﹣,求:cos2α的值.19.已知向量=(3,﹣4),=(6,﹣3),=(5﹣m,﹣(3+m)).(1)若点A,B,C能构成三角形,求实数m应满足的条件;(2)若△ABC为直角三角形,且∠A为直角,求实数m的值.20.已知函数f(x)=A(2ωx+φ)(A>0,ω>0,0<φ<π)在x=时取最大值2,x1,x2是集合M={x∈R|f(x)=0}中的任意两个元素,且|x1﹣x2|的最小值为.(1)求函数f(x)的解析式;(2)若f(α)=,α∈(,),求sin(﹣2α)的值.21.已知函数f(x)=4cosωx?sin(ωx+)(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间[0,]上的单调性.22.已知向量=(2cos(﹣θ),2sin(﹣θ)),=(cos(90°﹣θ),sin(90°﹣θ))(1)求证:⊥;(2)若存在不等于0的实数k和t,使=+(t2﹣3),=﹣k+t满足⊥.试求此时的最小值.参考答案一.单项选择题:1.D.2.B.3.A.4. D二.填空题:5.答案为:{x|0<x≤2且x≠1}.6.答案为:三、解答题:7.(I)证明:∵AD⊥面ABE,AD∥BC,∴BC⊥面ABE,AE?平面ABE,∴AE⊥BC.…又∵AE⊥EB,且BC∩EB=B,∴AE⊥面BCE.…(II)解:∵在△BCE中,EB=BC=2,BF⊥CE,∴点F是EC的中点,且点G是AC的中点,…∴FG∥AE且.…∵AE⊥面BCE,∴FG⊥面BCE.∴GF是三棱锥G﹣BFC的高…在Rt△BCE中,EB=BC=2,且F是EC的中点.…∴.…第二部分本学期知识和能力部分一.选择题:8.A.9.C.10.C.11.A.12. A 13.D.14.A.15. C 二.填空题:16.答案为:.17.答案为:.三、解答题:18.解:∵<β<α<,∴0<α﹣β<,π<α+β<,∵cos(α﹣β)=,sin(α+β)=﹣,∴sin(α﹣β)==,cos(α+β)=﹣=﹣,则cos2α=cos[(α﹣β)+(α+β)]=cos(α﹣β)cos(α+β)﹣sin(α﹣β)sin(α+β)=×(﹣)﹣(﹣)×=﹣.19.解:(1)若点A、B、C能构成三角形,则这三点不共线,∵,故知3(1﹣m)≠2﹣m∴实数时,满足条件.(2)若△ABC为直角三角形,且∠A为直角,则,∴3(2﹣m)+(1﹣m)=0解得.20.解:(1)由x1,x2是集合M={x∈R|f(x)=0}中的任意两个元素,且|x1﹣x2|的最小值为.得:T=π.函数f(x)=A(2ωx+φ)(A>0,ω>0,0<φ<π)在x=时取最大值2,∴A=2.∴=π,解得ω=1,∴f(x)=2sin(2x+φ),∵在x=时取最大值,∴+φ=+2kπ,(k∈Z),0<φ<π),∴φ=,∴f(x)=2sin.(2)∵f(α)=,∴2sin=,∴sin=,∵sin(﹣2α)=cos,∵<2<π,∴==﹣,∴sin(﹣2α)=﹣.21.解:(1)f(x)=4cosωxsin(ωx+)=2sinωx?cosωx+2cos2ωx=(sin2ωx+cos2ωx)+=2sin(2ωx+)+,所以T==π,∴ω=1.(2)由(1)知,f(x)=2sin(2x+)+,因为0≤x≤,所以≤2x+≤,当≤2x+≤时,即0≤x≤时,f(x)是增函数,当≤2x+≤时,即≤x≤时,f(x)是减函数,所以f(x)在区间[0,]上单调增,在区间[,]上单调减.22.解:(1)∵=2cos(﹣θ)cos(90°﹣θ)+2sin(﹣θ)sin(90°﹣θ)=2cosθsinθ﹣2sinθcosθ=0,∴.(2)=4cos2θ+4sin2θ=4,=1,∵⊥,∴=[+(t2﹣3)]?(﹣k+t)=+=﹣4k+t(t2﹣3)=0,(k≠0,t≠0).∴,∴==﹣.2017—2018学年人教版高一数学第二学期期中考试卷(三)一、单项选择题(每小题5分满分60分)1.如图所示,程序框图(算法流程图)的输出结果是()A.3 B.4 C.5 D.82.下列说法中,正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间降雨B.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C.“彩票中奖的概率是1%”表示买100张彩票一定有1张会中奖D.在同一年出生的367名学生中,至少有两人的生日是同一天3.某年级有12个班,现要从2班到12班中选1个班的学生参加一项活动,有人提议:掷两个骰子,把得到的点数之和是几就选几班,这种选法()A.公平,每个班被选到的概率都为B.公平,每个班被选到的概率都为C.不公平,6班被选到的概率最大D.不公平,7班被选到的概率最大4.抽查10件产品,设事件A:至少有2件次品,则A的对立事件为()A.至多有2件次品B.至多有1件次品C.至多有2件正品D.至多有1件正品5.某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二780人、高三n人中,抽取35人进行问卷调查,已知高二被抽取的人数为13人,则n等于()A.660 B.720 C.780 D.8006.掷一枚骰子,则掷得奇数点的概率是()A.B.C.D.7.程序框图如图所示,该程序运行后输出的S的值是()A.﹣3 B.﹣C.D.28.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有()A.a>b>c B.b>c>a C.c>a>b D.c>b>a9.如图是2012年在某大学自主招生考试的面试中,七位评委为某考生打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为()A.84,4.84 B.84,1.6 C.85,1.6 D.85,410.已知点M(a,b)在圆O:x2+y2=4外,则直线ax+by=4与圆O的位置关系是()A.相离 B.相切 C.相交 D.不确定11.已知两定点A(﹣3,0),B(3,0),如果动点P满足|PA|=2|PB|,则点P的轨迹所包围的图形的面积等于()A.πB.4πC.9πD.16π12.(理科)已知两点A(0,﹣3),B(4,0),若点P是圆x2+y2﹣2y=0上的动点,则△ABP面积的最小值为()A.6 B.C.8 D.二、填空题(每小题5分,共20分)13.把二进制数11011(2)化为十进制数是______.14.若圆C1:x2+y2=1与圆C2:x2+y2﹣6x﹣8y+m=0外切,则m=______.15.将参加数学竞赛的1000名学生编号如下:0001,0002,003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法把编号分成50个部分,如果第一部分编号为0001,0002,0003,…,0020,第一部分随机抽取一个号码为0013,那么抽取的第40个号码为______.16.超速行驶已成为马路上最大杀手之一,已知某中段属于限速路段,规定通过该路段的汽车时速不超过80km/h,否则视为违规.某天,有1000辆汽车经过了该路段,经过雷达测速得到这些汽车运行时速的频率分布直方图如图所示,则违规的汽车大约为______辆.三、解答题(共70分)17.在某次测验中,有6位同学的平均成绩为75分.用x n表示编号为n(n=1,2, (6)的同学所得成绩,且前5位同学的成绩如下:编号n 1 2 3 4 5成绩x n70 76 72 70 72(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.18.已知A、B、C三个箱子中各装有2个完全相同的球,每个箱子里的球,有一个球标着号码1,另一个球标着号码2.现从A、B、C三个箱子中各摸出1个球.(I)若用数组(x,y,z)中的x、y、z分别表示从A、B、C三个箱子中摸出的球的号码,请写出数组(x,y,z)的所有情形,并回答一共有多少种;(Ⅱ)如果请您猜测摸出的这三个球的号码之和,猜中有奖.那么猜什么数获奖的可能性最大?请说明理由.19.设点M(x,y)在|x|≤1,|y|≤1时按均匀分布出现,试求满足:(1)x+y≥0的概率;(2)x+y<1的概率;(3)x2+y2≥1的概率.20.已知圆心为C的圆经过点A(0,2)和B(1,1),且圆心C在直线l:x+y+5=0上.(1)求圆C的标准方程;(2)若P(x,y)是圆C上的动点,求3x﹣4y的最大值与最小值.21.某连锁经营公司所属5个零售店某月的销售额和利润额资料如表:商店名称 A B C D E销售额x/千万元 3 5 6 7 9利润额y/百万元 2 3 3 4 5(1)画出销售额和利润额的散点图;(2)若销售额和利润额具有相关关系,用最小二乘法计算利润额y对销售额x的回归直线方程;(3)据(2)的结果估计当销售额为1亿元时的利润额.参考答案一、单项选择题:1.B.2.D.3.D.4. B 5.B.6.B.7.D.8.D.9.C.10.C.11.D.12.B.二、填空题13.答案为:27.14.答案为:9.15.答案为:0793.16.答案为280.三、解答题17.解:(1)根据平均数的个数可得75=,∴x6=90,这六位同学的方差是(25+1+9+25+9+225)=49,∴这六位同学的标准差是7(2)由题意知本题是一个古典概型,试验发生包含的事件是从5位同学中选2个,共有C52=10种结果,满足条件的事件是恰有一位成绩在区间(68,75)中,共有C41=4种结果,根据古典概型概率个数得到P==0.4.18.解:(Ⅰ)数组(x,y,z)的所有情形为:(1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2),(2,2,1),(2,2,2),共8种.答:一共有8种.注:列出5、6、7种情形,得;列出所有情形,得;写出所有情形共8种,得.(Ⅱ)记“所摸出的三个球号码之和为i”为事件A i(i=3,4,5,6),…∵事件A3包含有1个基本事件,事件A4包含有3个基本事件,事件A5包含有3个基本事件,事件A6包含有1个基本事件,所以,,,,.…故所摸出的两球号码之和为4、为5的概率相等且最大.答:猜4或5获奖的可能性最大.…19.解:(1)如图,满足|x|≤1,|y|≤1的点组成一个边长为2的正方形ABCD,则S正方形ABCD=4;x+y=0的图象是AC所在直线,满足x+y≥0的点在AC的右上方,即在△ACD内(含边界),而S△ACD=S正方形ABCD=2,所以P(x+y≥0)==.(2)在|x|≤1,|y|≤1且x+y<1的面积为4﹣=,所以P(x+y<1)=.(3)在|x|≤1,|y|≤1且x2+y2≥1的面积为4﹣π,所以P(x2+y2≥1)=1﹣.20.解:(1)线段AB的中点为,又k AB=﹣1故线段AB的垂直平分线方程为即x﹣y+1=0…由得圆心C(﹣3,﹣2)…圆C的半径长故圆C的标准方程为(x+3)2+(y+2)2=25…(2)令z=3x﹣4y,即3x﹣4y﹣z=0当直线3x﹣4y﹣z=0与圆C相切于点P时,z取得最值…则圆心C(﹣3,﹣2)到直线3x﹣4y﹣z=0的距离为,解得z=﹣26或z=24故3x﹣4y的最小值为﹣26,最大值为24…21.解:(1)销售额与利润额成线性相关关系;(2)由已知数据计算得:=6,=3.4,b==0.5,a=3.4﹣0.5×6=0.4∴y对销售额x的回归直线方程为:y=0.5x+0.4;(3)∴当销售额为1亿元时,将x=10代入线性回归方程中得到y=5.4(千万元).2017—2018学年人教版高一数学第二学期期中考试卷(四)(考试时间120分钟满分150分)一.单项选择题(本题共12小题,每小题5分,共60分.在每小题列出的四个选项中,选出最符合题目要求的一项.)1.在平行四边形ABCD中, ++=()A.B.C.D.2.已知扇形的半径是2,面积为8,则此扇形的圆心角的弧度数是()A.4 B.2 C.8 D.13.以(﹣1,2)为圆心,为半径的圆的方程为()A.x 2+y2﹣2x+4y=0 B.x2+y2+2x+4y=0C.x2+y2+2x﹣4y=0 D.x2+y2﹣2x﹣4y=04.α是第四象限角,cosα=,则sinα=()A.B.C.D.5.要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位6.对于向量、、和实数λ,下列命题中真命题是()A.若?=0,则=0或=0 B.若λ=,则λ=0或=C.若2=2,则=或=﹣D.若?=?,则=7.已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<)的部分图象如图所示,则f(x)的解析式是()A.B.C.D.8.直线x﹣2y﹣3=0与圆C:(x﹣2)2+(y+3)2=9交于E、F两点,则△ECF的面积为()A.B. C.D.9.在平行四边形ABCD中,=,=,=2,则=()A.﹣B.﹣C.﹣D. +10.已知直线x+y=a与圆x2+y2=4交于A、B两点,且|+|=|﹣|,其中O为原点,则实数a的值为()A.2 B.﹣2 C.2或﹣2 D.或﹣11.已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C. D.(0,2]12.曲线y=+1(﹣2≤x≤2)与直线y=kx﹣2k+4有两个不同的交点时实数k的范围是()A.(,]B.(,+∞)C.(,)D.(﹣∞,)∪(,+∞)二.填空题(本题共4小题,每小题5分,共20分.)13.若圆O1:x2+y2=1与圆O2:(x﹣3)2+y2=r2(r>0)内切,则r的值为.14.已知向量=(3,1),=(1,3),=(k,7),若()∥,则k=.15.函数y=的定义域为.16.在等腰直角△ABC中,AB=AC=,D、E是线段BC上的点,且DE=BC,则?的取值范围是.三.解答题(本大题共6小题,共70分,解答应给出文字说明、证明过程或演算步骤.)17.已知半径为2的圆的圆心在x轴上,圆心的横坐标是正数,且与直线4x﹣3y+2=0相切.(1)求圆的方程;(2)若直线ax﹣y+5=0与圆总有公共点,求实数a的取值范围.18.已知||=4,||=2,且与夹角为120°求:(1)()?(+)(2)|2﹣|(3)与+的夹角.19.已知tan(π+α)=2,求下列各式的值:(1);(2).20.已知函数f(x)=sin(2x+)+1.(1)求函数f(x)的最小正周期和对称中心;(2)求函数f(x)的单调递增区间;(3)求函数f(x)在区间[0,]上的最大值和最小值.21.已知点A(﹣1,2),B(0,1),动点P满足.(Ⅰ)若点P的轨迹为曲线C,求此曲线的方程;(Ⅱ)若点Q在直线l1:3x﹣4y+12=0上,直线l2经过点Q且与曲线C有且只有一个公共点M,求|QM|的最小值.22.设0<α<π<β<2π,向量=(1,﹣2),=(2cosα,sinα),=(sinβ,2cosβ),=(cosβ,﹣2sinβ).(1)⊥,求α;(2)若|+|=,求sinβ+cosβ的值;(3 )若tanαtanβ=4,求证:∥.参考答案一.单项选择题:1.D.2.A.3.C.4.B.5.B.6.B.7.A.8.B.9.C.10.C.11.A.12.A.二.填空题:13.答案为:4.14.答案为5.15.答案为:{x|﹣+2kπ≤x≤+2kπ,k∈Z}.16.答案为:.三.解答题:17.解:(1)设圆心为M(m,0)(m∈Z).由于圆与直线4x﹣3y+2=0相切,且半径为2,所以=2,即|4m+2|=10.因为m为整数,故m=2.故所求的圆的方程是(x﹣2)2+y2=4.(2)因为直线ax﹣y+5=0与圆总有公共点,则圆心(2,0)到直线ax﹣y+5=0的距离不超过圆的半径,即≤2,解得a≤﹣,所以实数a的取值范围是(﹣∞,﹣].18.解:由题意可得||2=16,||2=4,且?=||||cos120°=﹣4,(1))()?(+)==16﹣8+4=12;(2)|2﹣|2=4=64+16+4=84,所以|2﹣|=2;(3)设与+的夹角为θ,则cosθ==,又0°≤θ≤180°,所以θ=30°,与的夹角为30°.19.解:(1)由已知得tanα=2.∴.(2)=20.解:(1)函数f(x)=sin(2x+)+1的最小正周期=π.由2x+=kπ,解得x=﹣,∴对称中心为(﹣,1).(2)由2kπ﹣≤2x+≤2kπ+,(k∈Z),解得kπ﹣≤x≤kπ+,∴函数f(x)的单调递增区间为[kπ﹣,kπ+],(k∈Z).(3)在区间[0,]上,2x+∈[,],∴当2x+=,即x=时,函数f(x)取得最大值+1,当2x+=,即x=时,函数f(x)取得最小值0.21.解:(Ⅰ)设P(x,y),则∵点A(﹣1,2),B(0,1),动点P满足,∴,∴化简(x﹣1)2+y2=4;(Ⅱ)由题意,|QM|最小时,|CQ|最小,当且仅当圆心C到直线的距离最小,此时d==3,∴由勾股定理可得|QM|的最小值为=.22.解:(1)若,则=2cosα﹣2sinα=0,∴tanα=1.再由0<α<π<β<2π,可得α=.(2)由题意可得=(sinβ+cosβ,2cosβ﹣2sinβ),∴===,∴sinβcosβ=.结合0<α<π<β<2π,可得β为第三象限角,故sinβ+cosβ<0.∴sinβ+cosβ=﹣=﹣=﹣.(3)若tanαtanβ=4,则有,∴sinαsinβ=4cosαcosβ,∴,故与的坐标对应成比例,故.2017—2018学年人教版高一数学第二学期期中考试卷(五)(考试时间120分钟满分150分)一、单项选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若sinα>0,且tanα<0,则角α的终边位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.﹣300°化为弧度是()A.B.﹣C.﹣D.﹣3.若=(2,4),=(1,3),则=()A.(1,1)B.(﹣1,﹣1)C.(3,7)D.(﹣3,﹣7)4.若tanα=2,则等于()A.﹣3 B. C.D.35.若||=1,||=,(﹣)⊥,则与的夹角为()A.30°B.45°C.60°D.75°6.要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位7.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2﹣b2=bc,sinC=2sinB,则A=()A.30°B.60°C.120°D.150°8.如图,在三棱锥S﹣ABC中,E为棱SC的中点,若AC=2,SA=SB=AB=BC=SC=2,则异面直线AC与BE所成的角为()A.30°B.45°C.60°D.90°9.在△ABC中,角A、B、C所对的边分别为a、b、c,若a?cosA=bcosB,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形10.已知向量,,且=+2,=﹣5+6,=7﹣2,则一定共线的()A.A,B,D B.A,B,C C.B,C,D D.A,C,D11.