苏教版八年级数学下册反比例函数单元复习题含答案
- 格式:docx
- 大小:392.59 KB
- 文档页数:13
第11章反比例函数单元测试一、选择题(本大题共9小题,共27.0分)1.已知函数/(x )= (xla )Cvl&X 其中G>&)的图象如图所示,则函数 広餡=尸十。
的大致图象是[I2.函数户0)的单调减区间是[ILuoJA [121 B.C.闷D. [2. +l>3. 鼻下列关系式屮, 表示y 是x 的反比例函数的是iiiiiiniiiiiiii (D.4.已知变量x 、y 满足下面的关系:则My 之间用关系式表示为(5.在反比例函数的图象的任一支上,y 都随兀的增大而增大,则£的值可以是(6.如果兀与y 满足xy + 1 = 0 ,则歹是兀的《> 的图象相交于A 、B 两点,其中A 的横坐标为2,当九A 九吋,兀的取值范围是•:)A. A <12 或x> 2B. A <12 或0《天•C2C. 12 <x <0 或0 < A <2D. 12 <i < 0 或兀 > 28.若反比例函数y=-的图象经过点 ' 丿,则这个反比例函数的图象还经过点A. |1B. 0C. 1D. 2 7. A.正比例函数 B.反比例函数 C. 一次函数 M =如图所示,正比例函数 的图象与反比例函数D.二次函数2UAB. C・(12111! D.(壬)1 19.在平面直角坐标系中,有反比例函数y =±与y = |上的图象和正方形ABCD,原点。
与对角线屈亡汨“的交点重合,且如图所示的阴影部分面积为8,则AB的长是P八A. 2二、填空题10.若正比例函数F = 21与反比例函数》=不为0]的图象有一个交点为(2lm),则"I = ________ , k —_______ ,它们的另一个交点为________ .12.如图,在平面直角坐标系中,M为y轴正半轴上一点,过点M的直线亘轴,/分别X 与反比例函数y=-和罗=兰的图象交于A、B两点,若,则k的值为____________ .t t :13.已知函数r =-的图象经过勺”点,如果点(2怖》也在这个函数图象上,则皿=J X 14・已知点A 是函数y = I —的图象上的一点,过人点作rl.V I X 轴,垂足为M,连接'X0A,贝<Jl OAM 的面积为 ______ •三、解答题15.已知极坐标系的极点在平面直角坐标系的原点处,极轴与兀轴的正半轴重合•直线/ 为参数| ,曲线C 的极坐标方程为[1|写出曲线C 的直角坐标方程,并指明C 是什么曲线;I H|设直线/与曲线C 相交于RIQ 两点,求胪切的值.的参数方程为16.已知函数.[11若何蔚=2•,求x的值;I n|判断X>Q时,函数的单调性;15. (///)若37<2t) + I 0 对于恒成立,求加的取值范围.17•如图,已知反比例函数=-和一次函数曲=曲+&的图彖相交于点4和点D,且点A 的横坐标为1,点D的纵坐标为12■过点A作AB\ x轴于点B, | AOB 的面积为1.I求反比例函数和一次函数的解析式.I若一次函数丁2 = ax + b的图象与x轴相交于点C,求|ACO的度数.I结合图象直接写出:当yi > y2时,X的取值范围.18•在双曲线的任一支上,y都随无的增大而增大,则k的取值范圉.19•如图,B是双曲线y =—上的点,点A的坐标是是线段AC的中点.求k的值;(2、求点B的坐标;⑶求10AC的面积.【答案】LB 2.B 3. C 4. C 5. D 6. B 7. D8.4 9.B10.4; 8;(IZII4)11.^212. 12a*13.14.215 •略16.略17.略18.解:ly都随兀的增大而增大,I此函数的图象在二、四象限,I llfr <0 ,ft119.解:⑴把臣12代入得解得斤=4 ;(2$由B是AC的中点可得B点的纵坐标是A点纵坐标的一半,即y = 2 , 把F = 2代入$ = *求得兀=2 ,故B点的坐标为(212》:由A、B点的坐标求得直线AB的解析式为y = 12A + 6 ,令戸=0 ,求得尤=3 ,I C点的坐标为虑10、II0AC的面积为.。
苏科版初二数学下册《反比例函数》单元测试卷及答案解析一、选择题1、反比例函数的图象经过点(-2,3),则k的值为().A.-3 B.3 C.-6 D.62、已知点 A(x1,y1),B(x2,y2 )是反比例函数的图象上的两点,若 x1<0<x2,则有()A.y1<0<y2B.y2<0<y1C.y1<y2<0 D.y2<y1<03、对于反比例函数y=,下列说法正确的是()A.图像分布在第二、四象限B.图像过点(-6,-2)C.图像与y 轴的交点是(0,3)D.当x<0 时,y 随x 的增大而减小4、如图,反比例函数的图象经过点A(2,1),若y≤1,则x的范围为()A.x≥1 B.x≥2C.x<0或0<x≤1 D.x<0或x≥25、反比例函数的图象在:A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限6、对于反比例函数y=(k≠0),下列说法不正确的是()A.它的图象分布在第一、三象限B.点(k,k)在它的图象上C.它的图象是中心对称图形D.随的增大而增大7、如图,直线与轴交于点A,与双曲线交于点B,若,则的值是()A.4 B.3 C.2 D.18、已知与成反比例函数,且时,,则该函数表达式是()A.B.C.D.9、反比例函数的图像是双曲线,在每一个象限内,y随x的增大而减小,若点A (-3,y1),B(-1,y2),C(2,y3)都在双曲线上,则y1,y2,y3的大小关系为()A.y1﹤y3﹤y2B.y2﹤y1﹤y3C.y1﹤y2﹤y3D.y3﹤y2﹤y1二、填空题10、若反比例函数的图像在二、四象限,其图像上有两点,,则______(填“”或“”或“”).11、已知点在反比例函数的图象上,若点P关于y轴对称的点在反比例函数的图象上,则k的值为______.12、如图,已知点A在反比例函数的图象上,AB⊥x轴于点B,点C(0,1),若△ABC的面积是3,则反比例函数的解析式为________。