函数y=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+f(3)+…+f (2 012)的值等于()A.B.2+2C. +2 D.﹣212.在△ABC中,M为边BC上任意一点,N为AM中点,,则λ+μ的值为()A.B.C.D.1二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡相应位置. 13.函数y=tan(x+)的单调区间为______.14.已知向量是两个不共线的向量,若向量与向量共线,则实数λ=______.15.函数f(x)=2sinxcos(x﹣),x∈[0,]的最小值为______.16.把函数的图象向左平移m(m>0)个单位,所得的图象关于y轴对称,则m的最小值是______.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知α的终边经过点(﹣4,3),求下列各式的值:(1);(2)sinα?cosα.18.已知平面向量=(1,x),=(2x+3,﹣x)(x∈R).(1)若⊥,求x的值;(2)若∥,求|﹣|.19.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(1)求角A的大小;(2)若a=4,b+c=8,求△ABC的面积.20.如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DBA=30°,∠DAB=60°,AD=1,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角P﹣AB﹣D余弦值.21.已知,且,(1)求cosα的值;(2)若,,求cosβ的值.22.已知向量=(1+cosωx,1),=(1,a+sinωx)(ω为常数且ω>0),函数f(x)=在R上的最大值为2.(Ⅰ)求实数a的值;(Ⅱ)把函数y=f(x)的图象向右平移个单位,可得函数y=g(x)的图象,若y=g(x)在[0,]上为增函数,求ω取最大值时的单调增区间.参考答案一、单项选择题:1.B.2.B.3.B.4.D.5.B.6.B.7.A.8.C.9.C.10.A.11.B.12.A.二、填空题:13.答案为:递增区间为(kπ﹣,kπ+),k∈Z14.答案为:﹣15.答案为:0.16.答案为:π.三、解答题:17.解:∵α的终边经过点P(﹣4,3),∴|PO|=r=因此,,,…(1)根据诱导公式,得sin(±α)=cosα,cos(π+α)=﹣cosα,sin(π﹣α)=sinα∴…(2)sinα?cosα=﹣×=…18.解:(1)∵⊥,∴?=(1,x)?(2x+3,﹣x)=2x+3﹣x2=0整理得:x2﹣2x﹣3=0解得:x=﹣1,或x=3(2)∵∥∴1×(﹣x)﹣x(2x+3)=0即x(2x+4)=0解得x=﹣2,或x=0当x=﹣2时,=(1,﹣2),=(﹣1,2)﹣=(2,﹣4)∴|﹣|=2当x=0时,=(1,0),=(3,0)﹣=(﹣2,0)∴|﹣|=2故|﹣|的值为2或2.19.解:(1)∵△ABC中,,∴根据正弦定理,得,∵锐角△ABC中,sinB>0,∴等式两边约去sinB,得sinA=∵A是锐角△ABC的内角,∴A=;(2)∵a=4,A=,∴由余弦定理a2=b2+c2﹣2bccosA,得16=b2+c2﹣2bccos,化简得b2+c2﹣bc=16,∵b+c=8,平方得b2+c2+2bc=64,∴两式相减,得3bc=48,可得bc=16.因此,△ABC的面积S=bcsinA=×16×sin=4.20.(本小题满分12分)解:(Ⅰ)∵∠DBA=30°,∠DAB=60°,∴∠ADB=90°,∴BD⊥AD,又PD⊥底面ABCD,∴BD⊥PD,∴BD⊥面PAD,∴PA⊥BD.(Ⅱ)过D作DO⊥AB交AB于O,连接PO,∵PD⊥底面ABCD,∴∠POD为二面角P﹣AB﹣D的平面角.在Rt△ABD中,∵AD=1,∠ABD=30°,∴,∴,而PD=AD=1,在Rt△PDO中,,∴,∴.∴二面角P﹣AB﹣D余弦值为.21.解:(1)由,平方可得1+sinα=,解得sinα=.再由已知,可得α=,∴cosα=﹣.(2)∵,,∴﹣<α﹣β<,cos(α﹣β)=.∴cosβ=cos(﹣β)=cos[(α﹣β)﹣α]=cos(α﹣β)cosα+sin(α﹣β)sinα=+=﹣.22.解:(Ⅰ)函数f(x)==1+cosωx+a+sinx=2sin(ωx+)+a+1,…∵函数f(x)在R上的最大值为2,∴3+a=2故a=﹣1…(Ⅱ)由(Ⅰ)知:f(x)=2sin(ωx+),把函数f(x)=2sin(ωx+)的图象向右平移个单位,可得函数y=g(x)=2sinωx…又∵y=g(x)在[0,]上为增函数,∴g(x)的周期T=≥π即ω≤2.∴ω的最大值为2…此时单调增区间为…2017—2018学年人教版高一数学第二学期期中考试卷(六)(考试时间120分钟满分150分)一、单项选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一个选项是符合题目要求的.1.已知集合M={x|y=lnx},N={x|2x≤8},则M∩N=()A.?B.{x|0<x≤3}C.{x|x≤3}D.{x|x<3}2.sin(﹣)的值等于()A.B.﹣C.D.﹣3.在单位圆中,面积为1的扇形所对的圆心角为()弧度A.1 B.2 C.3 D.44.某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是()A.2B.2C.2D.45.函数f(x)=ln(x+1)﹣的零点所在的大致区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)6.已知某产品的广告费用x万元与销售额y万元的统计数据如表所示:x(万元)0 1 3 4y(万元) 2.2 4.3 4.8 6.7从散点图分析,y与x线性相关,且=0.95x+,则据此模型预报广告费用为6万元时销售额为()A.2.6万元B.8.3万元C.7.3万元D.9.3万元7.已知函数f(x)=ka x﹣a﹣x(a>0且a≠1)在R上是奇函数,且是增函数,则函数g(x)=log a(x﹣k)的大致图象是()A.B.C.D.8.给出下列结论:①若=,则ABCD是平行四边形;②cosπ<sinπ<tanπ;③若∥,∥,则∥;④若=,则=.则以上正确结论的个数为()A.0个B.1个C.2个D.3个9.把函数y=sin(2x+)的图象向右平移φ(φ>0)个单位长度,所得的图象关于y轴对称,则φ的最小值为()A.B.C.D.10.直线xsinα+y+2=0的倾斜角的取值范围是()A.[0,π)B.[0,]∪[,π)C.[0,]D.[0,]∪(,π)11.如图是由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若直角三角形中较小的内角为θ,大正方形的面积是1,小正方形的面积是,则tanθ的值是()A.B.C.D.12.已知正方体ABCD﹣A1B1C1D1的一个面A1B1C1D1在半径为的半球底面上,A、B、C、D四个顶点都在此半球面上,则正方体ABCD﹣A1B1C1D1的体积为()A.B.C.2D.1二、填空题:本题共4小题,共20分.13.已知,则=.14.一个总体分为A、B两层,用分层抽样法从总体中抽取容量为10的样本,已知B层中个体甲被抽到的概率是,则总体中的个体数是.15.在区间[﹣2,4]上随机地取一个数x,若x满足|x|≤m的概率为,则m=.16.已知圆C:x2+y2﹣2ax﹣2(a﹣1)y﹣1+2a=0(a≠1)对所有的a∈R且a≠1总存在直线l与圆C相切,则直线l的方程为.三、解答题:本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤.17.已知角θ的终边经过点P(a,﹣2),且cosθ=﹣.(1)求sinθ,tanθ的值;(2)求的值.18.某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[90,100),[100,110),…,[140,150)后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(I)求分数在[120,130]内的频率,并补全这个频率分布直方图;(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(Ⅲ)用分层抽样的方法在分段[110,130]的学生中抽取一个容量为6的样本,将样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130]内的概率.19.已知函数f(x)=Asin(2ωx+?)+k(A>0,ω>0,?∈[﹣])的最小正周期为,函数的值域为[﹣],且当x=时,函数f(x)取得最大值.(1)求f(x)的表达式,并写出函数f(x)的单调递增区间;(2)求函数f(x)在区间[0,]上的取值范围.20.如图,△ABC中,O是BC的中点,AB=AC,AO=2OC=2.将△BAO沿AO折起,使B点与图中B'点重合.(1)求证:AO⊥平面B'OC;(2)当三棱锥B'﹣AOC的体积取最大时,求二面角A﹣B'C﹣O的余弦值;(3)在(2)的条件下,试问在线段B'A上是否存在一点P,使CP与平面B'OA所成的角的正弦值为?证明你的结论,并求AP的长.21.已知函数f(x)=ax+.(1)从区间(﹣2,2)内任取一个实数a,设事件A={函数y=f(x)﹣2在区间(0,+∞)上有两个不同的零点},求事件A发生的概率;(2)当a>0,x>0时,f(x)=ax+.若连续掷两次骰子(骰子六个面上标注的点数分别为1,2,3,4,5,6)得到的点数分别为a和b,记事件B={f(x)>b2在x∈(0,+∞)恒成立},求事件B发生的概率.22.已知f(x)=asin(x+)+1﹣a(x∈R).(1)当x∈[0,]时,恒有|f(x)|≤2,求实数a的取值范围;(2)若f(x)=0在[0,]上有两个不同的零点,求实数a的取值范围.参考答案一、单项选择题:1.B.2.C.3. B 4.C.5.B.6.B.7.A8.B.9.D.10. B 11.A.12.A.二、填空题:13.解:由题意分式的分子与分母都除以cosα可得又∴==故答案为14.解:∵用分层抽样方法从总体中抽取一个容量为10的样本.由B层中每个个体被抽到的概率都为,知道在抽样过程中每个个体被抽到的概率是,∴总体中的个体数为10÷=100.故答案为:10015.解:如图区间长度是6,区间[﹣2,4]上随机地取一个数x,若x满足|x|≤m的概率为,所以m=3.故答案为:3.16.解:圆的圆心坐标为(a,1﹣a),半径为: |a﹣1|显然,满足题意切线一定存在斜率,∴可设所求切线方程为:y=kx+b,即kx﹣y+b=0,则圆心到直线的距离应等于圆的半径,即=|a﹣1|恒成立,即2(1+k2)a2﹣4(1+k2)a+2(1+k2)=(1+k)2a2+2(b﹣1)(k+1)a+(b﹣1)2恒成立,比较系数得,解之得k=﹣1,b=1,所以所求的直线方程为y=﹣x+1.故答案为:y=﹣x+1.三、解答题:17.解:(1)∵,且过P(a,﹣2),∴θ为第三象限的角…∴……(2)…18.解(I)分数在[120,130)内的频率为:1﹣(0.1+0.15+0.15+0.25+0.05)=1﹣0.7=0.3…,补全后的直方图如右(II)平均分为:125×0.3+135×0.25+145×0.05=121(III)由题意,[110,120)分数段的人数为:60×0.15=9人[120,130)分数段的人数为:60×0.3=18人∵用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本∴需在[110,120)分数段内抽取2人,并分别记为m,n;在[120,130)分数段内抽取4人,分别记为a,b,c,d设“从样本中任取2人,至多有1人在分数段[120,130)内”为事件A,则基本事件共有:(m,n),(m,a),…,(m,d),(n,a),…,(n,d),(a,b),…,(c,d)共15种…则事件A包含的基本事件有:(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),(n,b),(n,c),(n,d)共9种∴19.解:(1)∵函数函数f(x)=Asin(2ωx+?)+k的值域为,A>0,∴,∴.又,∴ω=2,∵当时,函数f(x)取得最大值.∴,又,∴,∴.令2kπ﹣≤4x﹣≤2kπ+,解得≤x≤+(k∈Z),所以f(x)的增区间为(k∈Z).(2)因为x∈,所以4x﹣∈,所以sin∈,所以f(x)∈,故f(x)在区间上的取值范围是.20.解:(1)证明:∵AB=AC且O是BC中点,∴AO⊥BC即AO⊥OB',AO⊥OC,又∵OB'∩OC=O,∴AO⊥平面B'OC;…(2)在平面B'OC内,作B'D⊥OC于点D,则由(Ⅰ)可知B'D⊥OA又OC∩OA=O,∴B'D⊥平面OAC,即B'D是三棱锥B'﹣AOC的高,又B'D≤B'O,所以当D与O重合时,三棱锥B'﹣AOC的体积最大,过O点作OH⊥B'C于点H,连AH,由(Ⅰ)知AO⊥平面B'OC,又B'C?平面B'OC,∴B'C⊥AO∵AO∩OH=O,∴B'C⊥平面AOH,∴B'C⊥AH∴∠AHO即为二面角A﹣B'C﹣O的平面角.在,∴,∴,故二面角A﹣B1C﹣O的余弦值为…(3)连接OP,在(2)的条件下,易证OC⊥平面B'OA,∴CP与平面B'OA所成的角为∠CPO,∴∴又在△ACB′中,,∴CP⊥AB′,∴,∴…。
静海一中2017-2018学年第二学期高一地理(4月合格)学生学业能力调研试卷考生注意:1. 本试卷分第Ⅰ卷基础题(50分)和第Ⅱ卷提高题(50分)两部分,共100分。
2. 试卷书写规范工整,卷面整洁清楚,如不符合要求,酌情减2-3分,并计入总分。
第Ⅰ卷基础题(共50分)一、选择题: (每小题1分,共30分)“候鸟老人”是指季节性居住在某个城市,随季节变化而迁移的老人。
近年来“候鸟老人”的数量越来越大。
据此回答下面小题。
1. 我国“候鸟老人”的主要迁移省区是A. 北京江苏B. 黑龙江海南C. 新疆河南D. 湖北河北2. 形成“候鸟老人”现象的主要因素是A. 经济因素B. 养老设施C. 气候条件D. 婚姻家庭【答案】1. B 2. C【解析】试题分析:1. 根据材料所给信息推断,影响“候鸟老人”迁徙的主要原因是气候,因此我国“候鸟老人”的迁徙应发生在南北方省区之间。
故选B。
2. “‘候鸟老人’是指季节性居住在某个城市,随季节变化而迁移的老人”,说明其迁徙的主要影响因素是气候。
夏季,南方地区气候炎热,“候鸟老人”向北方迁移;冬季,北方气候寒冷,“候鸟老人”迁往南方地区。
故选C。
考点:人口迁移的影响因素下图为我国2010年各省份的人口迁入率空间格局图(人口迁入率=迁入人口数量/区域总人口数量)。
读图完成下面小题。
3. 我国各省份的人口迁入规律主要表现为A. 中部省份迁入率总体上高于西部省份B. 南方省份迁入率总体上低于北方省份C. 发达省份迁入率高于落后省份D. 东北地区迁入率低于珠三角地区4. 影响西藏与浙江人口迁移率的因素主要是A. 旅游、教育B. 政策、经济C. 宗教、资源D. 交通、气候【答案】3. D 4. B【解析】3. 读图分析可知,中部经济地带的湖南和河南,人口的迁入率低;珠三角和浙江等南方省份的侵入率高;新疆和西藏等落后地区的迁入率大于经济较发达的河北,读图可知,东北地区的迁入率低于珠三角地区,所以D正确。
2016-2017学年天津市静海高一(下)6月月考数学试卷一、选择题:(每小题5分,共35分)1.对具有线性相关关系的变量x,y,测得一组数据如下根据表,利用最小二乘法得到它的回归直线方程为()A.y=﹣0.7x+5.20 B.y=﹣0.7x+4.25 C.y=﹣0.7x+6.25 D.y=﹣0.7x+5.25 2.在等比数列{a n}中,a1+a n=34,a2•a n﹣1=64,且前n项和S n=62,则项数n等于()A.4 B.5 C.6 D.73.在△ABC中,B=,BC边上的高等于BC,则sinA=()A.B.C.D.4.已知a>0,b>0,则的最小值是()A.2 B. C.4 D.55.某程序框图如图所示,若该程序运行后输出的值是,则()A.a=11 B.a=12 C.a=13 D.a=146.设x,y均为正数,且+=,则xy的最小值为()A.1 B.3 C.6 D.97.设x、y满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为6,则+的最小值为()A.B.C.D.二、填空题:(每空5分,共35分)8.在等差数列{a n}中,若a4+a6+a8+a10+a12=90,则的值为.9.在△ABC中,角A,B,C的对边分别为a,b,c,已知a2﹣b2=bc,sinC=2sinB,则角A为.10.若等比数列{a n}的前n项和为S n,,则公比q= .11.在∠BAC=θ,中,角A、B、C的对边分别是a,b,c已知,且,则△ABC的面积为.12.已知100名学生某月饮料消费支出情况的频率分布直方图如图所示.则这100名学生中,该月饮料消费支出超过150元的人数是.13.已知等比数列{a n}的首项为,公比为,其前n项和为S n,若对任意n∈N*恒成立,则B﹣A的最小值为.14.若a是1+2b与1﹣2b的等比中项,则的最大值为.三、解答题(本大题共4题,共65分)15.已知△ABC是锐角三角形,内角A、B、C所对的边分别是a、b、c,满足B.(Ⅰ)求角A的值;(Ⅱ)若=12,a=2,求△ABC的周长.16.已知f(x)=﹣3x2+a(6﹣a)x+b.(1)解关于a的不等式f(1)>0;(2)当不等式f(x)>0的解集为(﹣1,3)时,求实数a,b的值.17.数列{a n}的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和T n.18.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.(Ⅰ)求k的值及f(x)的表达式.(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.19.已知正项等差数列a n的前n项和为S n,若S3=12,且2a1,a2,a3+1成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)设,记数列b n的前n项和为T n,求T n.提高题:(共1小题,满分15分)20.已知正项数列{a n}的前n项和为S n,且a1=1,S n+1+S n=a,数列{b n}满足b n b n+1=3,且b1=1.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)记T n=a n b2+a n﹣1b4+…+a1b2n,求T n.2016-2017学年天津市静海一中高一(下)6月月考数学试卷参考答案与试题解析一、选择题:(每小题5分,共35分)1.对具有线性相关关系的变量x,y,测得一组数据如下根据表,利用最小二乘法得到它的回归直线方程为()A.y=﹣0.7x+5.20 B.y=﹣0.7x+4.25 C.y=﹣0.7x+6.25 D.y=﹣0.7x+5.25【考点】BK:线性回归方程.【分析】由表可得样本中心为(2.5,3.5),代入检验可得结论.【解答】解:由表可得样本中心为(2.5,3.5),代入检验可得y=﹣0.7x+5.25.故选D.2.在等比数列{a n}中,a1+a n=34,a2•a n﹣1=64,且前n项和S n=62,则项数n等于()A.4 B.5 C.6 D.7【考点】8G:等比数列的性质.【分析】根据等比数列的性质得到a2•a n﹣1=a1•a n=64,与已知的a1+a n=34联立,即可求出a1与a n的值,然后利用等比数列的前n项和公式表示出S n,把求出的a1与a n的值代入即可求出公比q的值,根据a n的值,利用等比数列的通项公式即可求出项数n的值.【解答】解:因为数列{a n}为等比数列,则a2•a n﹣1=a1•a n=64①,又a1+a n=34②,联立①②,解得:a1=2,a n=32或a1=32,a n=2,当a1=2,a n=32时,s n====62,解得q=2,所以a n=2×2n﹣1=32,此时n=5;同理可得a1=32,a n=2,也有n=5.则项数n等于5故选B3.在△ABC中,B=,BC边上的高等于BC,则sinA=()A.B.C.D.【考点】HU:解三角形的实际应用;HT:三角形中的几何计算.【分析】由已知,结合勾股定理和余弦定理,求出AB,AC,再由三角形面积公式,可得sinA.【解答】解:∵在△ABC中,B=,BC边上的高等于BC,∴AB=BC,由余弦定理得:AC===BC,故BC•BC=AB•AC•sinA=•BC•BC•sinA,∴sinA=,故选:D4.已知a>0,b>0,则的最小值是()A.2 B.C.4 D.5【考点】7F:基本不等式.【分析】a>0,b>0,即,给出了基本不等式使用的第一个条件,而使用后得到的式子恰好可以再次使用基本不等式.【解答】解:因为当且仅当,且,即a=b时,取“=”号.故选C.5.某程序框图如图所示,若该程序运行后输出的值是,则()A.a=11 B.a=12 C.a=13 D.a=14【考点】EF:程序框图.【分析】模拟执行程序,S=1+++…+=2﹣=,从而得解.【解答】解:模拟执行程序,程序的功能是求和,∵S=1+++…+=2﹣=,∴a=12.故选B.6.设x,y均为正数,且+=,则xy的最小值为()A.1 B.3 C.6 D.9【考点】7F:基本不等式.【分析】由已知式子变形可得xy=x+y+3,由基本不等式可得xy≥2+3,解关于的一元二次不等式可得.【解答】解:∵x,y均为正数,且+=,∴=,整理可得xy=x+y+3,由基本不等式可得xy≥2+3,整理可得()2﹣2﹣3≥0,解得≥3,或≤﹣1(舍去)∴xy≥9,当且仅当x=y时取等号,故选:D.7.设x、y满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为6,则+的最小值为()A.B.C.D.【考点】7D:简单线性规划的应用.【分析】由线性规划结合题意易得=1,从而+=(+)()=+6++,由基本不等式可求.【解答】解:作出约束条件所对应的可行域(如图阴影),目标函数可化为y=x+z,(a>0,b>0),联立可解得,即A(4,6)平移直线易得当直线经过点A(4,6)时,目标函数取最大值6,代入数据可得4a+6b=6,即=1,∴+=(+)()=+6++≥+2=+2×4=当且仅当=即a=b=时, +取到最小值,故选:D二、填空题:(每空5分,共35分)8.在等差数列{a n}中,若a4+a6+a8+a10+a12=90,则的值为12 .【考点】8F:等差数列的性质.【分析】等差数列{a n}中,a4+a6+a8+a10+a12=90,可得5a8=90,解得a8.可得=.【解答】解:等差数列{a n}中,∵a4+a6+a8+a10+a12=90,∴5a8=90,解得a8=18.则=(3a1+27d﹣a1﹣13d)==12.故答案为:12.9.在△ABC中,角A,B,C的对边分别为a,b,c,已知a2﹣b2=bc,sinC=2sinB,则角A为.【考点】HR:余弦定理;HP:正弦定理.【分析】利用正弦定理化三角函数为三角形边的关系,然后通过余弦定理求解即可.【解答】解:由sinC=2sinB,由正弦定理可知:c=2b,代入a2﹣b2=bc,可得a2=3b2,所以cosA==,∵0<A<π,∴A=.故答案为:.10.若等比数列{a n}的前n项和为S n,,则公比q= 1或.【考点】89:等比数列的前n项和.【分析】根据等比数列的前n项和建立等式,利用a3和q表示出a1与a2,然后解关于q的一元二次方程,即可求出所求.【解答】解:∵∴a1+a2+a3=则a1+a2=3∴化简得2q2﹣q﹣1=0解得q=1或故答案为:1或11.在∠BAC=θ,中,角A、B、C的对边分别是a,b,c已知,且,则△ABC的面积为+1 .【考点】HP:正弦定理.【分析】由已知利用正弦定理可求sinB,结合B的范围,利用特殊角的三角函数值可求B,利用三角形内角和定理可求A,进而利用三角形面积公式即可计算得解.【解答】解:由正弦定理可得:sinB===,又c>b,且B∈(0,π),所以B=,所以A=,所以S=bcsinA=×2×2sin=×2×2×=+1.故答案为: +1.12.已知100名学生某月饮料消费支出情况的频率分布直方图如图所示.则这100名学生中,该月饮料消费支出超过150元的人数是30 .【考点】B8:频率分布直方图.【分析】根据频率分布直方图,利用频率、频数与样本容量的关系,即可求出正确的结果.【解答】解:根据频率分布直方图,得;消费支出超过150元的频率(0.004+0.002)×50=0.3,∴消费支出超过150元的人数是100×0.3=30.故答案为:30.13.已知等比数列{a n}的首项为,公比为,其前n项和为S n,若对任意n∈N*恒成立,则B﹣A的最小值为.【考点】89:等比数列的前n项和.【分析】先利用等比数列的求和公式求出S n,求出S n的范围,确定y=S n﹣,求出最小值、最大值,即可求出B﹣A的最小值.【解答】解:∵等比数列{a n}的首项为,公比为,∴S n==令t=,则,S n=1﹣t,∴∵S n﹣的最小值为﹣,最大值为,∴对任意n∈N*恒成立,则B﹣A的最小值为=.故答案为:.14.若a是1+2b与1﹣2b的等比中项,则的最大值为.【考点】8G:等比数列的性质.【分析】由a是1+2b与1﹣2b的等比中项得到4|ab|≤1,再由基本不等式法求得的最大值.【解答】解:a是1+2b与1﹣2b的等比中项,则a2=1﹣4b2⇒a2+4b2=1≥4|ab|.∴.∵a2+4b2=(|a|+2|b|)2﹣4|ab|=1.∴≤=∵∴≥4,∴的最大值为=.故答案为:.三、解答题(本大题共4题,共65分)15.已知△ABC是锐角三角形,内角A、B、C所对的边分别是a、b、c,满足B.(Ⅰ)求角A的值;(Ⅱ)若=12,a=2,求△ABC的周长.【考点】9R:平面向量数量积的运算.【分析】(Ⅰ)利用条件以及三角恒等变换求得sinA的值,可得A的值.(Ⅱ)由条件求得bc的值,再利用余弦定理求得b+c的值,可得,△ABC的周长.【解答】解:(Ⅰ)△ABC是锐角三角形,=,∴.又A为锐角,所以.(Ⅱ)由,得bccosA=12 ①,由(1)知,所以bc=24 ②,由余弦定理知a2=b2+c2﹣2bccosA,将及①代入可得c2+b2=52 ③,③+②×2,得(c+b)2=100,所以c+b=10,△ABC的周长是.16.已知f(x)=﹣3x2+a(6﹣a)x+b.(1)解关于a的不等式f(1)>0;(2)当不等式f(x)>0的解集为(﹣1,3)时,求实数a,b的值.【考点】3W:二次函数的性质;74:一元二次不等式的解法.【分析】(1)不等式即 a2﹣6a+3﹣b<0,当△≤0 时,解集为∅;△>0时,解得 3﹣<a<3+.(2)由题意知,﹣1和3是方程﹣3x2+a(6﹣a)x+b=0 的两个根,由根与系数的关系得,解之可得结果.【解答】解:(1)f(1)=﹣3+a(6﹣a)+b=﹣a2+6a+b﹣3,∵f(1)>0,∴a2﹣6a+3﹣b<0.△=24+4b,当△≤0,即b≤﹣6时,f(1)>0 的解集为∅;当b>﹣6时,3﹣<a<3+,∴f(1)>0的解集为{a|3﹣<a<3+}.(2)∵不等式﹣3x2+a(6﹣a)x+b>0的解集为(﹣1,3),∴利用韦达定理可得,解之可得.17.数列{a n}的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和T n.【考点】8E:数列的求和.【分析】(I)由S n=2a n﹣a1,利用递推可得:a n=2a n﹣1.由a1,a2+1,a3成等差数列,2(a2+1)=a1+a3,代入解出即可.(II)a n+1=2n+1,可得S n,b n=,利用“裂项求和”即可得出.【解答】解:(I)由S n=2a n﹣a1,当n≥2时,S n﹣1=2a n﹣1﹣a1,∴a n=2a n﹣2a n﹣1,化为a n=2a n﹣1.由a1,a2+1,a3成等差数列.∴2(a2+1)=a1+a3,∴2(2a1+1)=a1+4a1,解得a1=2.∴数列{a n}是等比数列,首项为2,公比为2.∴a n=2n.(II)a n+1=2n+1,S n==2n+1﹣2,S n+1=2n+2﹣2.b n===.∴数列{b n}的前n项和T n=++…+=.18.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.(Ⅰ)求k的值及f(x)的表达式.(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.【考点】5D:函数模型的选择与应用;6E:利用导数求闭区间上函数的最值.【分析】(I)由建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=,若不建隔热层,每年能源消耗费用为8万元.我们可得C(0)=8,得k=40,进而得到.建造费用为C1(x)=6x,则根据隔热层建造费用与20年的能源消耗费用之和为f(x),我们不难得到f(x)的表达式.(II)由(1)中所求的f(x)的表达式,我们利用导数法,求出函数f(x)的单调性,然后根据函数单调性易求出总费用f(x)的最小值.【解答】解:(Ⅰ)设隔热层厚度为x cm,由题设,每年能源消耗费用为.再由C(0)=8,得k=40,因此.而建造费用为C1(x)=6x,最后得隔热层建造费用与20年的能源消耗费用之和为(Ⅱ),令f'(x)=0,即.解得x=5,(舍去).当0<x<5时,f′(x)<0,当5<x<10时,f′(x)>0,故x=5是f(x)的最小值点,对应的最小值为.当隔热层修建5cm厚时,总费用达到最小值为70万元.19.已知正项等差数列a n的前n项和为S n,若S3=12,且2a1,a2,a3+1成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)设,记数列b n的前n项和为T n,求T n.【考点】8E:数列的求和;8G:等比数列的性质.【分析】(Ⅰ)先利用等差数列的性质以及S3=12求出a2=4;再代入2a1,a2,a3+1成等比数列求出公差即可求{a n}的通项公式;(Ⅱ)把(Ⅰ)的结论代入,直接利用数列求和的错位相减法即可求T n.【解答】解:(Ⅰ)∵S3=12,即a1+a2+a3=12,∴3a2=12,所以a2=4.又∵2a1,a2,a3+1成等比数列,∴a22=2a1•(a3+1),即a22=2(a2﹣d)•(a2+d+1),解得,d=3或d=﹣4(舍去),∴a1=a2﹣d=1,故a n=3n﹣2.(Ⅱ),∴,①①×得.②①﹣②得=,∴.提高题:(共1小题,满分15分)20.已知正项数列{a n}的前n项和为S n,且a1=1,S n+1+S n=a,数列{b n}满足b n b n+1=3,且b1=1.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)记T n=a n b2+a n﹣1b4+…+a1b2n,求T n.【考点】8E:数列的求和;8H:数列递推式.【分析】(I)正项数列{a n}的前n项和为S n,且a1=1,S n+1+S n=a,利用递推关系及其等差数列的通项公式即可得出.数列{b n}满足b n b n+1=3,且b1=1.可得b n b n+1=3n,b2=3.利用递推关系可得:b n+2=3b n.可得数列{b n}的奇数项与偶数项分别成等比数列,公比为3.即可得出.(II)利用“错位相减法”与等比数列的前n项和公式即可得出.【解答】解:(I)正项数列{a n}的前n项和为S n,且a1=1,S n+1+S n=a,∴当n≥2时,S n+S n﹣1=,相减可得:a n+1+a n=a﹣,∴a n+1﹣a n=1,∴数列{a n}是等差数列,首项为1,公差为1.∴a n=1+(n﹣1)=n.∵数列{b n}满足b n b n+1=3,且b1=1.∴b n b n+1=3n,b2=3.∴==3,∴b n+2=3b n.∴数列{b n}的奇数项与偶数项分别成等比数列,公比为3.∴b2k﹣1=3k﹣1,b2k=3k.∴b n=(k∈N*).(II)T n=a n b2+a n﹣1b4+…+a1b2n=3n+(n﹣1)×32+(n﹣2)×33+…+3n.3T n=32n+(n﹣1)33+…+2×3n+3n+1,∴﹣2T n=3n﹣32﹣33﹣…﹣3n﹣3n+1=3n﹣=3n﹣,∴T n=﹣.。
32天津一中 2017-2018学年高一年级数学学科期末质量调查试卷本试卷分为第 I 卷(选择题)、第 II 卷(非选择题)两部分,共 100 分,考试用时 90 分钟。
第 I 卷 至 页,第 II 卷 至 页。
考生务必将答案涂写答题纸或答题卡的规定位置上,答在试卷上的无效。
祝各位考生考试顺利!一.选择题:(每小题 3 分,共 30 分)1.设集合 A = {x | x 2- 4x + 3 < 0}, B = { x |2x - 3 > 0},则 A B = ( ) A .( - 3,-32) B .(- 3,32 ) C .(1,32 ) D .(32,3) 2.在∆ABC 中, A 、B 、C 的对边分别为a 、b 、c ,且b cos C = 3a cos B - c cos B ,= 2,则∆ABC 的面积为( ) A 2 B C22 D42 3.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学不在同一个兴趣小组的概率为( )A .13 B .12 C 23 D .34 4.已知圆锥的表面积为 12πcm 2 ,且它的展开图是一个半圆,则圆锥的底面半径为( )cm.A. 2B. 2C.D.45.若 x > 0, y >0.且 x + y ≤ 4,则下列不等式中恒成立的是( ) A. B.C. D.6.10 名同学参加投篮比赛,每人投 20 球,投中的次数用茎叶图表示(如图),设其平均数为a ,中位数为 b ,众数为 c ,则有( )A .a >b >cB .b >c >aC .c >a >bD .c >b >a 7.向顶角为1200 的等腰三角形 ABC (其中 AC = BC )内任意投一点M , 则 AM 小于 AC的概率为( )A.B. C. D.8.图1 是某县参加2017 年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1,A2,…,A10(如A2表示身高(单位:cm)在[150,155)内的学生人数)图2 是统计图1 中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm (含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是()A.i<6 B.i<7 C.i<8 D.i<99.设函数f(x)=2x-cos4x,{a n}是公差为的等差数列,且满足f ( a1)+ f ( a2)+.....+ f ( a8)=11π,则[f(a2)]2-a1a5=()A.0 B.C.D.10.若体积为4 的长方体的一个面的面积为1,且这个长方体8 个顶点都在球O的球面上,则球O表面积的最小值为()A.12π B.16π C.18π D.24π二.填空题:(每小题4 分,共24 分)11.某单位有职工200名,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1 - 200 编号,并按编号顺序平均分为40组(1 - 5 号,6 - 10 号,⋅⋅⋅,196 - 200 号).若第5组抽出的号码为22,则第10组抽出的号码应是__________.12.某几何体的三视图如图所示,则该几何体的体积为__________.13.在△ABC中,a=1,B=45︒,△ABC的面积S=2 ,则△ABC的外接圆的直径为_________.14.如图四面体ABCD 中,E、F 分别为AC、BD 的中点,若CD=2AB=2,EF⊥AB,则EF 与CD 所成的角等于__________.15.若当x>1 时不等式恒成立,则实数m的取值范围是__________.16.已知正数x,y满足= 1,则的最小值为__________.三、解答题:(共4 题,共46 分)17.在∆ABC中,角A、B、C 所对的边分别为a、b、c,且满足c=2 3,c cos B+(b-2a)cos C=0(1)求角C 的大小;(2)求△ABC 面积的最大值.18.我市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100 名按年龄分组:第1 组[20,25),第2 组[25,30),第3 组[30,35),第4 组[ 35,40),第5组[40,45],得到的频率分布直方图如图所示.(1)若从第3,4,5 组中用分层抽样的方法抽取6 名志愿者参加八一广场的宣传活动,应从第3,4,5 组各抽取多少名志愿者?(2)在(1)的条件下,我市决定在这6 名志愿者中随机抽取2 名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.19.在数列{a n}中,a1=1,3a n a n-1+a n-a n-1=0(n≥2).(1)证明数列是等差数列;(2)求数列{a n}的通项;1(3)若λa n+a n+1≥λ对任意n≥2 的整数恒成立,求实数λ的取值范围.20.已知正项数列{a n}的前三项分别为1,3,5,S n为数列的前n项和,满足:nS n2+1-( n +1) S n2=( n +1)(3n3+ An2+ Bn)( A, B ∈ R,n ∈ N *)(1)求A,B的值;(2)求数列{a n}的通项公式;(3)若数列{b n}满足,求数列{b n}的前n项和T n (参考公式:)。