苏科版八年级下册数学第11章反比例函数含答案一、单选题(共15题,共计45分)1、函数y= 与(k≠0)在同一直角坐标系中的图象可能是()A. B. C. D.2、如图,在平面直角坐标系中,点A在x轴的正半轴上,点B的坐标为(0,4),将△ABO绕点B逆时针旋转60°后得到△A'BO',若函数y= (x>0)的图象经过点O',则k的值为()A.2B.4C.4D.83、如图,反比例函数y=(k≠0)与一次函数y=kx+k(k≠0)在同一平面直角坐标系内的图象可能是()A. B. C.D.4、如图,OABC是平行四边形,对角线OB在y轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线和y= 的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:①;②阴影部分面积是(k1+k2);③当∠AOC=90°时,|k1|=|k2|;④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是()A.①②③B.②④C.①③④D.①④5、已知点是直线与双曲线(为常数)一支的交点,过点作轴的垂线,垂足为,且,则的值为()A. B. C. D.6、如图,直线y=x与双曲线y=相交于A(﹣2,n)、B两点,则k的值为()A.2B.-2C.1D.-17、如图,直线y=x+2与双曲线y=相交于点A,点A的纵坐标为3,k的值为().A.1B.2C.3D.48、下列函数中,不是反比例函数的是()A.xy=1B.y= ﹣C.y=D.y=9、已知二次函数y=ax2+bx+c(a , b , c是常数,且a≠0)的图象如图所示,则一次函数y=cx+ 与反比例函数在同一坐标系内的大致图象是()A. B. C.D.10、如图,Rt△APC的顶点A,P在反比例函数y=的图象上,已知P的坐标为(1,1),tanA=(n≥2的自然数);当n=2,3,4…2010时,A的横坐标相应为a2, a3, a4,…,a2010,则=()A. B.2021054 C.2022060 D.11、下列各点中,在反比例函数y=图象上的是()A.(﹣1,8)B.(﹣2,4)C.(1,7)D.(2,4)12、给出下列四个函数:①y=﹣x;②y=x;③y= ;④y=x2. x<0时,y随x的增大而减小的函数有()A.1个B.2个C.3个D.4个13、如图,已知点是反比例函数的图象上一点,轴于,且的面积为3,则的值为()A.4B.5C.6D.714、已知反比例函数y= ,下列结论错误的是()A.图象经过点(1,1)B.图象在第一、三象限C.当x>1时,0<y <1D.当x<0时,y随着x的增大而增大15、如图,在平面直角坐标系中,的顶点A、C的坐标分别是,,,则函数的图象经过点B,则k的值为()A. B.9 C. D.二、填空题(共10题,共计30分)16、如图,在x轴上方,平行于x轴的直线与反比例函数y=和y=的图象分别交于A、B两点,连接OA、OB,若△AOB的面积为6,则k1﹣k2=________.17、若点A(3,m)在反比例函数y=的图像上,则m的值为________18、如图,点D为矩形OABC的AB边的中点,反比例函数的图象经过点D,交BC边于点E.若△BDE的面积为1,则k =________19、直线:与双曲线:在同一平面直角坐标系中的图象如图所示,则关于x的不等式的解集为________.20、若反比例函数y=(2k﹣1)经过第一、三象限,则k=________21、反比例函数在第一象限内的图象如图所示,点P是图象上的一点PQ⊥x 轴,垂足为Q,△OPQ的面积为2,则k=________.22、如图,点A在函数y= (x>0)的图象上,点B在函数y= (x>0)的图象上,点C在x轴上.若AB∥x轴,则△ABC的面积为________.23、已知A(m,3)、B(﹣2,n)在同一个反比例函数图象上,则=________.24、已知变量y与x成反比,当x=1时,y=﹣6,则当y=3时,x=________.25、若函数y=(m﹣1)是反比例函数,则m的值等于________.三、解答题(共5题,共计25分)26、已知, 与成正比例, 与成反比例,且当时,; 时, .试求当时, 的值.27、(1)阅读合作学习内容,解答其中的问题;合作学习如图,矩形ABOD的两边OB,OD都在坐标轴的正半轴上,OD=3,另两边与反比例函的图象分别相交于点E,F,且DE=2,过点E作EH⊥轴于点H,过点F作FG⊥EH于点G。
苏科版八年级下册数学第11章反比例函数含答案一、单选题(共15题,共计45分)1、已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,2)B.y随x的增大而增大C.图象分布在第二、四象限内D.若x>1,则﹣2<y<02、若反比例函数y=的图象经过点(1,-2),则k的值为()A.2B.-2C.-1D.13、如图,分别过点,作x 轴的垂线,与反比例函数的图像交于点分别过,作的垂线,垂足分别为,分别过点作的垂线,垂足分别为.设矩形的面积为S1,矩形的面积为S2,矩形面积为S3,依此类推,则的值为()A. B. C. D.4、若反比例函数y= (k≠0)的图象经过点(﹣1,2),则这个函数的图象一定经过点()A.(1,﹣1)B.(﹣,4)C.(﹣2,﹣1)D.(,4)5、已知反比例函数y=,当x=2时,y=﹣,那么k等于()A.1B.-1C.-4D.﹣6、下列函数中,是反比例函数的是( )A.y=B.3x+2y=0C.xy-=0D.y=7、如图,在平面直角坐标系中,函数与的图象交于点,则代数式的值为()A. B. C. D.8、如果矩形的面积为6,那么它的长与宽的函数关系用图象表示为()A. B. C. D.9、设直线与双曲线相交于P,Q两点,0为坐标原点,则∠POQ是( ).A.锐角B.直角C.钝角D.