海南中学2017—2018学年第二学期期中考试高一数学试题(试题卷)(总分:150分;总时量:120分钟)第Ⅰ卷(选择题,共60分)一、选择题(本大题共12道小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知在数列{a n }中,a 1=2,a 2=5,且21n n n a a a ++=+,则5a =( ) A .13 B. 15 C .17 D .192、不等式(x +3)2<1的解集是( )A .{x |x <-2}B .{x |x <-4}C .{x |-4<x <-2}D .{x |-4≤x ≤-2} 3、若a 、b 是任意实数,且a b >,则下列不等式成立的是( ).A. 1b a <B. 11a b< C. 22a b > D. 33a b >4、在△ABC 中,a =15,b =10,A =60°,则sin B =( )A B. C D 5、设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ).A. 5B. 7C. 9D. 116、若关于x 的不等式2122x x mx -+>的解集为()0,2,则实数m 的值是( )A. 1B. 2C. 3D. 47、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若A =π3,a =3,b =1,则c =( ) A .1 B. 2 C .3-1 D. 38、已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是( ) A. 72 B .4 C. 92 D .59、中国古代词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子做盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是( ) A. 174斤 B. 184斤 C. 191斤 D. 201斤10、设对任意实数[]1,1x ∈-,不等式230x ax a +-<恒成立,则实数a 的取值范围是( )A. 12a >B. 0a >C. 0a >或12a <-D. 14a > 11、已知等比数列{a n }的前n 项和为S n ,若6312S S =,则93SS =( ) A.23 B. 34 C. 56 D. 82512、设ABC ∆的内角,,A B C 所对的边分别为,,a b c ,且3cos cos 5a Bb Ac -=,则()tan A B -的最大值为( )A.B. C.32 D. 34第II 卷(非选择题,共90分)二、填空题(本大题共4道小题,每小题5分,共20分.)13、在△ABC 中,角,,A B C 所对的边长分别为,,a b c ,若a ∶b ∶c =3∶1∶1,则角A 的大小为____________14、不等式x +1x ≤3的解集为__________________.15、数列{}n a 的通项公式为2141n a n =-,则其前n 项和为_______________.16、等差数列{}n a 中,前n 项和为n S ,10a <,170S <,180S >,则当n =________时,n S 取得最小值。
2017-2018学年度第二学期高一年级期中考试数学试题(考试时间:120分钟,满分160分)一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上.)1.若直线l 过两点()()6,3,2,1B A ,则l 的斜率为 .2.已知等差数列{}n a 中,7,141==a a ,则它的第5项为__________. 3.在△ABC 中,角A,B,C 的对边分别为,,a b c,若60a A ︒==,则=Bbsin ________.4.不等式01<-xx 的解集为 . 5.在△ABC 中,角A,B,C 的对边分别为,,a b c ,若(a +c )(a -c )=b (b +c ),则A =________. 6.若点()t P ,2-在直线062:=++y x l 的上方,则t 的取值范围是 . 7.已知点()1,1-A 与点B 关于直线03:=+-y x l 对称,则点B 坐标为 . 8.若圆M 过三点()()()1,3,4,2,1,7A B C -,则圆M 的面积为__________.9.若方程组23{22ax y x ay +=+=无解,则实数a =_____.10.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,若15323S S S +=,则{}n a 的公比等于__________.11.已知实数x,y 满足⎪⎩⎪⎨⎧≤+≥≥200y x y x ,若{}y x y x z 24,3max --=,则z 的取值范围是____________.({}b a ,m ax 表示b a ,中的较大数) 12.已知实数x,y 满足322=+y x ,22y x ≠,则()()22222122y x y x y x -+++的最小值为____________.13.已知数列{}n a 的前n 项和为n S ,若1,,51221=-=+=+n n n n a a n a a a ,则100S =___________.14.在△ABC 中,角A,B,C 所对的边分别为c b a ,,,且32co s 422=-+C ab b a ,则A B C∆的面积的最大值为___________.二、解答题:(本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.) 15.(本小题满分14分)如图,在ABC ∆中, 4AB B π=∠=, D 是BC 边上一点,且3ADB π∠=.(1)求AD 的长;(2)若10CD =,求AC 的长. 16.(本小题满分14分)已知函数1)1()(2++-=x a a x x f ,(1)当2a =时,解关于x 的不等式0)(≤x f ; (2)若0>a ,解关于x 的不等式0)(≤x f . 17.(本小题满分14分)已知正项等差数列{}n a 的前n 项和为n S ,且满足63,7272351==+S a a a . (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足1111,++=-=n n n a b b a b ,若数列⎭⎬⎫⎩⎨⎧n b 1的前n 项和为n T ,求使得20k T n <对任意的*N n ∈都成立的最小正整数k 的值. 18.(本小题满分16分)如图所示,直角三角形ABC 是一块绿地,90C =,20AC =米,50BC =米,现要扩大成更大的直角三角形DEF 绿地,其斜边EF 过点A ,且与BC 平行,DE 过点C ,DF 过点B .(1)设∠=BCD α,试用α表示出三角形DEF 面积S (平方米);(2)如果在新增绿地上种植草皮,且种植草皮的费用是每平方米100元,那么在新增绿地上种植草皮的费用最少需要多少元? 19.(本小题满分16分)已知圆C 过A (0,2)且与圆M :04822=+++y x y x 切于原点. (1)求圆C 的方程;(2)已知D 为y 轴上一点,若圆C 上存在两点M ,N ,使得2π=∠MDN ,求D 点纵坐标的取值范围;(3)12,l l 是过点B (1,0)且互相垂直的两条直线,其中1l 交y 轴于点E ,2l 交圆C 于P 、Q 两点.求三角形EPQ 的面积的最小值. 20. (本小题满分16分)已知数列{}n a 满足112++-=n n n n a a a a ,且*1,21N n a ∈=. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足:⎪⎪⎩⎪⎪⎨⎧=-=++-=+k n a a k n n n b nn n 2,12,111122()*∈N k ,求{}n b 的前n 项和n S (用n 表示); (3)设nn a C 1=,n T 为{}n C 前n 项和,从{}n C 中抽取一个公比为q 的等比数列{}n k C ,其中11=k ,且*∈<<<<N k k k k n n ,21 ,若关于()*∈N n n 的不等式12+>n n k T 有解,求q 的值.数学试题参考答案1.2 2.9 3.2 4.{}10<<x x 5.120° 6.()+∞-,2 7.()2,2-8.π25 9.2± 10.2 11.[]8,2- 12.5913.1314 14.5515.解:(1)在ABD ∆中,由正弦定理得sin sin AD ABB ADB=∠,=∴6AD=(2)∵3ADBπ∠=,∴23ADCπ∠=在ACD∆中,由余弦定理得13610026101962⎛⎫=+-⨯⨯⨯-=⎪⎝⎭∴14AC=16.解:(1)当2a=时得()2111210202222x x x x x⎛⎫⎛⎫-++≤∴--≤∴≤≤⎪ ⎪⎝⎭⎝⎭,解集为1[,2]2(2)∵不等式0))(1()(≤--=axaxxf,0>a当10<<a时,有aa>1,∴不等式的解集为}1|{axax≤≤;当1>a时,有aa<1,∴不等式的解集为}1|{axax≤≤;当1=a时,不等式的解集为{1}.17.解:(1)12+=nan(2)321+=-+nbbnn,当2≥n时,()()()112211bbbbbbbbnnnnn+-++-+-=---=()2+nn又31=b也满足上式,所以()2+=nnbnkkTn∴≤∴<204343的最小正整数值为15.18.(1)αααααcos20sin50tan,sin20cos50+==+=DEDFDE(2)设新增绿地上种植草皮的费用为当且仅当52cossin=αα即542sin=α时等号成立答:(1)⎪⎭⎫⎝⎛∈+⎪⎭⎫⎝⎛+=∆2,0,1000cossin4cossin2550παααααDEFS(2)新增绿地上种植草皮的费用最少需要15万元.19.(1)圆C 方程为:22(2)(1)5x y -+-=(2)设()t D ,0,则()61611014102+≤≤-∴≤-+∴≤t t CD所以D 点纵坐标范围是[]61,61+-;(3)(i )当直线2l :1x =时,直线1l 的方程为0y =,此时,2EPQS =;(ii )当直线2l 的斜率存在时,设2l 的方程为:(1)yk x =-(0k ≠),则1l 的方程为:1(1)y x k =--,点1(0,)E k.所以,BE =又圆心C到2l 的距离为1|1|2+-k k ,所以,222214242)1|1|(52k k k k k PQ +++=+--=.故12EPQSBE PQ =⋅==≥因为22<所以,()2EPQ min S =. 20.解:(1)由112++-=n n n n a a a a ,得:21,21111==-+a a a n n ⎭⎬⎫⎩⎨⎧∴n a 1是首项为2公差为2的等差数列,所以()na n n a n n 2122121=∴=-+= (2)由(1)可得()⎪⎭⎫⎝⎛+-=+=+111411411n n n n a a n n ,当n 为偶数时,()2422214121212131212114122224202++=⎪⎭⎫ ⎝⎛+-+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛--++⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=∴n n n n n n n n n S n 当n 为奇数时,()211141211--+++-+-=+=-n n n n n b S S n n n =()14121+-++n n n ()()⎪⎪⎩⎪⎪⎨⎧+-++++=∴为奇数为偶数n n n n n n n n S n ,14121,242; (3)()1,2+==n n T n C n n ,1122--=∴==n n n n k q k q k C n ,由*∈<<<<N k k k k n n ,21 ,得*∈>N q q ,112+>n n k T 即()()11212>+∴>+nn qn n q n n 当3,2=q 时均存在n 满足上式,下面证明*∈≥N q q ,4时,不满足题意, 设()nn qn n e 12+=, {}n e ∴递减,()112141≤+=∴≤=n n qn n e q e 综上, 3,2=q .。
(2i)(3i)1iz -+=+天津市静海县第一中学2017-2018学年高二数学下学期期中试题理本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)函数2x y =在区间[23],上的平均变化率为( )A .2B .3C .5D .4(2)函数31()3f x x =的斜率等于1的切线有( )A .1条B .2条C .3条D .不确定(3)复数 的共轭复数为( ) A .34i + B .34i -C .12i +D .12i -(4)用反证法证明命题“设a ,b 为实数,则方程20x ax b ++=至少有一个实根”时,要做的假设是( )A .方程20x ax b ++=没有实根B .方程20x ax b ++=至多有一个实根C .方程20x ax b ++=至多有两个实根D .方程20x ax b ++=恰好有两个实根(5)已知函数()f x 的导函数为()f x ',且满足2()(2)f x x f x '=+,则(2)f '=( )A .1B .13C .12D .13-(6)直线x y =与曲线2x y =围成图形的面积为( )A .13B .12 C .1D .16(7)若函数3()3f x x ax =-在(01),内无极值,则实数a 的取值范围是( )A .[)1,+∞B .(]0,-∞C .(][)01,,-∞+∞D .[]01,(8)已知函数()f x 是定义域{}0≠x x 上的奇函数,)(x f '是其导函数,22=)(f ,当0>x 时,()()0xf x f x '-<,则不等式()1f x x<的解集是( ) A .)2()02(∞+-,, B .)2()2(∞+--∞,,C .()2,+∞D .)20()02(,, -第Ⅱ卷注意事项:1.答卷前将密封线内的项目填写清楚。
2017-2018学年高一下学期期中数学试卷一、选择题(共12小题,每小题5分,满分60分)1.下列说法中正确的是()A.共线向量的夹角为0°或180°B.长度相等的向量叫做相等向量C.共线向量就是向量所在的直线在同一直线上D.零向量没有方向2.下列函数中为奇函数的是()A.y=sin|x| B.y=sin2x C.y=﹣sinx+2 D.y=sinx+13.已知角的终边经过点(4,﹣3),则tanα=()A.B.﹣ C.D.﹣4.函数y=cos(4x﹣π)的最小正周期是()A.4πB.2πC.πD.5.在直角坐标系中,直线3x+y﹣3=0的倾斜角是()A.B.C. D.6.函数的单调递减区间()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)7.函数y=3sin(2x+)+2图象的一条对称轴方程是()A.x=﹣B.x=0 C.x=πD.8.下列选项中叙述正确的是()A.终边不同的角同一三角函数值可以相等B.三角形的内角是第一象限角或第二象限角C.第一象限是锐角D.第二象限的角比第一象限的角大9.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.向量+++化简后等于()A.B.C.D.11.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4 B.ω=1 C.φ=D.B=412.给出下列说法:①终边相同的角同一三角函数值相等;②在三角形中,若sinA=sinB,则有A=B;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确说法的个数是()A.1 B.2 C.3 D.4二、填空(本大题共4小题,每小题5分,共20分.)13.以点(0,2)和(4,0)为端点的线段的中垂线的方程是.14.圆x2+y2=4上的点到直线3x+4y﹣25=0的距离最小值为.15.已知=, =, =, =, =,则+++﹣= .16.已知tan()=,tan()=﹣,则tan()= .三、解答题(本大题共6小题,17题10分其余每题12分共70分)17.已知角α的终边经过一点P(5a,﹣12a)(a>0),求2sinα+cosα的值.18.已知△ABC的三个顶点A(0,4),B(﹣2,6),C(8,2);(1)求AB边的中线所在直线方程.(2)求AC的中垂线方程.19.若圆经过点A(2,0),B(4,0),C(1,2),求这个圆的方程.20.已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tan2α的值;(2)求cosβ的值.21.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,(Ⅰ)求函数的解析式;(Ⅱ)求函数的对称轴方程和对称中心坐标.22.已知函数f(x)=sin2ωx+sinωx•cosωx﹣1(ω>0)的周期为π.(1)当x∈[0,]时,求f(x)的取值范围;(2)求函数f(x)的单调递增区间.2017-2018学年高一下学期期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.下列说法中正确的是()A.共线向量的夹角为0°或180°B.长度相等的向量叫做相等向量C.共线向量就是向量所在的直线在同一直线上D.零向量没有方向【考点】向量的物理背景与概念.【分析】根据共线向量、平行向量、相等向量以及零向量的概念便可判断每个说法的正误,从而找出正确选项.【解答】解:A.共线向量的方向相同或相反;方向相同时,夹角为0°,相反时的夹角为180°,∴该说法正确;B.长度相等,方向相同的向量叫做相等向量,∴该说法错误;C.平行向量也叫共线向量,∴共线向量不是向量所在直线在同一直线上;∴该说法错误;D.零向量的方向任意,并不是没有方向,∴该说法错误.故选:A.2.下列函数中为奇函数的是()A.y=sin|x| B.y=sin2x C.y=﹣sinx+2 D.y=sinx+1【考点】函数奇偶性的判断.【分析】要探讨函数的奇偶性,先求函数的定义域,判断其是否关于原点对称,然后探讨f(﹣x)与f(x)的关系,即可得函数的奇偶性.【解答】解:选项A,定义域为R,sin|﹣x|=sin|x|,故y=sin|x|为偶函数.选项B,定义域为R,sin(﹣2x)=﹣sin2x,故y=sin2x为奇函数.选项C,定义域为R,﹣sin(﹣x)+2=sinx+2,故y=sinx+2为非奇非偶函数偶函数.选项D,定义域为R,sin(﹣x)+1=﹣sinx+1,故y=sinx+1为非奇非偶函数,故选:B.3.已知角的终边经过点(4,﹣3),则tanα=()A.B.﹣ C.D.﹣【考点】任意角的三角函数的定义.【分析】根据三角函数的定义进行求解即可.【解答】解:∵角α的终边经过点P(4,﹣3),∴tanα==,故选:B.4.函数y=cos(4x﹣π)的最小正周期是()A.4πB.2πC.πD.【考点】三角函数的周期性及其求法.【分析】根据余弦函数的最小正周期的求法,将ω=4代入T=即可得到答案.【解答】解:∵y=cos(4x﹣π),∴最小正周期T==.故选:D.5.在直角坐标系中,直线3x+y﹣3=0的倾斜角是()A.B.C. D.【考点】直线的倾斜角.【分析】由已知方程得到直线的斜率,根据斜率对于得到倾斜角.【解答】解:由已知直线的方程得到直线的斜率为﹣,设倾斜角为α,则tanα=﹣,α∈[0,π),所以α=;故选:D.6.函数的单调递减区间()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)【考点】正弦函数的单调性.【分析】利用y=sinx的单调性,求出函数的单调递减区间,进而可求函数的单调递减区间.【解答】解:利用y=sinx的单调递减区间,可得∴∴函数的单调递减区间(k∈Z)故选D.7.函数y=3sin(2x+)+2图象的一条对称轴方程是()A.x=﹣B.x=0 C.x=πD.【考点】正弦函数的图象.【分析】利用正弦函数的图象的对称性,求得y=3sin(2x+)+2图象的一条对称轴方程.【解答】解:∵对于函数y=3sin(2x+)+2图象,令2x+=kπ+,求得x=+,可得函数图象的一条对称轴方程为x=π,故选:C.8.下列选项中叙述正确的是()A.终边不同的角同一三角函数值可以相等B.三角形的内角是第一象限角或第二象限角C.第一象限是锐角D.第二象限的角比第一象限的角大【考点】命题的真假判断与应用.【分析】分别举例说明四个选项的正误得答案.【解答】解:对于A,终边不同的角同一三角函数值可以相等,正确,如;对于B,三角形的内角是第一象限角或第二象限角,错误,如是终边在坐标轴上的角;对于C,第一象限是锐角,错误,如是第一象限角,不是锐角;对于D,第二象限的角比第一象限的角大,错误,如是第二象限角,是第一象限角,但.故选:A.9.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】三角函数的化简求值.【分析】根据象限得出sinθ,cosθ的符号,得出θ的象限.【解答】解:∵P(sinθcosθ,2cosθ)位于第二象限,∴sinθcosθ<0,cosθ>0,∴sinθ<0,∴θ是第四象限角.故选:D.10.向量+++化简后等于()A.B.C.D.【考点】向量加减混合运算及其几何意义.【分析】利用向量的三角形法则与多边形法则即可得出.【解答】解:向量+++=,故选:D.11.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4 B.ω=1 C.φ=D.B=4【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】先根据函数的最大值和最小值求得A和B,然后利用图象中﹣求得函数的周期,求得ω,最后根据x=时取最大值,求得φ.【解答】解:如图根据函数的最大值和最小值得求得A=2,B=2函数的周期为(﹣)×4=π,即π=,ω=2当x=时取最大值,即sin(2×+φ)=1,2×+φ=2kπ+φ=2kπ﹣∵∴φ=故选C.12.给出下列说法:①终边相同的角同一三角函数值相等;②在三角形中,若sinA=sinB,则有A=B;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确说法的个数是()A.1 B.2 C.3 D.4【考点】任意角的概念.【分析】由任意角的三角函数的定义,三角函数值与象限角的关系,即可得出结论.【解答】解:①由任意角的三角函数的定义知,终边相同的角的三角函数值相等,正确.②在三角形中,若sinA=sinB,则有A=B,故正确;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关,正确,④若sinα=sinβ,则α与β的终边相同或终边关于y轴对称,故不正确.⑤若cosα<0,则α是第二或第三象限角或α的终边落在x轴的非正半轴上,故不正确.其中正确的个数为3个,故选:C.二、填空(本大题共4小题,每小题5分,共20分.)13.以点(0,2)和(4,0)为端点的线段的中垂线的方程是2x﹣y﹣3=0 .【考点】待定系数法求直线方程.【分析】先求出线段AB的中垂线的斜率,再求出线段AB的中点的坐标,点斜式写出AB的中垂线得方程,并化为一般式.【解答】解:设A(0,2)、B(4,0).=﹣,所以线段AB的中垂线得斜率k=2,又线段AB的中点为(2,1),直线AB的斜率 kAB所以线段AB的中垂线得方程为y﹣1=2(x﹣2)即2x﹣y﹣3=0,故答案为:2x﹣y﹣3=0.14.圆x2+y2=4上的点到直线3x+4y﹣25=0的距离最小值为 3 .【考点】直线与圆的位置关系.【分析】圆心(0,0)到直线3x+4y﹣25=0的距离d==5,圆x2+y2=4上的点到直线3x+4y﹣25=0距离的最小值是AC=5﹣r,从而可求.【解答】解:∵圆心(0,0)到直线3x+4y﹣25=0的距离d==5,∴圆x2+y2=4上的点到直线3x+4y﹣25=0距离的最小值是AC=5﹣r=5﹣2=3故答案为:3.15.已知=, =, =, =, =,则+++﹣= .【考点】向量的加法及其几何意义.【分析】利用向量的三角形法则与多边形法则即可得出.【解答】解: +++﹣=+++﹣=﹣=,故答案为:.16.已知tan()=,tan()=﹣,则tan()= 1 .【考点】两角和与差的正切函数.【分析】观察三个函数中的角,发现=﹣(),故tan()的值可以用正切的差角公式求值【解答】解:∵=﹣(),∴tan()===1故答案为1三、解答题(本大题共6小题,17题10分其余每题12分共70分)17.已知角α的终边经过一点P(5a,﹣12a)(a>0),求2sinα+cosα的值.【考点】任意角的三角函数的定义.【分析】利用三角函数的定义可求得sinα与cosα,从而可得2sinα+cosα.【解答】解:由已知r==13a…∴sinα=﹣,cosα=,…∴2sinα+cosα=﹣…18.已知△ABC的三个顶点A(0,4),B(﹣2,6),C(8,2);(1)求AB边的中线所在直线方程.(2)求AC的中垂线方程.【考点】待定系数法求直线方程.【分析】(1)利用中点坐标公式、斜截式即可得出.(2)利用斜率计算公式、相互垂直的直线斜率之间的关系、斜截式即可得出.【解答】解:(1)∵线段AB的中点为(﹣1,5),∴AB边的中线所在直线方程是=,即x+3y﹣14=0.(2)AC的中点为(4.3)==﹣,∵KAC∴y﹣3=4(x﹣4)即y=4x﹣13,∴AC的中垂线方程为y=4x﹣13.19.若圆经过点A(2,0),B(4,0),C(1,2),求这个圆的方程.【考点】圆的一般方程.【分析】设出圆的一般式方程,把三个点的坐标代入,求解关于D、E、F的方程组得答案.【解答】解:设圆的方程为x2+y2+Dx+Ey+F=0,则,解得.∴圆的方程为:.20.已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tan2α的值;(2)求cosβ的值.【考点】二倍角的正切;两角和与差的余弦函数.【分析】(1)利用已知及同角三角函数基本关系式可求sinα,进而可求tanα,利用二倍角的正切函数公式可求tan2α的值.(2)由0<β<α<,得0<α﹣β<,利用同角三角函数基本关系式可求sin(α﹣β),由β=α﹣(α﹣β)利用两角差的余弦函数公式即可计算求值.【解答】解:(1)∵由cosα=,0<α<,得sinα===,∴得tan=∴于是tan2α==﹣.…(2)由0<β<α<,得0<α﹣β<,又∵cos(α﹣β)=,∴sin(α﹣β)==,由β=α﹣(α﹣β)得:cosβ=cos[α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)==.…21.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,(Ⅰ)求函数的解析式;(Ⅱ)求函数的对称轴方程和对称中心坐标.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【分析】(Ⅰ)由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.(Ⅱ)利用正弦函数的图象的对称性,求得函数的对称轴方程和对称中心坐标.【解答】解:(Ⅰ)由函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象,可得A=2, ==+,∴ω=2.再根据五点法作图可得2•(﹣)+φ=,∴φ=,函数f(x)=2sin(2x+).(Ⅱ)由2x+=kπ+,求得x=﹣,可得函数的图象的对称轴方程为x=﹣,k∈Z.令2x+=kπ,求得x=﹣,可得函数的图象的对称轴中心为(﹣,0),k∈Z.22.已知函数f(x)=sin2ωx+sinωx•cosωx﹣1(ω>0)的周期为π.(1)当x∈[0,]时,求f(x)的取值范围;(2)求函数f(x)的单调递增区间.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)利用降幂公式降幂,再由辅助角公式化简,由x的范围求得相位的范围,则函数的取值范围可求;(2)利用复合函数的单调性求得原函数的单调区间.【解答】解:(1)f(x)=sin2ωx+sinωx•cosωx﹣1==.∵ω>0,∴T=,则ω=1.∴函数f(x)=sin(2x﹣)﹣.由0,得,∴,∴.∴f(x)的取值范围[﹣1,];(2)令,得:,(k∈Z),∴f(x)的单调递增区间为[kπ﹣,kπ+],(k∈Z).。
静海一中2017-2018第一学期高一数学(12月)学生学业能力调研试卷考生注意:1. 本试卷分第Ⅰ卷基础题(105分)和第Ⅱ卷提高题(15分)两部分,共120分。
2. 试卷书写规范工整,卷面整洁清楚,酌情减3-5分,并计入总分。
第Ⅰ卷 基础题(共105分)一、选择题: (每小题3分,共24分)1.若角α的终边在直线x y 2=上,则αsin 等于 ( )A .51±B .55±C .552±D .21±2.已知扇形的周长为8 cm ,圆心角为2弧度,则该扇形的面积为( )A .4 cm 2B .6 cm 2C .8 cm 2D .16 cm 23.若0)sin(,0)3tan(<+->-παπα,则α在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限4.设︒︒+︒︒=37cos 40cos 127cos 50cos a ,)56cos 56(sin 22︒-︒=b ,︒+︒-=39tan 139tan 122c ,则a ,b ,c 的大小关系是( ) A .c b a >> B .c a b >> C . b c a >>D b a c >>5.函数的一个单调增区间是x y 2cos 2= ( )A .⎥⎦⎤⎢⎣⎡4,,4-ππ B . ⎥⎦⎤⎢⎣⎡2,0π, C .⎥⎦⎤⎢⎣⎡43,4ππ,D . ⎥⎦⎤⎢⎣⎡ππ,26.把函数=()y sin x x R ∈的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( )A .=(2-),R 3y sin x x π∈B .=(+),R 26x y sin x π∈C .=(2+),R 3y sin x x π∈D . 2=(2+),R 3y sin x x π∈ 7.若函数)2,0,0)(sin()(πϕωϕω≤>>+=A x A x f 的图象如下图所示,则函数=)(x f ( )A. )62sin(π-x B. )6sin(π+xC. )62sin(π+x D. )6sin(π-x8.在△ABC 中,若BAB A 22sin sin tan tan =,则△ABC 为( ) A .等腰三角形 B .直角三角形 C .等腰三角形或直角三角形 D .等腰直角三角形二、填空题(每题3分共18分)9. 若2cos 3α=,α是第四象限角,则sin(2)sin(3)cos(3)απαπαπ-+---=___ 10.在△ABC 中,A =15°,则)cos(sin 3C B A +-的值为 .11.化简=-++-απαπα222sin )6(sin )6(sin _____ .12.已知),24(21tan 12sin sin 22ππ<<=++x x x x 则=-x x cos sin ______.13.已知函数00f (x )x )cos(x )(,)ωϕωϕϕπω+-+<<>为偶函数,且函数y f (x )=图象的两相邻对称轴间的距离为2π,求8f ()π=________.14.给出下列命题:①存在实数α,使1cos sin =αα ; ②存在实数α,使23cos sin =+αα; ③化简θθθθ2cos 2sin 12cos 2sin 1++-+的结果是θsin ;④)225sin(x y -=π是偶函数; ⑤8π=x 是函数)452sin(π+=x y 的一条对称轴方程; 其中正确命题的序号是__________.(注:把你认为正确的命题序号都填上). 三、解答题(本大题共5题,共63分) 15.(8分))43-2(cos 22(sin 1053-)2(sin πααπααπ)求)()求)(,(,已知∈=+.16(10分),sin 232cos )(2R x x x x f ∈+⎪⎭⎫ ⎝⎛-=,已知函数π,的最小正周期及对称轴)求函数()(1x f 值。
天津市静海县第一中学2017-2018学年高一化学下学期期中试题本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,考试时间60分钟,满分100分。
第Ⅰ卷(选择题部分 共30分)注意事项:1.答第I 卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
以下数据可供解题时参考:相对原子质量:H 1 C 12 O 16 Cu 64 Ag 108 一、选择题(本题包括15小题,每小题2分,共30分;每小题只有一个选项符合题意) 1.氘(2H )用于热核反应,聚变时放出大量的能量,被称为“未来的天然燃料”。
下列有关氘说法正确的是A .氘原子核内没有中子B .氘原子核外有2个电子C .氘与氚(3H )互为同位素D .氘与氚(3H )互为同素异形体 2.根据下图所示实验,判断下列叙述错误..的是A .图1所示实验能够证明碳酸的酸性强于硅酸B .图1所示实验可证明元素的非金属性:Cl >C >Si C .图1所示实验中没有可以设计原电池的化学反应D .图1实验开始前需要打开分液漏斗的上口瓶塞 3.下列说法中,不符合第三周期主族元素性质特征的是A .从左到右原子半径逐渐减小B .从左到右非金属性逐渐增强C .从左到右金属元素的最高价氧化物的水化物的碱性逐渐减弱D .从左到右非金属元素的氧化物的水化物的酸性逐渐增强4.《本草纲目》中的“石碱”条目下写道:“采蒿蓼之属,晒干烧灰,以水淋汁,久则凝淀如石,浣衣发面,亦去垢发面。
”下列说法错误..的是 A .“石碱”中含有离子键 B .“石碱”中含有极性共价键 C .“石碱”是离子化合物D .“石碱”中含有非极性共价键5.有关右图装置的叙述正确的是A.溶液中Na+向Fe极移动B.该装置中Pt为正极,电极反应为:O2 +2H2O+4e-4OH-C.该装置中Fe为负极,电极反应为:Fe-2e-Fe2+D.该原电池装置最终的产物是Fe(OH)26.在 2A(g) + B(g) 3C(g) + 4D(g)反应中,下面表示的反应速率最快的是A.v (A)=0.5mol/(L∙s) B.v (B)=1.8 mol/(L∙min)C.v (C)=0.8mol/(L∙s) D.v (D)=1.0 mol/(L∙s)7.短周期元素W、X、Y、Z的原子序数依次增加。
2017年下学期期中考试高一数学试卷时量:120分钟 总分:150分一、选择题(本大题12个小题,每小题5分,共60分,每小题仅有一个正确答案)1、下列说法:○12017年考入清华大学的性格外向的学生能组成一个集合;○2空集φ⊆{}0;○3数集{}x x x -2,2中,实数x 的取值范围是{}0≠x x 。
其中正确的个数是( )A 、3B 、2C 、1D 、02、已知全集I=R ,M={}22≤≤-x x ,N={}1<x x ,则(C I M )∩N 等于( )A 、{}2-<x xB 、{}2>x xC 、{}2-≤x xD 、{}12<≤-x x3、下列结论:○13232)(a a =;○2a a n n =;○3函数021)73()2(---=x x y 定义域是[)+∞,2;○4若,210,5100==b a 则12=+b a 。
其中正确的个数是( )A 、0B 、1C 、2D 、34、函数f (x )=log 3x -8+2x 的零点一定位于区间( )A .(5,6)B .(3,4)C .(2,3)D .(1,2)5、一个三棱锥,如果它的底面是直角三角形,那么它的三个侧面( )A .必定都不是直角三角形B .至多有一个直角三角形C .至多有两个直角三角形D .可能都是直角三角形6、把根式32)(--b a 改写成分数指数幂的形式是( )A 、32)(--b a B 、(23)--b a C 、3232---b a D 、2323---b a 。
7.棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应的截面面积分别为S 1、S 2、S 3,则( )A .S 1<S 2<S 3B .S 3<S 2<S 1C .S 2<S 1<S 3D .S 1<S 3<S 28、若函数)(x f 满足)()()(b f a f ab f +=,且m f =)2(,n f =)3(,则=)72(f ( )A 、n m +B 、n m 23+C 、n m 32+D 、23n m + 9.已知实数0a ≠,2,1()2,1x a x f x x a x +<⎧=⎨--≥⎩,若(1)(1)f a f a -=+,则实数a 的值是( )A 、34-B 3,2-C 34- 和32- D.32 10. 已知偶函数()f x 在[0,)+∞上单调递增,则满足不等式(21)(3)f x f -<的x 取值范围是( )1.(,2)2A .(1,2)B - .(,2)C -∞ 1.[,2)2D 11. 若函数()y f x =的定义域为{}38,5x x x -≤≤≠,值域为{}12,0y y y -≤≤≠,则()y f x =的图象可能是( )A B C D12. 用min{a ,b }表示a ,b 两数中的最小值。