锐角或钝角10、已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A. B. C. D.11、若双曲线经过第二、四象限,则直线经过的象限是()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限12、如图,一次函数与x轴,y轴的交点分别是A(-4,0),B(0,2).与反比例函数的图像交于点Q,反比例函数图像上有一点P满足:① PA⊥x轴;②PO=(O为坐标原点),则四边形PAQO的面积为()A.7B.10C.4+2D.4-213、关于反比例函数y=的图像,下列说法正确的是()A.图像经过点(1,1)B.两个分支分布在第二、四象限C.当x<0时,y随x的增大而减小D.两个分支关于x轴成轴对称14、已知函数y=(k<0),又x1,x2对应的函数值分别是y1,y2,若x2>x1>0对,则有()A. y1>y2>0B. y2>y1>0C. y1<y2<0D. y2<y1<015、如图,在函数的图象上取三点A、B、C,由这三点分别向x轴、y轴作垂线,设矩形AA1OA2、BB1OB2、、CC1OC2的面积分别为SA、SB、SC,则下列正确的是()A.SA <SB<SCB.SA>SB>SCC.SA=SC=SBD.SA<SC<SB二、填空题(共10题,共计30分)16、若函数y=的图象在每个象限内y的值随x值的增大而增大,则m的取值范围为________.17、已知正比例函数y=-4x与反比例函数y=的图像交于A,B两点,若点A的坐标为(x,4),则点B的坐标为________.18、如图,一次函数y1=k1+b与反比例函数y2= 的图象相交于A(﹣1,2)、B(2,﹣1)两点,则y2<y1时,x的取值范围是________.19、如图,已知点A,B分别在反比例函数y1=﹣和y2= 的图象上,若点A是线段OB的中点,则k的值为________.20、函数的图象如图所示,则结论:①两函数图象的交点A的坐标为(2,2);②当x>2时,y2>y1;③当x=1时,BC=3;④当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.其中正确结论的序号是________.21、在反比例函数的图象上有两点,,,则________ .(填“”或“”22、如图,L1是反比例函数y= 在第一象限内的图像,且过点A(2,1),L2与L1关于x轴对称,那么图像L2的函数解析式为________(x>0).23、在平面直角坐标系中,直线与双曲线交于,两点,则的值为________.24、已知反比例函数y=的图象经过点(1,2),则k的值是________.25、如图,已知两个反比例函数C1:y=和C2:y=在第一象限内的图象,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为________.三、解答题(共5题,共计25分)26、函数y=(m﹣2)x 是反比例函数,则m的值是多少?27、小明在某一次实验中,测得两个变量之间的关系如下表所示:x 1 2 3 4 12y 12.03 5.98 3.03 1.99 1.00请你根据表格回答下列问题:①这两个变量之间可能是怎样的函数关系?你是怎样作出判断的?请你简要说明理由;②请你写出这个函数的解析式;③表格中空缺的数值可能是多少?请你给出合理的数值.28、已知反比例函数y=的图象经过点P(1,6).(1)求k的值;(2)若点M(﹣2,m),N(﹣1,n)都在该反比例函数的图象上,试比较m,n的大小.29、如图,已知正比例函数和反比例函数的图象都经过点A(3,3).(1)求正比例函数和反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积S1与四边形OABD的面积S满足:S1=S?若存在,求点E的坐标;若不存在,请说明理由.30、如图,一次函数y=3x的图象与反比例函数的图象的一个交点为A(1,m).(1)求反比例函数的解析式;(2)若点P在直线OA上,且满足PA=2OA,直接写出点p的坐标(不写求解过程).参考答案一、单选题(共15题,共计45分)1、B2、D3、D4、B5、B6、C7、C8、B9、D10、B12、C13、C14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、。
苏教版初中数学八年级下册《反比例函数》单元试卷(总分:100分 考试时间:90分钟)一、选择题(每题3分,共24分)1. 反比例函数21m y x--=(m 为常数)的图像在( )A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限2. 某物质的密度ρ(kg/m 3)关于其体积V (m 3)的函数图像如图所示,那么ρ与V 之间的函数表达式是 ( ) A. ρ=12V B. ρ=2V C. ρ=6VD. V ρ=3第2题 第4题 第5题 第7题 第8题3. 在同一平面直角坐标系中,正比例函数2y x =的图像与反比例函数42ky x-=的图像没有交点,则实数k 的取值范围在数轴上可表示为 ( ) A B C D4. 如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(-3,4),顶点C 在x 轴的负半轴上,函数(0)ky x x=<的图像经过顶点B ,则k 的值为 ( ) A.一12 B.一27 C.一32 D.一36 5. 如图,A 是双曲线2y x=在第一象限的分支上的一个动点,连接AO 并延长交另一分支于点B ,过点A 作y 轴的垂线,过点B 作x 轴的垂线,两垂线交于点C ,随着点A 的运动,点C的位置也随之变化.设点C 的坐标为(,)m n ,则m 、n 满足的表达式为 ( ) A.2n m =- B.2n m =- C.4n m =- D.4n m=- 6. 已知(,)P a b 是反比例函数1y x=图像上异于点(一1,-1)的一个动点,则 1111a b+++的值为 ( ) A. 2 B. 1 C. 32 D. 127. 如图,A 、B 是双曲线ky x=上的两点,过点A 作AC x ⊥轴,交OB 于点D ,垂足为C .若ADO ∆的面积为1,D 为OB 的中点,则k 的值为 ( )A.43B.83 C. 3 D. 48. 如图,在平面直角坐标系中,直线33y x =-+与x 轴、y 轴分别交于A 、B 两点,以AB 为边在第一象限作正方形ABCD ,点D 在双曲线(0)ky k x=≠上.将正方形沿x 轴负方向平移a 个单位长度后,点C 恰好落在该双曲线上,则a 的值是 ( )A. 1B. 2C. 3D. 4 二、填空题(每题2分,共20分)9. 在ABC ∆的三个顶点(2,3)A -、(4,5)B --、(3,2)C -中,可能在反比例函数(ky k x=>0) 的图像上的是点 .10. 已知函数23k y x-=,当x <0时,y 随x 的增大减小,则k 的取值范围是 . 11. 已知直线2y x =与双曲线ky x=的一个交点是(2,)A m ,则点A 的坐标是 ,双曲线y = .12. 在对物体做功一定的情况下,力F (N)与此物体在力的方向上移动的距离s (m)之间成反比例函数关系,其图像如图所示,且点(5,1)P 在其图像上,则当力达到10 N 时,物体在力的方向上移动的距离是 m.第12题 第13题 第14题13. 如图,等边三角形AOB 的顶点A 的坐标为(-4,0),顶点B 在反比例函数(0)ky x x=<的图像上,则k = .14. 如图, A 是反比例函数图像上的一点,过点A 作ABCD ,使点B 、C 在x 轴上,点D 在y 轴上,若ABCD 的面积为8,则此反比例函数的表达式为 .15. 如图,一次函数y kx b =+的图像经过点(3,2)P ,与反比例函数2(0)y x x=>的图像交于点(,)Q m n .当一次函数y 的值随x 值的增大而增大时,m 的取值范围是 .第l5题 第17题 第18题16. 点1(1,)a y -、2(1,)a y +在反比例函数(ky k x=>0)的图像上,若12y y <,则a 的取值范围是 .17. 如图, A 是y 轴正半轴上的一点,过点A 作x 轴的平行线,交反比例函数4y x=-的图像于点B ,交反比例函数ky x =的图像于点C .若:3:2AB AC =,则k 的值是 . 18. 如图,直线26,3y x y x ==分别与双曲线ky x =在第一象限内交于点A 、B ,若8OAB S ∆=,则k = .三、解答题(共56分)19. (8分)我们学过反比例函数,例如,当矩形面积S 一定时,长a 是宽b 的反比例函数,其函数表达式可以写成Sa b=(S 为常数,0S ≠).请你仿照上例另举出一个在日常生活、生产或学习中具有反比例函数关系的实例,并写出它的函数表达式.20. (8分)(2015·甘孜改编)如图,一次函数5y x =-+的图像与反比例函数(0)ky k x=≠在第一象限内的图像交于(1,)A n 和(4,)B m 两点. (1)求反比例函数的表达式;(2)在第一象限内,当一次函数5y x =-+的值大于反比例函数(0)ky k x=≠的值时,写出自变量x 的取值范围.第20题21. (8分)如图,在方格纸中(小正方形的边长为1 ), 反比例函数ky x=的图像与直线的交点A 、B 均在格点上,根据所给的平面直角坐标系(O 是坐标原点).解答下面的问题:(1)分别写出点A 、B 的坐标后,把直线AB 向右平移5个单位长度。
第11章《反比例函数及其图象》单元复习1.反比例函数的概念、图象与性质考试内容考试 要求反比例函数的概念 一般地,形如y =kx (k 为常数,k ≠____________________)的函数称为反比例函数,其中x 是自变量,y 是x 的函数.自变量的取值范围是____________________. B 级确定反比例函数的解析式常用方法:待定系数法.C 级y =kx(k ≠0) 图象所在象限 性质 k>0一、三象限(x 、y 同号) 在每个象限内,y 随x 增大而____.k<0二、四象限(x 、y 异号)在每个象限内,y 随x 增大而____.反比例函数y =kx (k ≠0)的图象是 ,且关于 对称.注意点在应用反比例函数的性质时,要注意“在每个象限内”这几个字的含义,切忌说k >0时,y 就随x 的增大而减小.2.反比例函数中k 的几何意义考试内容考试要求k 的几何意义反比例函数图象上的点(x ,y)具有两数之积(xy =k)为 这一特点,则过双曲线上任意一点,向两坐标轴作垂线,两条垂线与坐标轴围成的矩形的面积为常数 .C 级结论的推导如图,过双曲线上任一点P 作x 轴、y 轴的垂线PM 、PN ,所得的矩形PMON的面积S=PM·PN=____________________·____________________=____________________.∵y=kx,∴xy=____________________,∴S=____________________.拓展在上图中,易知S△POM=S△PON=.所以过双曲线上任意一点,向两坐标轴作垂线,则以该点、一个垂足和原点为顶点的三角形的面积为常数.3.反比例函数的实际应用考试内容考试要求步骤①根据实际情况建立反比例函数模型;②利用待定系数法或其他学科的公式等确定函数解析式;③根据反比例函数的性质解决实际问题.C级注意点在实际问题中,求出的解析式要注意自变量和函数的取值范围.考试内容考试要求基本思想1.反比例函数值的大小比较时,应分x>0与x<0两种情况讨论,而不能笼统地说成“k<0时,y随x的增大而增大”.C级2.在一次函数与反比例函数的函数值的大小比较中,要把x的取值以两交点横坐标、原点为分界点分成四部分进行分析.1.(2018·台州)已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为I=UR,当电压为定值时,I关于R的函数图象是()(第1题)2.如图,函数y1=k1x与y2=k2x的图象相交于点A(1,2)和点B,当y1<y2时,自变量x的取值范围是()A.x>1;B.-1<x<0;C.-1<x<0或x>1;D.x<-1或0<x<1。