2017-2018学年高一下学期期中数学试卷一、选择题(本答题共12个小题,每小题5分,共60分)1.设全集U={﹣1,﹣2,﹣3,﹣4,0},集合A={﹣1,﹣2,0},B={﹣3,﹣4,0},A)∩B=()则(∁UA.{0} B.{﹣3,﹣4} C.{﹣1,﹣2} D.∅2.已知命题p:点P在直线y=2x﹣3上;命题q:点P在直线y=﹣3x+2上,则使命题“p且q”为真命题的一个点P(x,y)是()A.(0,﹣3)B.(1,2)C.(1,﹣1)D.(﹣1,1)3.设集合A={x|﹣x2﹣x+2<0},B={x|2x﹣5>0},则集合A与B的关系是()A.B⊆A B.B⊇A C.B∈A D.A∈B4.下列命题:①“若a2<b2,则a<b”的否命题;②“全等三角形面积相等”的逆命题;③“若a>1,则ax2﹣2ax+a+3>0的解集为R”的逆否命题;④“若x(x≠0)为有理数,则x为无理数”的逆否命题.其中正确的命题是()A.③④B.①③C.①②D.②④5.已知非空集合M和N,规定M﹣N={x|x∈M且x∉N},那么M﹣(M﹣N)等于()A.M∪N B.M∩N C.M D.N6.当x>0,y>0, +=1时,x+y的最小值为()A.10 B.12 C.14 D.167.已知函数y=f(x)的图象在点(1,f(1))处的切线方程是x﹣2y+1=0,则f(1)+2f′(1)的值是()A.B.1 C.D.28.已知A={x|x≥k},B={x|x2﹣x﹣2>0},若“x∈A”是“x∈B”的充分不必要条件,则k 的取值范围是()A.k<﹣1 B.k≤﹣1 C.k>2 D.k≥29.设f(x)是可导函数,且=()A.B.﹣1 C.0 D.﹣210.已知函数f(x)的导函数f′(x)=a(x+b)2+c(a≠0)的图象如图所示,则函数f(x)的图象可能是()A. B.C.D.11.若点P是曲线y=x2﹣lnx上任意一点,则点P到直线y=x﹣2的最小距离为()A.1 B.C. D.12.已知函数f(x)的定义域为R,f(﹣2)=2021,对任意x∈(﹣∞,+∞),都有f'(x)<2x成立,则不等式f(x)>x2+2017的解集为()A.(﹣2,+∞)B.(﹣2,2)C.(﹣∞,﹣2)D.(﹣∞,+∞)二、填空题(本答题共4个小题,每小题5分,共20分)13.已知某物体的运动方程是S=t+t3,则当t=3s时的瞬时速度是m/s.14.已知y=f(x)为R上可导函数,则“f′(0)=0“是“x=0是y=f(x)极值点”的(填“充分不必要条件”或“必要不充分条件”或“充要条件”或“既不充分也不必要条件”).15.下列结论中,正确结论的序号为①已知M,N均为正数,则“M>N”是“log2M>log2N”的充要条件;②如果命题“p或q”是真命题,“非p”是真命题,则q一定是真命题;③若p为:∃x>0,x2+2x﹣2≤0,则¬p为:∀x≤0,x2+2x﹣2>0;④命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”.16.若实数a,b满足2a+2b=1,则a+b的最大值是.三、解答题(本大题共6个小题,17题10分,其它每小题10分,共70分)17.(1)已知,求曲线g(x)在点(4,2)处的切线方程;(2)已知函数f(x)=x3﹣3x,过点A(0,16)作曲线y=f(x)的切线,求此切线方程.18.设命题p:A={x|(4x﹣3)2≤1};命题q:B={x|a≤x≤a+1},若¬p是¬q的必要不充分条件,求实数a的取值范围.19.已知函数f(x)=|x﹣m|﹣1.(1)若不等式f(x)≤2的解集为{x|﹣1≤x≤5},求实数m的值;(2)在(1)的条件下,若f(x)+f(x+5)≥t﹣2对一切实数x恒成立,求实数t的取值范围.20.已知函数f(x)=x2﹣(2﹣a)x﹣(2﹣a)lnx..(1)若a=1,求函数f(x)的极值;(2)若f(x)在其定义域内为增函数,求实数a的取值范围.21.已知函数f(x)=|x+a|+|x﹣2|的定义域为实数集R.(Ⅰ)当a=5时,解关于x的不等式f(x)>9;(Ⅱ)设关于x的不等式f(x)≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3},如果A∪B=A,求实数a的取值范围.22.已知函数,其中a>0.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若直线x﹣y﹣1=0是曲线y=f(x)的切线,求实数a的值;(Ⅲ)设g(x)=xlnx﹣x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)2017-2018学年高一下学期期中数学试卷参考答案与试题解析一、选择题(本答题共12个小题,每小题5分,共60分)1.设全集U={﹣1,﹣2,﹣3,﹣4,0},集合A={﹣1,﹣2,0},B={﹣3,﹣4,0},则(∁UA)∩B=()A.{0} B.{﹣3,﹣4} C.{﹣1,﹣2} D.∅【考点】1H:交、并、补集的混合运算.【分析】先计算集合CU A,再计算(CUA)∩B.【解答】解:∵A={﹣1,﹣2,0},B={﹣3,﹣4,0},∴CUA={﹣3,﹣4},∴(CUA)∩B={﹣3,﹣4}.故答案选B.2.已知命题p:点P在直线y=2x﹣3上;命题q:点P在直线y=﹣3x+2上,则使命题“p且q”为真命题的一个点P(x,y)是()A.(0,﹣3)B.(1,2)C.(1,﹣1)D.(﹣1,1)【考点】2E:复合命题的真假.【分析】根据已知条件便知P点是直线y=2x﹣3和直线y=﹣3x+2的交点,所以解方程组即得点P坐标.【解答】解:若“p且q”为真命题,则:P既在直线y=2x﹣3上,又在y=﹣3x+2上;所以点P是直线y=2x﹣3和y=﹣3x+2的交点;∴解得x=1,y=﹣1;∴P(1,﹣1).故选C.3.设集合A={x|﹣x2﹣x+2<0},B={x|2x﹣5>0},则集合A与B的关系是()A.B⊆A B.B⊇A C.B∈A D.A∈B【考点】18:集合的包含关系判断及应用.【分析】化解集合A,B,根据集合之间的关系判断即可.【解答】解:集合A={x|﹣x2﹣x+2<0}={x|x>1或x<﹣2},B={x|2x﹣5>0}={x|x>2.5}.∴B⊆A,故选A4.下列命题:①“若a2<b2,则a<b”的否命题;②“全等三角形面积相等”的逆命题;③“若a>1,则ax2﹣2ax+a+3>0的解集为R”的逆否命题;④“若x(x≠0)为有理数,则x为无理数”的逆否命题.其中正确的命题是()A.③④B.①③C.①②D.②④【考点】2K:命题的真假判断与应用.【分析】结合四种命题的定义,及互为逆否的两个命题,真假性相同,分别判断各个结论的真假,可得答案.【解答】解:①“若a2<b2,则a<b”的否命题为“若a2≥b2,则a≥b”为假命题,故错误;②“全等三角形面积相等”的逆命题“面积相等的三角形全等”为假命题,故错误;③若a>1,则△=4a2﹣4a(a+3)=﹣12a<0,此时ax2﹣2ax+a+3>0恒成立,故“若a>1,则ax2﹣2ax+a+3>0的解集为R”为真命题,故其逆否命题为真命题,故正确;④“若x(x≠0)为有理数,则x为无理数”为真命题,故其的逆否命题,故正确.故选:A5.已知非空集合M和N,规定M﹣N={x|x∈M且x∉N},那么M﹣(M﹣N)等于()A.M∪N B.M∩N C.M D.N【考点】1H:交、并、补集的混合运算.【分析】根据题中的新定义判断即可得到结果.【解答】解:根据题意得:M﹣(M﹣N)=M∩N,故选:B.6.当x>0,y>0, +=1时,x+y的最小值为()A.10 B.12 C.14 D.16【考点】7F:基本不等式.【分析】利用“乘1法”和基本不等式的性质即可得出.【解答】解:∵x>0,y>0, +=1,∴x+y=(x+y)=10+=16,当且仅当y=3x=12时取等号.∴x+y的最小值为16.故选:D.7.已知函数y=f(x)的图象在点(1,f(1))处的切线方程是x﹣2y+1=0,则f(1)+2f′(1)的值是()A.B.1 C.D.2【考点】6H:利用导数研究曲线上某点切线方程;3T:函数的值.【分析】利用函数y=f(x)的图象在点(1,f(1))处的切线方程是x﹣2y+1=0,可求f(1)、f′(1)的值,从而可得结论.【解答】解:∵函数y=f(x)的图象在点(1,f(1))处的切线方程是x﹣2y+1=0,∴f(1)=1,f′(1)=∴f(1)+2f′(1)=2故选D.8.已知A={x|x≥k},B={x|x2﹣x﹣2>0},若“x∈A”是“x∈B”的充分不必要条件,则k 的取值范围是()A.k<﹣1 B.k≤﹣1 C.k>2 D.k≥2【考点】2L:必要条件、充分条件与充要条件的判断.【分析】解不等式可得x<﹣1,或x>2,由充要条件的定义可得{x|x≥k}是集合{x|x<﹣1,或x>2}的真子集,结合数轴可得答案.【解答】解:解不等式x2﹣x﹣2>0可得x<﹣1,或x>2,要使“x≥k”是“x2﹣x﹣2>0”的充分不必要条件,则需集合A={x|x≥k}是集合B={x|x<﹣1,或x>2}的真子集,故只需k>2即可,故实数k的取值范围是(2,+∞),故选:C.9.设f(x)是可导函数,且=()A.B.﹣1 C.0 D.﹣2【考点】6F:极限及其运算.),【分析】由题意可得=﹣2=﹣2f′(x结合已知可求)=2【解答】解:∵ =﹣2=﹣2f′(x0)=﹣1∴f′(x故选B10.已知函数f(x)的导函数f′(x)=a(x+b)2+c(a≠0)的图象如图所示,则函数f(x)的图象可能是()A .B .C .D .【考点】63:导数的运算;3O :函数的图象.【分析】根据导数和函数的单调性的关系即可判断.【解答】解:由f′(x )图象可知,函数f (x )先减,再增,再减,故选:D .11.若点P 是曲线y=x 2﹣lnx 上任意一点,则点P 到直线y=x ﹣2的最小距离为( )A .1B .C .D .【考点】IT :点到直线的距离公式.【分析】设出切点坐标,利用导数在切点处的函数值,就是切线的斜率,求出切点,然后再求点P 到直线y=x ﹣2的最小距离.【解答】解:过点P 作y=x ﹣2的平行直线,且与曲线y=x 2﹣lnx 相切,设P (x 0,x 02﹣lnx 0)则有k=y′|x=x 0=2x 0﹣.∴2x 0﹣=1,∴x 0=1或x 0=﹣(舍去).∴P (1,1),∴d==.故选B .12.已知函数f (x )的定义域为R ,f (﹣2)=2021,对任意x ∈(﹣∞,+∞),都有f'(x )<2x 成立,则不等式f (x )>x 2+2017的解集为( )A .(﹣2,+∞)B .(﹣2,2)C .(﹣∞,﹣2)D .(﹣∞,+∞) 【考点】6B :利用导数研究函数的单调性.【分析】构造函数g (x )=f (x )﹣x 2﹣2017,利用对任意x ∈R ,都有f′(x )<2x 成立,即可得出函数g(x)在R上单调性,进而即可解出不等式.【解答】解:令g(x)=f(x)﹣x2﹣2017,则g′(x)=f′(x)﹣2x<0,∴函数g(x)在R上单调递减,而f(﹣2)=2021,∴g(﹣2)=f(﹣2)﹣(﹣2)2﹣2017=0,∴不等式f(x)>x2+2017,可化为g(x)>g(﹣2),∴x<﹣2,即不等式f(x)>x2+2017的解集为(﹣∞,﹣2),故选:C.二、填空题(本答题共4个小题,每小题5分,共20分)13.已知某物体的运动方程是S=t+t3,则当t=3s时的瞬时速度是 4 m/s.【考点】61:变化的快慢与变化率.【分析】求出位移的导数;将t=3代入;利用位移的导数值为瞬时速度;求出当t=3s时的瞬时速度.【解答】解:根据题意,S=t+t3,则s′=1+t2将t=3代入得s′(3)=4;故答案为:414.已知y=f(x)为R上可导函数,则“f′(0)=0“是“x=0是y=f(x)极值点”的必要不充分条件(填“充分不必要条件”或“必要不充分条件”或“充要条件”或“既不充分也不必要条件”).【考点】2L:必要条件、充分条件与充要条件的判断.【分析】x=0是y=f(x)极值点,可得f′(0)=0;反之不成立,例如函数f(x)=x3,虽然f′(0)=0,但是x=0不是函数f(x)的极值点.【解答】解:x=0是y=f(x)极值点,可得f′(0)=0;反之不成立,例如函数f(x)=x3,f′(x)=3x2,虽然f′(0)=0,但是x=0不是函数f(x)的极值点.∴f′(0)=0“是“x=0是y=f(x)极值点”的必要不充分条件.故答案为:必要不充分条件.15.下列结论中,正确结论的序号为①②④①已知M,N均为正数,则“M>N”是“log2M>log2N”的充要条件;②如果命题“p或q”是真命题,“非p”是真命题,则q一定是真命题;③若p为:∃x>0,x2+2x﹣2≤0,则¬p为:∀x≤0,x2+2x﹣2>0;④命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”.【考点】2K:命题的真假判断与应用.【分析】根据充要条件的定义和对数函数的性质,可判断①;根据复合命题的真假,可判断②;根据特称命题的否定方法,可判断③;运用原命题的逆否命题,可判断④.【解答】解:对于①,由M,N>0,函数y=log2x在(0,+∞)递增,可得“M>N”⇔“log2M>log2N”,故①正确;对于②,如果命题“p或q”是真命题,“非p”是真命题,可得P为假命题,q一定是真命题.故②正确;对于③,p为:∃x>0,x2+2x﹣2≤0,则¬p为:∀x>0,x2+2x﹣2>0.故③不正确;对于④,命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”.故④正确.故答案为:①②④.16.若实数a,b满足2a+2b=1,则a+b的最大值是﹣2 .【考点】7F:基本不等式.【分析】由2a+2b=1,得=,从而可求a+b的最大值,注意等号成立的条件.【解答】解:∵2a+2b=1,∴=,即,∴a+b≤﹣2,当且仅当,即a=b=﹣1时取等号,∴a=b=﹣1时,a+b取最大值﹣2.故答案为:﹣2.三、解答题(本大题共6个小题,17题10分,其它每小题10分,共70分)17.(1)已知,求曲线g(x)在点(4,2)处的切线方程;(2)已知函数f(x)=x3﹣3x,过点A(0,16)作曲线y=f(x)的切线,求此切线方程.【考点】6H:利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,计算g′(4),求出切线方程即可;(2)设出切点为M(x0,y),表示出切线方程,求出切点坐标,从而求出切线方程即可.【解答】解:(1)∵g(x)=,∴g′(x)=,∴g′(4)=,∴曲线g(x)在点(4,2)处的切线方程为y﹣2=(x﹣4),即y=x+1;(2)曲线方程为y=x3﹣3x,点A(0,16)不在曲线上,设切点为M(x0,y),则点M的坐标满足y=x3﹣3x,因f′(x0)=3(x2﹣1),故切线的方程为y﹣y=3(x2﹣1)(x﹣x),将A(0,16)代入切线方程化简得x03=﹣8,解得x=﹣2.所以切点为M(﹣2,﹣2),切线方程为9x﹣y+16=0.18.设命题p:A={x|(4x﹣3)2≤1};命题q:B={x|a≤x≤a+1},若¬p是¬q的必要不充分条件,求实数a的取值范围.【考点】2L:必要条件、充分条件与充要条件的判断.【分析】由(4x﹣3)2≤1,得≤x≤1,A={x|≤x≤1}.由¬p是¬q的必要不充分条件,得p是q的充分不必要条件,即A B,即可得出.【解答】解:由(4x﹣3)2≤1,得≤x≤1,A={x|≤x≤1}.由¬p是¬q的必要不充分条件,得p是q的充分不必要条件,即A B,∴,∴0≤a≤.∴实数a的取值范围是[0,].19.已知函数f(x)=|x﹣m|﹣1.(1)若不等式f(x)≤2的解集为{x|﹣1≤x≤5},求实数m的值;(2)在(1)的条件下,若f(x)+f(x+5)≥t﹣2对一切实数x恒成立,求实数t的取值范围.【考点】R4:绝对值三角不等式;R5:绝对值不等式的解法.【分析】(1)求得不等式f(x)≤2的解集,再根据不等式f(x)≤2的解集为{x|﹣1≤x≤5},求得实数m的值.(2)由题意可得g(x)=|x﹣2|+|x+3|的最小值大于或等于t﹣2,求得g(x)=|x﹣2|+|x+3|的最小值,可得t的范围.【解答】解:(1)由f(x)≤2得,|x﹣m|≤3,解得m﹣3≤x≤m+3,又已知不等式f(x)≤2的解集为{x|﹣1≤x≤5},∴,解得m=2.(2)当m=2时,f(x)=|x﹣2|﹣1,由于f(x)+f(x+5)≥t﹣2对一切实数x恒成立,则|x﹣2|+|x+3|﹣2≥t﹣2对一切实数x恒成立,即|x﹣2|+|x+3|≥t对一切实数x恒成立,设g(x)=|x﹣2|+|x+3|,于是,所以当x<﹣3时,g(x)>5;当﹣3≤x≤2时,g(x)=5;当x>2时,g(x)>5.综上可得,g(x)的最小值为5,∴t≤5,即t的取值范围为(﹣∞,5].20.已知函数f(x)=x2﹣(2﹣a)x﹣(2﹣a)lnx..(1)若a=1,求函数f(x)的极值;(2)若f(x)在其定义域内为增函数,求实数a的取值范围.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【分析】(1)求出函数的导数,利用导数为0,求解极值点,然后判断求解极值即可.(2)利用导函数的符号,结合基本不等式或函数的导数求解函数的最值,推出结果即可.【解答】解:(1)∵f(x)=x2﹣(2﹣a)x﹣(2﹣a)lnx,x>0∴,因为a=1,令=0得x=1或x=(舍去)…又因为,当0<x<1时,f'(x)<0;x>1时,f'(x)>0所以x=1时,函数f(x)有极小值f(1)=0…(2)若f'(x)>0,在x>0上恒成立,则2x2﹣(2﹣a)x﹣(2﹣a)>0恒成立,∴恒成立…而当x>0时∵.检验知,a=2时也成立∴a≥2…[或:令,∴,∵x>0,∴g'(x)<0﹣﹣﹣﹣﹣所以,函数g(x)在定义域上为减函数所以g(x)<g(0)=2检验知,a=2时也成立∴a≥2….21.已知函数f(x)=|x+a|+|x﹣2|的定义域为实数集R.(Ⅰ)当a=5时,解关于x的不等式f(x)>9;(Ⅱ)设关于x的不等式f(x)≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3},如果A∪B=A,求实数a的取值范围.【考点】R4:绝对值三角不等式;R5:绝对值不等式的解法.【分析】(Ⅰ)当a=5,把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(Ⅱ)由题意可得B⊆A,区间B的端点在集合A中,由此求得a的范围.【解答】解:(Ⅰ)当a=5时,关于x的不等式f(x)>9,即|x+5|+|x﹣2|>9,故有①;或②;或③.解①求得x<﹣6;解②求得x∈∅,解③求得 x>3.综上可得,原不等式的解集为{x|x<﹣6,或 x>3}.(Ⅱ)设关于x的不等式f(x)=|x+a|+|x﹣2|≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3}={x|﹣1≤x≤2 },如果A∪B=A,则B⊆A,∴,即,求得﹣1≤a≤0,故实数a的范围为[﹣1,0].22.已知函数,其中a>0.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若直线x﹣y﹣1=0是曲线y=f(x)的切线,求实数a的值;(Ⅲ)设g(x)=xlnx﹣x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)【考点】6H:利用导数研究曲线上某点切线方程;6B:利用导数研究函数的单调性;6E:利用导数求闭区间上函数的最值.【分析】(Ⅰ)先求导函数,直接让导函数大于0求出增区间,导函数小于0求出减区间即可;(Ⅱ)直接利用切线的斜率即为切点处的导数值以及切点是直线与曲线的共同点联立方程即可求实数a的值;(Ⅲ)先求出g(x)的导函数,分情况讨论出函数在区间[1,e]上的单调性,进而求得其在区间[1,e]上的最小值.【解答】解:(Ⅰ)因为函数f(x)=,∴f′(x)==,f′(x)>0⇒0<x<2,f′(x)<0⇒x<0,或x>2,故函数f(x)的单调增区间为(0,2),单调减区间为(﹣∞,0)和(2,+∞),(Ⅱ)设切点为(x,y),由切线斜率k=1=,⇒x3=﹣ax+2a,①由x﹣y﹣1=x﹣﹣1=0⇒(x2﹣a)(x﹣1)=0⇒x=1,x=±.把x=1代入①得a=1,把x=代入①得a=1,把x=﹣代入①得a=﹣1(舍去),故所求实数a的值为1.(Ⅲ)∵g(x)=xlnx﹣x2f(x)=xlnx﹣a(x﹣1),∴g′(x)=lnx+1﹣a,解lnx+1﹣a=0得x=e a﹣1,故g(x)在区间(e a﹣1,+∞)上递增,在区间(0,e a﹣1)上递减,①当e a﹣1≤1时,即0<a≤1时,g(x)在区间[1,e]上递增,其最小值为g(1)=0;②当1<e a﹣1<e时,即1<a<2时,g(x)的最小值为g(e a﹣1)=a﹣e a﹣1;③当e a﹣1≥e,即a≥2时,g(x)在区间[1,e]上递减,其最小值为g(e)=e+a﹣ae.。