苏科版八年级下册数学第11章反比例函数含答案一、单选题(共15题,共计45分)1、已知一次函数y=kx﹣3与反比例函数y=﹣,那么它们在同一坐标系中的图象可能是()A. B. C.D.2、已知A(x1,y1)和B(x2, ,y2)是反比例函数y=的上的两个点,若x2>x1>0,则()A.y2>y1>0 B.y1>y2>0 C.0>y1>y2D.0>y2>y13、下列关系式中,y为x的反比例函数的是()A.xy=13B. =3C.y=﹣xD.y=x+14、如图,A,B是双曲线y= 上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为( )A. B. C.3 D.45、如图,直线y=x―4与y轴、x轴分别交于点A、B,点C为双曲线y=上一点,OC∥AB,连接BC交双曲线于点D,点D恰好是BC的中点,则k的值是()A. B.2 C.4 D.6、关于反比例函数y=,下列说法不正确的是()A.函数图象分别位于第一、第三象限B.函数图象关于原点中心对称 C.当x>0时,y随x的增大而增大 D.当﹣8<x<﹣1时,﹣8<y<﹣17、函数 y=ax2+a与 y= ( a≠0)在同一坐标系中的图象可能是图中的()A. B. C. D.8、已知函数y= ,下列说法:①函数图象分布在第一、三象限;②在每个象限内,y随x的增大而减小;③若A(x1, y1)、B(x2, y2)两点在该图象上,且x1+x2=0,则y1=y2。
其中说法正确的个数是( )A.0B.1C.2D.39、如图,在平面直角坐标系中,△ABC的顶点A、B均在y轴上,点C在x轴上,将△ABC绕着顶点B旋转后,点C的对应点C′落在y轴上,点A的对应点A′落在反比例函数y=在第一象限的图象上.如果点B、C的坐标分别是(0,﹣4)、(﹣2,0),那么点A′的坐标是()A.(3,2)B.(,4)C.(2,3)D.(4,)10、如图,已知第一象限的点A在反比例函数y=上,过点A作AB⊥AO交x轴于点B,∠AOB=30°,将△AOB绕点O逆时针旋转120°,点B的对应点B恰好落在反比例函数y=上,则k的值为()A.﹣4B.﹣C.﹣2D.﹣11、如图,在平面直角坐标系中,菱形的一边在轴上,,反比例函数过菱形的顶点和边上的中点,则的值为()A.-4B.C.-5D.12、如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数和的图象交于A点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()A.3B.4C.5D.613、下列函数中,属于反比例函数的有()A.y=﹣B.y=C.y=8﹣2xD.y=3x14、下列函数是关于的反比例函数的是()A. B. C. D.15、在同一个平面直角坐标系中,函数与的图象大致是()A. B. C. D.二、填空题(共10题,共计30分)16、已知反比例函数(m为常数)的图象在一、三象限,则m的取值范围为________.17、已知反比例函数的图像在同一个象限内,y随x的增大而减小,则k的取值范围是________.18、如图,已知反比例函数y= (k为常数,k≠0)的图象经过点A,过A点作AB⊥x轴,垂足为B,若△AOB的面积为1,则k=________.19、分别以矩形的边OA,OC所在的直线为x轴,y轴建立平面直角坐标系,点B的坐标是(4,2),将矩形折叠使点B落在G(3,0)上,折痕为,若反比例函数的图象恰好经过点E,则k的值为________.20、如图所示,直线y=kx(k<0)与双曲线y=﹣交于M(x1, y1),N(x2, y2)两点,则x1y2﹣3x2y1的值为________.21、如果函数y=kx k﹣2是反比例函数,那么k=________ ,此函数的解析式是________ .22、y﹣1=可以看作________ 和________ 成反比例.23、如图,点P是反比例函数图象上任意一点,PA⊥x轴于A,连接PO,则S△PAO为________.24、如图,矩形ABOC的顶点B、C分别在x轴,y轴上,顶点A在第二象限,点B的坐标为(﹣2,0).将线段OC绕点O逆时针旋转60°至线段OD,若反比例函数y= (k≠0)的图象经过A、D两点,则k值为________.25、过反比例函数图象上一点,分别作轴、轴的垂线,垂足分别为,如果的面积为,则的值为________.三、解答题(共5题,共计25分)26、已知, 与成正比例, 与成反比例,且当时,; 时, .试求当时, 的值.27、已知,A(3,a)是双曲线y=上的点,O是原点,延长线段AO交双曲线于另一点B,又过B点作BK⊥x轴于K.(1)试求a的值与点B坐标;(2)在直角坐标系中,先使线段AB沿x轴的正方向平移6个单位,得线段A 1B1,再依次在与y轴平行的方向上进行第二次平移,得线段A2B2,且可知两次平移中线段AB先后滑过的面积相等(即▱AA1B1B与▱A1A2B2B1的面积相等).求出满足条件的点A2的坐标,并说明△AA1A2与△OBK是否相似的理由;(3)设线段AB中点为M,又如果使线段AB与双曲线一起移动,且AB在平移时,M点始终在抛物线y= (x-6)2-6上,试判断线段AB在平移的过程中,动点A所在的函数图象的解析式;(无需过程,直接写出结果.)(4)试探究:在(3)基础上,如果线段AB按如图2所示方向滑过的面积为24个平方单位,且M点始终在直线x=6的左侧,试求此时线段AB所在直线与x 轴交点的坐标,以及M点的横坐标.28、长方形相邻的两边长分别x,y,面积为30,用含x的式子表示y.29、如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A,C分别在坐标轴上,点B的坐标为(4,2),直线y=﹣x+3交AB,BC于点M,N,反比例函数y=的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在x轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.30、如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象交点为C、E,CD⊥x轴,垂足为D,若OB=2,OD=4,△AOB的面积为1(1)求一次函数与反比例函数的解析式;(2)连接OC、OE,求△COE的面积;(3)直接写出当x<0时,kx+b﹣>0的解集.参考答案一、单选题(共15题,共计45分)1、D2、B3、A4、B5、A6、C7、D8、B9、A10、B11、B12、A13、B14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、30、。
苏科版八年级下册数学第11章反比例函数含答案一、单选题(共15题,共计45分)1、如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数y= 的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是()A. B. C. D.2、一次函数y1=kx+b(k≠0)与反比例函数在同一直角坐标系中的图象如图所示,若y1>y2,则x的取值范围是【】A.-2<x<0或x>1B.x<-2或0<x<1C.x>1D.-2<x <13、如图,在平面直角坐标系中,平行四边形OABC的顶点A在反比例函数(x>0)的图象上,顶点B在反比例函数(x>0)的图象上,点C在x轴的正半轴上.若平行四边形OABC 的面积为8,则k2-k1的值为()A.4B.8C.12D.164、已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,2)B.y随x的增大而增大C.图象在第二、四象限内D.若x>1,则﹣2<y<05、下列函数中,y与x成反比例的是()A. B. C. D.6、在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也随之改变.密度ρ(单位:kg/m3)与体积V(单位:m3)满足函数关系式ρ= (k为常数,k≠0),其图象如图所示,则k的值为()A.9B.﹣9C.4D.﹣47、如图,在平面直角坐标中,Rt△AOB的顶点O是坐标原点,OB边在x轴的正半轴上,∠ABO=90°,且点A在第一象限内,双曲线y=(k>0)经过AO的中=4,则双曲线y=的k值为()点,若S△AOBA.2B.3C.4D.58、如图直线y= x+1与x轴交于点A,与双曲线y= (x>0)交于点P,过点P作PC⊥x轴于点C,且PC=2,则k的值为()A.﹣4B.2C.4D.39、如图,正比例函数y=x与反比例函数的图象交于A(2,2)、B(﹣2,﹣2)两点,当y=x的函数值大于的函数值时,x的取值范围是()A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x >210、如图,在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线y= (x>0)上的一个动点,当点B的横坐标系逐渐增大时,△OAB的面积将会( )A.逐渐变小B.逐渐增大C.不变D.先增大后减小11、已知点A( -2,y1 ),( -1,y2),( 3,y3)都在反比例函数y=的图象上,则( )A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y312、一次函数y=﹣x+1(0≤x≤10)与反比例函数y= (﹣10≤x<0)在同一平面直角坐标系中的图象如图所示,点(x1, y1),(x2, y2)是图象上两个不同的点,若y1=y2,则x1+x2的取值范围是()A.﹣≤x≤1B.﹣≤x≤C.﹣≤x≤D.1≤x≤13、如图,一次函数的图象与轴、轴交于、两点,与反比例函数的图象相交于、两点,分别过、两点作轴,轴的垂线,垂足为、,连接、,有下列结论:①与的面积相等;②;③;④其中正确的个数有()A.2B.3C.4D.514、下列四个函数图象中,当x<0时,函数值y随自变量x的增大而减小的是()A. B. C. D.15、如图,正方形ABCD的顶点A、B在x轴上,顶点D在反比例函数y= (k=2,则k的值为>0)的图象上,CA的延长线交y轴于点E,连接BE.若S△ABE()A.1B.2C.3D.4二、填空题(共10题,共计30分)16、点P(1,3)在反比例函数y= (k≠﹣1)图象上,则k=________.17、如图,已知正方形OABC的三个顶点坐标分别为A (2,0),B (2,2),C (0,2),若反比例函数的图象与正方形OABC的边有交点,请写出一个符合条件的k值________.18、已知:点P(m,n)在直线y=﹣x+2上,也在双曲线y=﹣上,则m2+n2的值为________ 。
苏科版八年级下册数学第11章反比例函数含答案一、单选题(共15题,共计45分)1、下列图象中是反比例函数y=﹣图象的是()A. B. C.D.2、如图,在等腰中,,点为反比例函数(其中)图象上的一点,点在轴正半轴上,过点作,交反比例函数的图象于点,连接交于点,若的面积为2,则的值为()A.20B.C.16D.3、如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥x轴于点C.若△ABC的面积是4,则这个反比例函数的解析式是( )A.y=B.y=C.y=D.y=4、面积为2的△ABC,一边长为x,这边上的高为y,则y与x的变化规律用图象表示大致是( )A. B. C. D.5、如图,已知直线AC与反比例函数图象交于点A,与轴、轴分别交于点C,E,E恰为线段AC的中点,S△EOC=1,则反比例函数的关系式为()A. B. C. D.6、一次函数y1=k1x+b和反比例函数y2=(k1•k2≠0)的图象如图所示,若y1>y2,则x的取值范围是()A.-2<x<0或x>1B.