绝密★启用前 天津市静海县第一中学2017-2018学年高一4月学生学业能力调研测试数学试题 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、单选题 1.在三角形ABC 中,根据下列条件解三角形,其中有两个解的是( ) A .10b =,45A =︒,70B =︒ B .60a =,48c =,60B =︒ C .7a =,5b =,80A =︒ D .14a =,16b =,45A =︒ 2.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a 2+c 2-b ac ,则角B 的值为 A .6π B .3π C .6π或56π D .3π或23π 3.已知m n ,为两条不同的直线,αβ,为两个不同的平面,则下列命题中正确的是( ) A .m n m n ααββαβ⊂⊂⇒P P P ,,, B .m n m n αβαβ⊂⊂⇒P P ,, C .m m n n αα⊥⊥⇒P , D .n m n m αα⊥⇒⊥P , 4.已知正方体的棱长为1,则该正方体外接球的体积与其内切球表面积之比为( )A .18:1B .3:1C .D 2 5.某几何体的三视图如图所示,则它的体积是( )…线…………○………线…………○……A.283π-B.83π-C.82π-D.23π6.若()()3a b c b c a bc+++-=,且sin2sin cosA B C=,那么ABCV是( )A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形7.在△ABC中,角,,A B C的对边分别是,,a b c,若a=,2A B=,则cos B=( )A B C D8.若四面体ABCD的三组对棱分别相等,即AB CD=,AC BD=,AD BC=,给出下列结论:①四面体ABCD每组对棱相互垂直;②四面体ABCD每个面的面积相等;③从四面体ABCD每个顶点出发的三条棱两两夹角之和大于90︒而小于180︒;④连接四面体ABCD每组对棱中点的线段相互垂直平分;⑤从四面体ABCD每个顶点出发的三条棱的长可作为一个三角形的三边长.其中正确结论的个数是()A.2个B.3个C.4个D.5个第II卷(非选择题)请点击修改第II卷的文字说明订…………○……线…………_考号:___________订…………○……线…………9.如图,'''O A B ∆是水平放置的OAB ∆的直观图,则OAB ∆的面积为______. 10.请你正确地使用符号写出直线与平面平行的判定定理条件______. 11.已知某几何体的三视图如图所示,则该几何体的表面积为______.12.在ABC ∆中,45B ∠=︒,D 是BC 边上一点,5AD =,7AC =,3DC =,则AB 的长为______. 13.若一圆柱与圆锥的高相等,且轴截面面积也相等,那么圆柱与圆锥的体积之比为________. 14.写出下面平面几何中的常见结论在立体几何中也成立的所有序号______. ①四边形内角和为360︒; ②垂直的两条直线必相交; ③垂直同一条直线的两条直线平行; ④平行同一条直线的两条直线平行; ⑤四边相等的四边形,其对角线垂直; ⑥到三角形三边距离相等的点是这个三角形的内心; ⑦到一个角的两边距离相等的点必在这个角的角平分线上; ⑧在平面几何中有“一组平行线(至少3条)被两条直线所截得的对应线段成比例”的结论,则这一结论可推广到立体几何中“一组平行平面(至少3个)被两条直线所截得的对应线段也成比例.” 三、解答题 15.(1)在ABC ∆中,已知边BC =,AC =45B =︒,求角A ;…外……………订…………○线※※内※※答※※题※※ …内……………订…………○(2)在ABC ∆中,A ,B ,C 的对边分别是a ,b ,c ,2b ac =,且22a c ac bc -=-,求角A ; (3)在ABC ∆中,A ,B ,C 的对边分别是a ,b ,c ,已知3cos cos cos a A c B b C =+,求cos A 的值; (4)在ABC ∆中,内角A ,B ,C 的对边分别是a ,b ,c ,若1cos 3A =,sin 3sin B C =,求sin C 的值. 16.如图是一个高为4长方体截去一个角所得的多面体的直观图及它的正(主)视图和侧(左)视图(单位:cm )(1)求异面直线BC '与D B ''所成角的余弦;(2)将求异面直线BC '与EF 所成的角转化为求一个三角形的内角即可,要求只写出找角过程,不需计算结果;(3)求异面直线BC '与DB '所成的角;要求同(2).17.在ABC ∆中,角A ,B ,C 对的边分别为a ,b ,c ,2c =,sin cos 6C C π⎛⎫-= ⎪⎝⎭.(Ⅰ)求sin aA 的值;(Ⅱ)若a b ab +=,求ABC ∆的面积ABC S ∆.18.如图所示,P 为平行四边形ABCD 所在平面外一点,M,N 分别为AB,PC 的中点,平面PAD I 平面PBC =l .(1)求证:BC∥l ;(2)MN 与平面PAD 是否平行?试证明你的结论.19.如图,直三棱柱ABC −A 1B 1C 1中(侧棱与底面垂直的棱柱),……○…………订线…………○……_______班级:___________考……○…………订线…………○…… (1)求证:C 1D ⊥平面AA 1B 1B ; (2)当点F 在BB 1上的什么位置时,AB 1⊥平面C 1DF ?并证明你的结论. 20.如图所示,矩形ABCD 中,AD ⊥平面ABE ,AE =EB =BC =2,F 为CE 上的点,且BF ⊥平面ACE. (1)求证:AE ⊥平面BCE ; (2)求证:AE ∥平面BFD ; (3)求三棱锥C -BGF 的体积.参考答案1.D【解析】【分析】在已知两边及一边对角用正弦定理解三角形时才可能出现两解.根据正弦定理判断.【详解】A 已知两角一边,三角形确定的,只有一解,B 已知两边及夹角用余弦定理,只有一解,C 中已知两边及一边对角,但已知的是大边所对的角,小边所对角只能是锐角,不可能有两解,D 中,sin 16sin 45b A a b =︒=<<,有两解.故选:D.【点睛】本题考查三角形解的个数问题,掌握正弦定理和余弦定理是解题关键.三角形解的个数中只有在已知两边及一边对角用正弦定理解三角形时才可能出现两解,注意判断方法. 2.A【解析】【详解】由余弦定理和及已知条件得2cos ac B =,所以cos 2B =,又0B π<<, 所以6B π=,故选A.考点:1.余弦定理;2.同角三角基本关系.3.D【解析】【详解】若α∥β,m ⊂α,m ⊂β,则m ,n 可能平行也可能异面,故B 错误;若m ⊥α,m ⊥n ,则n ∥α或n ⊂α,故C 错误;若m ⊂α,n ⊂α,m ∥β,n ∥β,由于m ,n 不一定相交,故α∥β也不一定成立,故A 错误;若m ∥n ,n ⊥α,根据线面垂直的第二判定定理,我们易得m ⊥α,故D 正确.4.D【解析】【分析】由正方体性质知,它的外接球的半径为2,内切球的半径为12,利用球体积,表面积公式计算得结果.【详解】由正方体性质知,它的外接球的半径为R ,内切球的半径为12r =,324432V R S r πππ∴====球球,, V ∴球:S 球= 2故选:D【点睛】本题主要考查了正方体的性质,球的体积,表面积的计算,属于基础题.5.A【解析】根据已知的三视图想象出空间几何体,然后由几何体的组成和有关几何体体积公式进行计算.由几何体的三视图可知几何体为一个组合体,即一个正方体中间去掉一个圆锥体,所以它的体积是3218222833V ππ=-⨯⨯⨯=-.6.D【解析】【详解】 解析:由题设可得2222221cos ,223b c a b c a bc A A bc π+-+-=⇒==⇒=由题设可得222222cos 202a b c a b C a b b c b c ab+-=⇒=⇒-=⇒=, 即该三角形是等边三角形,应选答案B .7.B【解析】∵在ABC V 中a =,∴由正弦定理可得sin A B =①,又∵2A B =,∴sin sin22sin cos A B B B ==②,由①②可得2sin cos B B B =,可得cos B =,故选B.8.B【解析】【分析】由条件可以知道四面体的棱为长方体的面对角线,根据长方体的性质判断各结论是否正确.【详解】对于①,把四面体补形为平行六面体,由三组对棱分别相等可知此平行六面体为长方体,如图所示,只有长方体为正方体时①才正确,故①不正确;对于②;在长方体中,有,BAC DCA ABC DCB CBD ADB V V V V V V ≌,≌≌, ∴四面体ABCD 每个面的面积相等,故②正确.对于③,以,,BAC CAD BAD ∠∠∠为例说明,,.BAC DCA CAD ACB ∴∠=∠QV V ≌ 又DAB CBA QV V ≌,BAD ABC ∴∠=∠,180BAC CAD BAD BAC ACB ABC ∴∠+∠+∠=∠+∠+∠=︒, 故③不正确;对于④,连接四面体ABCD 对棱中点的线段即是连接长方体对面中心的线段,显然相互垂直平分,故④正确;对于⑤,以AB AC AD 、、为例进行说明,,AD BC AB AC BC =Q 、、三边长可构成ABC V ,AB AC AD ∴、、可以作为一个三角形的三边长.同理可得从其他顶点出发的三条棱的长也可以作为一个三角形的三边长,故⑤正确.故选:B【点睛】本题主要考查了空间中点、直线、平面间的位置关系,将四面体补成长方体进行分析是解决此题的关键,属于基础题.9.12【解析】【分析】根据斜二测画法得到三角形OAB 的底面边长4OB =,高6OA =,然后求三角形的面积即可.【详解】根据斜二测画法得到三角形OAB 为直角三角形,底面边长4OB =,高2236OA O A ''==⨯=,∴直角三角形OAB 的面积为146122创=故答案为:12【点睛】本题主要考查平面图形的直观图的应用,要求熟练掌握斜二测画法的边长关系,属于基础题. 10.a b a //b αα⊄⊂,,【解析】【分析】直线与平面平行的判定定理为:如果平面外一条直线与这个平面内的一条直线平行,那么这条直线与这个平面平行,将文字语言转化为符号语言即可.【详解】直线与平面平行的判定定理的条件为“平面外一条直线与这个平面内的一条直线平行”,转化为符号语言为:“a b a //b αα⊄⊂,,”故答案为:a b a //b αα⊄⊂,,【点睛】本题主要考查直线与平面平行的判定定理,考查学生正确运用符号表示立体几何位置关系的能力,属于基础题.11.48+【解析】【分析】由三视图知,该几何体为一个如图所示,底面为等腰梯形的直四棱柱,算出各个面的面积相加即得表面积.【详解】由三视图知,该几何体为底面为等腰梯形的直四棱柱,由图中的数据可得其表面积为:()21442242442482S =+⨯+⨯⨯+⨯⨯=+故答案为:48+【点睛】本题主要考查立体几何的三视图,空间几何体的表面积计算,考查学生的空间想象能力,属于基础题.12 【解析】【分析】先由余弦定理得222cos 2AD CD AC ADC AD CD+-∠=⋅,求得120ADC ∠=o ,再由正弦定理得sin sin AB AD ADB ABD=∠∠,解出得AB 【详解】由余弦定理得:2222225371cos 22532AD CD AC ADC AD CD +-+-∠===-⋅⨯⨯, 12060ADC ADB ∠=∠=o o ,, 由正弦定理得:sin sin AB AD ADB ABD=∠∠,sin 5sin 60sin sin 45AD ADB AB ABD ∠∴===∠o o ,故答案为:2 【点睛】本题主要考查了正余弦定理的应用,在解三角形时要灵活运用这两个定理,同时考查了学生分析问题和解决问题的能力,以及运算求解的能力.13.34【解析】【分析】根据圆柱与圆锥轴截面面积相等计算出两几何体底面半径之比,然后利用锥体和柱体的体积公式可计算出这两个几何体的体积之比.【详解】设圆柱与圆锥的底面半径分别为r 、R ,高均为h ,圆柱和圆锥的体积分别为1V 、2V , 则1222rh Rh =⨯,2R r ∴=, 所以,圆柱和圆锥的体积之比为2212223114433V r h r h V R h r h ππππ===⨯.故答案为:34. 【点睛】 本题考查圆柱和圆锥体积比的计算,涉及轴截面的计算,解题的关键就是计算出这两个几何体的底面半径之比,考查计算能力,属于基础题.14.④⑤⑧【解析】【分析】①将长方形沿对角线对折,则四边形内角和不为360︒;②这两条直线可能异面;③正方体的同一顶点的三条棱相互垂直;④是公理,正确;⑤四边相等的四边形也可能是空间四边形,对角线不一定垂直;⑥过三角形的内心且垂直于三角形所在平面的直线上的点到各边的距离都相等;⑦过这个角的角平分线与角所在平面垂直的平面的点到这个角的两边距离相等,故不正确;⑧正确【详解】①将长方形沿对角线对折,则四边形内角和不为360︒,故①不正确;②这两条异面直线垂直时不相交,故②不正确;③正方体的同一顶点的三条棱相互垂直,故③不正确;④是公理,故④正确;⑤四边相等的四边形若是平面图形,可得其必是菱形,结论正确,若四边相等的四边形是空间四边形,一条对角线与另一条对角线所在面垂直,可得两对角线一定垂直,故⑤正确; ⑥过三角形的内心且垂直于三角形所在平面的直线上的点到各边的距离都相等,故⑥不正确; ⑦过这个角的角平分线与角所在平面垂直的平面的点到这个角的两边距离相等,故⑦不正确; ⑧当两条直线平行时易证结论成立,当两条直线异面时,可作第三条直线与其中一条直线平行,与另一条直线相交,可证明成立,故⑧正确.故答案为:④⑤⑧【点睛】本题通过将平面几何中几个常见结论类比到空间立体几何中,考查了学生对命题的辨析能力,逻辑推理能力,属于中档题.15.⑴120A =o ,或60A =o ;⑵3A π=;⑶1cos 3A =;⑷1sin 3C =.【解析】【分析】(1)由正弦定理得:sin sin BC AC A B =,求得sin 2A =,从而得解A ; (2)由条件得2221cos 222b c a bc A bc bc +-=== ,求出3A π=; (3)由正弦定理得:()3sin cos sin cos sin cos sin sin A A C B B C B C A =+=+=, 求得1cos 3A =;(4)由sin 3sin B C =得3b c =;再由2221cos 23b c a A bc +-==得a =;再由余弦定理得222cos 23a b c C ab +-==,求出1sin 3C =. 【详解】(1)由正弦定理得:sin sin sin sin BC AC BC B A A B AC ⋅=∴=== 又BC AC >Q ,120A =o ,或60A =o(2)2b ac =Q ,且22a c ac bc -=-,222b c a bc ∴+-=,2221cos 222b c a bc A bc bc +-∴=== 3A π∴=(3)3cos cos cos a A c B b C =+Q ,∴由正弦定理得:()3sin cos sin cos sin cos sin sin A A C B B C B C A =+=+=, 又1sin 0,cos 3A A ≠∴= (4)sin 3sin ,3BC b c =∴=Q ,又由余弦定理得:()222222311cos 23233c c a b c a A bc c c +-+-==∴=⋅,,解得:a =,222cos 2a b c C ab +-==, 1sin 3C ∴=【点睛】 本题主要考查了正余弦定理的应用,在解三角形时要灵活运用这两个定理,属于基础题.16.(1)13;(2)见解析;(3)见解析. 【解析】【分析】(1)由题意得:长方体ABCD A B C D ''''-中,6AB =,4BC CC '==,E F G 、、分别是边AA A B A D '''''、、上的点,且2A E A F A G '''===,又由//DB D B '',找到角DBC '∠为所求角,运用余弦定理求解;(2)连AD ',GEF ∠为异面直线BC '与EF 所成的角(或补角);(3)连BC 交BC '于点M ,取DC 中点N ,连,MN BN ,NMB ∠为异面直线BC '与DB '所成的角(或补角).【详解】(1)由题意得:长方体ABCD A B C D ''''-中,6AB =,4BC CC '==,E F G 、、分别是边AA A B A D '''''、、上的点,且2A E A F A G '''===,连DB DC D B '''、、,则//DB D B '',DBC '∴∠为所求直线D B BC '''、所成的角(或补角),在DBC 'V 中,DB DC BC ''===222cos 213DB C B C D DBC DB C B ''+-'∠=='⋅∴异面直线BC '与D B ''(2)连AD ',由题知:E G 、分别是边AA A D '''、上的中点,////BC AD GE ''∴,GEF ∴∠为异面直线BC '与EF 所成的角(或补角).