-2<x<1C.x<-2或x>1D.x<-2或0<x<17、如图,点A是反比例函数y=-(x<0)的图象上的一点,过点A作平行四边形ABCD,使B、C在x轴上,点D在y轴上,则平行四边形ABCD的面积为()A.1B.3C.6D.128、如图,点P(3a,a)是反比例函y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=B.y=C.y=D.y=9、如图,点A在双曲线的第一象限的那一支上,AB垂直于y轴于点B,点C在x轴正半轴上,且,点E在线段AC上,且,点D 为OB的中点,若的面积为18,则k的值为A.36B.32C.27D.1810、如图,在平面直角坐标系中,矩形ABCD四个顶点的坐标分别为A(-1,2),B(-1,-1),C(3,-1),D(3,2),当双曲线y= (k>0)与矩形有四个交点时,k的取值范围是( )A.0<k<2B.1<k<4C.k>1D.0<k<111、已知反比例函数y= (k≠0)的图像经过点M(﹣2,2),则k的值是()A.﹣4B.﹣1C.1D.412、如图,点A在反比例函数的图象上, 轴于点B,点C 在x轴的负半轴上,且,若的面积为18,则k的值为()A.12B.18C.20D.2413、若函数的图象过点(3,-7),那么它一定还经过点( ).A.(3,7)B.(-3,-7)C.(-3,7)D.(2,-7)14、反比例函数图象上有三个点,,,若,则的大小关系是()A. B. C. D.15、下面的等式中,y是x的反比例函数的是()A.y=B.y=C.y=D.y=二、填空题(共10题,共计30分)16、如图,双曲线y= (x<0)经过Rt△ABC的两个顶点A,C,∠ABC=90°,AB∥x轴,连接OA,将Rt△ABC沿AC翻折后得到Rt△AB′C,点B′刚好落在线段OA上,连接OC,OC恰好平分OA与x轴负半轴的夹角,若Rt △ABC的面积为2,则k的值为________.17、若点在反比例函数的图象上,则________ (填“>”或“<”或“=”)18、如图,点A(-7,8),B(-5,4)连接AB并延长交反比例函数的图象于点C,若,则k=________19、如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为3,则k1﹣k2的值为________.20、如图,平行四边形ABCD的顶点A、C在双曲线y1=﹣上,B、D在双曲线y 2=上,k1=2k2(k1>0),AB∥y轴,S▱ABCD=24,则k1=________ .21、如图所示,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP的面积为4,则这个反比例函数的解析式为________.22、已知反比例函数y=的图象经过点(1,2),则k的值是________.23、在y= ;y= ;y= ;y= 四个函数中,为反比例函数的是________.24、如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(8,4),将矩形OABC绕点O逆时针旋转,使点B落在y轴上的点B′处,得到矩形OA′B′C′,OA′与BC相交于点D,则经过点D的反比例函数解析式是________.25、如图所示是一块含30°,60°,90°的直角三角板,直角顶点O位于坐标= (x>0)的图象上,顶点B在原点,斜边AB垂直于x轴,顶点A在函数y1= (x>0)的图象上,∠ABO=30°,则=________.函数y2三、解答题(共5题,共计25分)26、已知, 与成正比例, 与成反比例,且当时,; 时, .试求当时, 的值.27、如图,一次函数y=kx+1(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积?28、直线y=kx+b与反比例函数y=(x<0)的图象相交于点A、B,与x轴交于点C,其中点A的坐标为(﹣2,4),点B的横坐标为﹣4.(1)试确定反比例函数的关系式.(2)求△AOC的面积.(3)如图直接写出反比例函数值大于一次函数值的自变量x的取值范围.29、如图所示,Rt△PAB的直角顶点P(3,4)在函数y= (x>0)的图象上,顶点A、B在函数y= (x>0,0<t<k)的图象上,PA∥y轴,连接OP,OA,记△OPA的面积为S△OPA ,△PAB的面积为S△PAB,设w=S△OPA﹣S△PAB.①求k的值以及w关于t的表达式;②若用wmax 和wmin分别表示函数w的最大值和最小值,令T=wmax+a2﹣a,其中a为实数,求Tmin.30、请你列举几个生活中的一对变量,使其中的一个变量是另一个变量的反比例函数,并尝试给出某个数值,从而求出这一对变量之间的函数关系式.参考答案一、单选题(共15题,共计45分)1、C2、A3、B4、B5、D6、D7、C8、C9、B10、D11、A12、D13、C14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、30、。
(新课标)苏科版八年级下册第11章反比例函数测试题(时间:90分钟满分:120分)(班级:姓名:得分:)一、选择题(第小题3分,共30分)1.已知直线y=ax(a≠0)与双曲线的一个交点坐标为(2,6),则它们的另一个交点坐标是()A.(﹣2,﹣6)B.(﹣6,﹣2)C.(﹣2,6)D.(6,2)2. 近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25 m,则y与x的函数表达式为()A.400yx=B.14yx=C.100yx=D.1400yx=3.如图所示为反比例函数1yx=在第一象限的图像,点A为此图像上的一动点.过点A分别作AB x⊥轴和AC┴y轴,垂足分别为B,C.则四边形OBAC的面积为()A.1B.3C.2D.44. 在反比例函数(0)ky kx=<的图像上有两点(-1,y1),(41-,y2),则y1-y2的值是()第3题图A. 正数B.非正数C.负数D.不能确定第8题图 ADC B yxO 2y x= 3y x =-5. 