(3)连BC 交BC '于点M ,取DC 中点N ,连,MN BN ,则有//MN DB ',NMB ∴∠为异面直线BC '与DB '所成的角(或补角).【点睛】本题主要考查了三视图,异面直线所成角的计算,余弦定理的运用,同时考查了学生直观想象和逻辑推理能力,属于中档题.求异面直线所成角的步骤:(1)一作(找):根据定义作平行线,作出异面直线所成的角;或用中位线平移,找出异面直线所成的角;(2)二证:证明作(找)出的角是异面直线所成的角;(3)三求:解三角形,求出异面直线所成的角.17.(1;(2【解析】【分析】(1)化简sin cos 6C C π⎛⎫-= ⎪⎝⎭得tan C =从而3C π=;由正弦定理得sin sin a c A C =,代入即可.(2)由()22222cos 3c a b ab C a b ab =+-=+-,联立a b ab +=,得4ab =,代入面积公式1sin 2ABC S ab C =V 即得结果. 【详解】(1)sin cos 6C C π⎛⎫-= ⎪⎝⎭Q,1cos sin 2C C C -=,tan C ∴=()0,3C C ππ∈∴=,由正弦定理得:sin sin 3a c A C ===; (2)()22222cos 22cos c a b ab C a b ab ab C =+-=+--Q , 又=23a b ab C c π+==,,,()()222334c a b ab ab ab ∴=+-=-=, 解得:4ab =,11sin 4222ABC S ab C ∴==⨯⨯=V 【点睛】 本题主要考查了三角函数的恒等变换,正余弦定理的应用,三角形的面积公式,属于基础题. 18.(1)见解析;(2)见解析【解析】试题分析:证明线线平行的方法;1,向量法,2.垂直于同一平面的两条直线平行,3平行于同一直线的两条直线平行,4一个平面与另外两个平行平面相交,那么两条交线也平行.线面平行,1平面外的一条直线与平面内的一条直线平行,则这条直线与这个平面平行,2若一条直线与一个平面同时平行于另一个平面且这条直线不属于这个平面,则这条直线与这个平面平行,3若一条直线与两平行平面中的一个平行,则这条直线与另一个平面平行,4,最好用的还是向量法.试题解析:(1)证明 因为BC ∥AD ,AD ⊂平面PAD ,BC ⊄平面PAD ,所以BC ∥平面PAD.又平面PAD∩平面PBC =l ,BC ⊂平面PBC ,所以BC ∥l.(2)解 MN ∥平面PAD.证明如下:如图所示,取PD 中点E ,连结AE ,EN.又∵N 为PC 的中点,∴//12EN CD =又∵//12AM CD =∴//AM EN =即四边形AMNE 为平行四边形.∴AE ∥MN ,又MN ⊄平面PAD ,AE ⊂平面PAD.∴MN ∥平面PAD.考点:线面平行的性质定理及判断定理19.(1)见解析;(2)见解析【解析】【分析】(1)由111ABC A B C -是直三棱柱,D 是A 1B 1的中点和题设条件,得C 1D ⊥A 1B 1和AA 1⊥C 1D ,利用线面垂直的判定定理,即可证明;(2)作1DE AB ⊥交AB 1于点E ,延长DE 交BB 1于点F ,连接C 1F ,则AB 1⊥平面C 1DF ,点F 即所求.【详解】(1)∵111ABC A B C -是直三棱柱,∴A 1C 1=B 1C 1=1,且∠A 1C 1B 1=90°.又D 是A 1B 1的中点,∴C 1D ⊥A 1B 1.∵AA 1⊥平面A 1B 1C 1,C 1D ⊂平面A 1B 1C 1,∴AA 1⊥C 1D ,∴C 1D ⊥平面11AA B B .(2)作1DE AB ⊥交AB 1于点E ,延长DE 交BB 1于点F ,连接C 1F ,则AB 1⊥平面C 1DF ,点F 即所求.事实上,∵C 1D ⊥平面AA 1B 1B ,AB 1⊂平面AA 1B 1B ,∴C 1D ⊥AB 1.又AB 1⊥DF ,1DF C D D ⋂=,∴AB 1⊥平面C 1DF .∵AA 1=A 1B 1∴四边形AA 1B 1B 为正方形.又D 为A 1B 1的中点,DF ⊥AB 1,∴F 为BB 1的中点,∴当点F 为BB 1的中点时,AB 1⊥平面C 1DF .【点睛】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.20.(1)见详解;(2)见详解;(3)13 【解析】【详解】(1)证明 ∵AD ⊥平面ABE ,AD ∥BC , ∴BC ⊥平面ABE ,则AE ⊥BC.又∵BF ⊥平面ACE ,则AE ⊥BF ,又BC∩BF =B ,∴AE ⊥平面BCE.(2)证明 由题意可得G 是AC 的中点,连结FG ,∵BF ⊥平面ACE ,∴CE ⊥BF.而BC =BE ,∴F 是EC 的中点,在△AEC 中,FG ∥AE ,∴AE ∥平面BFD.(3)∵AE ∥FG.而AE ⊥平面BCE ,∴FG ⊥平面BCF.∵G 是AC 中点,F 是CE 中点,∴FG ∥AE 且FG =12AE =1.∴Rt △BCE 中,BF =CE =CF ,∴S △CFB =12=1. ∴V C -BGF =V G -BCF =·S △CFB ·FG =111133⨯⨯=.。
2017-2018学年度第一学期八县(市)一中期中联考高中一年数学科试卷参考答案一、选择题:(每题 5 分,共 60 分)13. 4 14.4115. -7 16. ②③三、解答题(本大题共6小题,共70分)(17)(本小题共10分)解: (1) {}{2}42A ≤=≤=x x x x ……………………………………………2分}{41C U >≤=x x x B 或)(……………………………………………………3分 {} 1)(≤=x x B C A U ………………………………………………………5分(2)①当φ=C 时,即a a 4≥-,所以2a ≤,此时B C ⊆满足题意 2≤∴a ………………………………………………………………7分 ②当φ≠C 时,a a 4<-,即2a >时,所以⎪⎩⎪⎨⎧≤≥->4142a a a ,解得:32≤<a ……………………………………………9分综上,实数a 的取值范围是}{3≤a a …………………………………………………10分(18)(本小题共12分) 解:(1)设0>x 则0<-x所以x x x f 2)(2+-=-又因为)(x f 为奇函数,所以)()(x f x f -=-所以x x x f 2)(2+-=- 即x x x f 2)(2-= )0(>x …………………………2分 所以⎪⎩⎪⎨⎧≤-->-=0,202)(22x x x x x x x f , ……………………………………………………3分 图象略…………………………………………………………………………………6分(2)由图象得函数)(x f 的单调递增区间为]1,(--∞和),1[+∞……………………8分方程()=0f x m +在),0[+∞上有两个不同的实数根,所以函数)(x f y =与m y -=在),0[+∞上有两个不同的交点,……………10分 由图象得01≤-<-m ,所以10<≤m所以实数m 的取值范围为)1,0[……………………………………………………12分 评分细则说明:1.若单调增区间写成),1()1,(+∞--∞ 扣1分。
正(侧)视图 第6题图天津市静海县第一中学2017-2018学年高一数学下学期期中试题一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知直线2+60x my -=在两个坐标轴上的截距之和为5,则实数m 的值为(A )2(B )3(C )4 (D )5(2)已知点(31),A ,(15),B ,则线段AB 的垂直平分线的方程是(A )240x y -+= (B )210x y --= (C )+280x y -=(D )2+70x y -=(3)已知(22)(0)(0),,,,,A B a C b (0)ab ≠三点共线,则11a b+= (A )12(B )2 (C )14(D )4(4)已知圆锥的底面半径为1,侧面展开图为扇形,扇形圆心角为120°,则圆锥的表面积为(A )π (B )2π (C )3π (D )4π (5)已知三棱柱111ABC A B C -中,⊥1AA底面ABC ,AB BC ⊥,3AB =,4BC =,15AA =,则该三棱柱的表面积是(A )15 (B )30 (C )60 (D )72(6)一个四棱锥正视图和侧视图为两个完全相同的等腰直角三角形,其腰长为1,则该四棱锥的体积为 (A(B )13 (C(D )16(7)三棱锥P-ABC 中,PA ⊥平面ABC ,AB ⊥BC ,PA =2,AB=BC =1,则其外接球的表面积为(A )6π (B )5π(C )4π (D )3π(8)已知a ,b ,c 分别为ABC ∆三个内角A ,B ,C 的对边,60B =o ,4a =,b =则60C = (A )30o(B )90o(C )30o或90o(D )150o(9)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c .若22()3c a b =+-,60C =,则AB C ∆的面积是(A(B(C(D(10)αβ,是两个不同的平面,m n ,是两条不同的直线,有下列四个命题:①如果m n m α⊥⊥,,∥n β,那么αβ⊥; ②如果m m αβ⊥⊥,,那么αβ∥; ③如果∥αβ,,m αβα⊂,那么m β∥;④如果α内有不共线的三个点到β⊥的距离相等,那么αβ∥.其中正确命题的序号为 (A )②③(B )①④ (C )①②③ (D )①②④二、填空题:本大题共5小题,每小题4分,共20分. (11)已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为274,底面是边长为3的正三角形.若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为________. (12)已知直线40ax y +-=与3+(+)202x a y +=平行,则实数a =________. (13)如图,在山底测得山顶仰角45CAB ∠=o,沿倾斜角为30o的斜坡走300米至D 点,又测得山顶仰角为75o, 则山高BC =________米.(14)正四面体A-BCD 中,E 为BC 中点,F 为AD 中点,则AE 与CF 所成角的余弦值为________. (15)已知动直线l 1: x +my -1=0过定点A ,动直线l 2: mx -y -2m +1=0过定点B ,直线l 1与l 2交于点P ,则|PA |2+|PB |2=_______.三、解答题:本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤. (16)(本小题满分12分)已知a ,b ,c 分别为ABC ∆三个内角A ,B ,C 的对边,且满足2,54cos ==b B . (I )若π4A =,求a 的值; (II )若ABC ∆的面积为3,求证ABC ∆为等腰三角形.A BC D E第13题图DP BCEF A第17题图(17)(本小题满分12分)如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,底面ABCD 为直角梯形,∠ABC =∠BAD =90°,12PA AB BC AD ===,E ,F 分别为AB ,PC 的中点. (I )若四棱锥P-ABCD 的体积为4,求PA 的长; (II )求证:PE ⊥BC ;(III )求PC 与平面PAD 所成角的正切值.(18)(本小题满分12分)已知ABC ∆的顶点()3,1A ,AB 边上的中线CM 所在直线方程为210x y --=,B ∠的角平分线BN 所在直线方程为20x y -=.(I )求顶点B 的坐标; (II )求直线BC 的方程.(19)(本小题满分12分)已知a ,b ,c 分别为ABC ∆三个内角A ,B ,C cos b cC C a++=.(I )求A 的大小;(II )若ABC ∆为锐角三角形,且a =b c +的取值范围.(20)(本小题满分12分)已知三棱柱111ABC A B C -的底面是正三角形,侧面11A ACC 为菱形,且1=60A AC ∠,平面11A ACC ⊥平面ABC ,M ,N 分别是AB ,1CC 的中点.(I )求证:CM ∥平面1A BN ;(II )求证:1AC BN ⊥; (III )求BA 1与平面11A ACC 所成角的大小.C 1NC B 1MBA 1A 第20题图参考答案一、选择题:本大题共10小题,每小题4分,共40分.BAADD CABDA二、填空题:本大题共5小题,每小题4分,共20分.(11)π4 (12)12 (13)300 (14)23(15)2三、解答题:本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤. (16)(本小题满分12分)解:(I )因为53sin ,54cos =∴=B B ,所以53sin ,54cos =∴=B B . ……………………2分 由正弦定理得2πsin sin 4a B =2352=. ……………………… 4分解得a =…………………………6分 (II )由题意得,53sin ,sin 21==B B ac S =3,即10,3103==∴ac ac ,所以10,3103==∴ac ac . ………………8分 由余弦定理B ac c a b cos 2222-+=, ………………9分得4=16582222-+=-+c a ac c a ,即2022=+c a . ………………10分 那么222()20a c a c ac -=+-=,由此得a c =所以ABC ∆为等腰三角形. …………………12分 (17)(本小题满分12分)解:(I )设PA =a ,由题意知2,4222313=∴==⨯⨯+⨯=-a a a a a a V ABCDP解得=2a ,所以PA=2 ………………2分 (II )因为PA ⊥平面AB CD ,BC ⊂平面ABCD所以PA BC ⊥ …………………………………………………4分 又∠ABC =90° 所以AB BC ⊥因为PA ⊂平面PAB , AB ⊂平面PAB , PAAB A =DPBEFAG所以BC ⊥平面PAB …………………………6分 又PE ⊂平面PAB所以PE ⊥BC …………………………7分 (III )取AD 的中点G ,连结CG ,PG因为PA ⊥平面ABCD ,AB ⊂平面ABCD ,所以PA AB ⊥,又AD AB ⊥,则AB ⊥平面PAD , ……………………8分 由题意知BC ∥AG ,BC =AG ,所以四边形ABCG 为平行四边形 所以CG ∥AB ,那么CG ⊥平面PAD所以CPG ∠为PC 与平面PAD 所成角 ……………………10分设PA =a ,则CG =a ,PG ,在直角三角形CPG 中,tanCPG2==所以PC 与平面PAD ……………………12分 (18)(本小题满分12分)解:(I )设顶点B 的坐标为),(n m ;因为顶点B 在直线BN 上,所以20m n -= ………………………2分 由题意知M 的坐标为31(,)22m n ++, 因为中点M 在直线CM 上,所以3121022m n ++⨯--=, 即2+30m n -=; ……………………………4分 联立方程组202+30m n m n -=⎧⎨-=⎩,解得顶点B 的坐标为()2,1--………………6分(II )设顶点关于直线BN 的对称点为(,)A s t ',由于线段A A '的中点在在直线BN 上,得方程312022s t ++-⨯=, 即210s t -+= ………………………………………7分 由直线A A '与直线BN 垂直,得方程11123t s -⨯=--,即2+70s t -=; …………………………8分联立方程组2102+70s t s t -+=⎧⎨-=⎩,得139,55A '() …………………………………10分 显然139,55A '()在直线BC 上,且顶点B 的坐标为()2,1--, 得直线BC 的方程为142350x y -+= ……………………………………12分(19)(本小题满分12分)解:(I cos b cC C a++=,sin sin cos sin B CC C A++=,即sin sin cos sin()sin A C A C A C C +=++, ………………………2分sin sin cos sin A C C A C =+,因为sin 0C ≠,cos 1A A -=,π2sin16A -=(),即π1sin 62A -=(), ………4分 因为ππ5π666A -∈-(,),所以ππ=66A -,解得π=3A ……………………6分(Ⅱ)由(I )知π=3A ,又a =2sin sin sin b c aB C A=== 2π2sin +2sin =2sin 2sin 3b c B C B B +=+-()13sin cos )2B B B B =+=+ π)6B =+( ……………………………………………………9分因为ABC ∆为锐角三角形,所以π02B <<,且π02C <<,即π02B <<且2ππ032B <-< 由此得ππ62B <<,ππ2π363B <+<; …………………………………10分πsin )16B <+≤(,π3)6B <+≤(所以3b c <+≤………………………………12分 (20)(本小题满分12分)证明:(Ⅰ)取1A B 的中点P ,连接PM ,PN . 因为M ,P 分别是AB ,1A B 的中点, 所以PM ∥1AA ,11=2PM AA CN = ………2分 又因为1AA ∥1CC所以PM ∥CN 且=PM CN 所以四边形PMCN 为平行四边形,所以PN ∥CM . ………………………………………………………………4分又因为CM ⊄平面1A BN ,PN ⊂平面1A BN ,所以CM ∥平面1A BN . ………………………………………………………5分 (Ⅱ)取AC 的中点O ,连结BO ,ON .由题意知BO ⊥AC ,又因为平面11A ACC ⊥平面ABC ,所以BO ⊥平面11A ACC . …………………………………………7分 因为1AC ⊂平面11A ACC 所以1BO AC ⊥ 因为四边形11A ACC 为菱形,所以11AC AC ⊥ 又因为ON ∥1AC , 所以1AC ON ⊥ 所以1AC ⊥平面BON ,又BN ⊂平面BON 所以1AC BN ⊥. ……………………………………………10分 (III )连结A 1O ,由(Ⅱ)知BO ⊥平面11A ACC所以1BAO ∠为BA 1与平面11A ACC 所成的角 ………………………11分 在直角三角形1BAO 中,1BO AO = 所以1π=4BA O ∠,即BA 1与平面11A ACC 所成的角为π4.……………………12分。