已知直线y=kx (k >0)与双曲线y=3x 交于A (x 1,y 1),B(x 2,y 2)两点,则x 1y 2-x 2y 1的值为( )A.-6 B .-9 C .0 D .96. 在平面直角坐标系xOy 中,如果有点P (-2,1)与点Q (2,-1),那么下列描述:①点P 与点Q 关于x 轴对称;②点P 与点Q 关于y 轴对称;③点P 与点Q 关于原点对称;④点P 与点Q 都在y=x 2-的图像上.其中正确的是( )A .①②B .②③C .①④D .③④ 7.如图,A ,B 是函数2y x =的图像上关于原点对称的任意两点,BC ∥x轴,AC ∥y 轴,若△ABC 的面积记为S ,则( )A .S=2B .2<S <4C .S=4D .S >4第7题图8. 如图,点A 是反比例函数y=2x (x >0)的图像上任意一点,AB ∥x轴交反比例函数y=-3x 的图像于点B ,以AB 为边作□ABCD ,其中C ,D 在x 轴上,则S □ABCD 为( )A.2B .3C .4D .54y x =的图像,下列说法正确的是( )9. 关于反比例函数A .必经过点(1,1)B .两个分支分布在第二、四象限C .两个分支关于x 轴成轴对称D .两个分支关于原点成中心对称10.平面直角坐标系中,已知点O(0,0),A(0,2),B(1,0),点P 是反比xyPQO例函数1y x =-图像上的一个动点,过点P 作PQ ⊥x 轴,垂足为点Q.若以点O ,P ,Q 为顶点的三角形与∆OAB 相似,则相应的点P 共有( )A .4个B .3个C .2个D .1个 第10题图二、填空题(第小题4分,共32分) 11 已知函数216(5042016)a y a x -=-,当a =_____时,它的图像是双曲线.12下列函数:①y=2x ﹣1;②20182015y x =-;③y=x 2+8x ﹣2066;④22015y x =;⑤12016y x=;⑥y=.其中是反比例函数的有 (填“序号”).13. 若点P(a,2)在一次函数y=2x+4的图像上,它关于y 轴的对称点在反比例函数x ky =的图像上,则反比例函数的表达式为 .14.反比例函数)0(≠=k x ky 的图像在二、四象限,图像上有一点A ,过点A作AB ⊥x 轴于点B ,△AOB 的面积为2,则该双曲线的表达式为 . y 1=ax+b (a ≠0)与反15 .如图,一次函数比例函数y 2=()0≠k xk的图像交于A (1,4),B (4,1)两点,若y 1>y 2,则x 的取值范围是第15题图 第16题图 第17题图第18题图16. 如图,点A 是反比例函数6y x =-(x < 0)的图像上的一点,过点A 作平行四边形ABCD ,使点B,C 在x 轴上,点D 在y 轴上,则平行四边形ABCD 的面积为 17. 如图,点A 在双曲线y=x 6上,过A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于点B ,当OA =4时,则△ABC 的周长为 . 18.如图,双曲线()ky k x =>0与⊙O在第一象限内交于P,Q 两点,分别过P,Q两点向x 轴和y 轴作垂线.已知点P 的坐标为(1,3)则图中阴影部分的面积为 . 三 解答题(共58分)19.(10分)已知y=2y 1-3y 2,y 1与x 成正比例,y 2与x 成反比例,当x=1时,y=1,当x=2时,y=5.(1)请你写出y 与x 之间的函数表达式; (2)当x=-1时,求y 的值.20.(10分)如图,一次函数y=kx+b 的图像与坐标轴分别交于A ,B 两点,与反比例函数my x =的图像在第二象限的交点为C ,CD ⊥x 轴,垂足为D ,若OB=2,OD=4,△AOB 的面积为1,(1)求一次函数与反比例函数的表达式; (2)直接写出当x<0时0m kx b x +->的x 的取值范围.21.(12分)已知反比例函数x k y 1-=图像的两个分支分别位于第一、三象限.y xABO第22题图(1)求k 的取值范围;(2)若一次函数y=2x+k 的图像与该反比例函数的图像有一个交点的纵坐标是4. ①求当x=-6时反比例函数y 的值;当210<<x 时,求一次函数y 的取值范围.②分)如图,一次函数b kx y +=1的图像与反比例函数)0(2>=x x my22.(12的图像交于A (1,6),B (a ,2)两点. (1)求一次函数与反比例函数的表达式; (2)直接写出1y ≥2y 时x 的取值范围.23.(14分)据媒体报道,近期“手足口病”可能进入发病高峰期,某校根据《学校卫生工作条例》,为预防“手足口病”,对教室进行“薰药消毒”.已知药物在燃烧及释放过程中,室内空气中每立方米含药量y (毫克)与燃烧时间x (分钟)之间的关系如图所示(即图中线段OA 和双曲线在A 点及其右侧的部分).根据图像所示信息,解答下列问题:(1)写出药物燃烧及释放过程中,y 与x 之间的函数解析式及自变量的取值范围.(2)据测定,当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始后,哪一时间段内师生不能进入教室?参考答案一、1.A 2..C 3.A 4.C 5.C 6.D 7.C 8. D 9.D 10.A 二、11. -4 12.. ② 13.x y 2=14. y=x 4-. 15. x <0或1<x<4. 16. 6 17. 27 18. 4三、19.解:(1)由题意可设11y k x =,22k y x=,则2132k y k x x=-.∵当x=1时,y=1,当x=2时,y=5,∴12212313452k k k k -=⎧⎪⎨-=⎪⎩解得123223k k ⎧=⎪⎪⎨⎪=⎪⎩∴23y x x =-. (2)当x=-1时,2233(1)1(1)y x x =-=⨯--=--.20.解:(1)∵OB=2,△AOB 的面积为1,∴B (-2,0),OA=1,∴A (0,-1).可得11,2201b k k b b ⎧=-=-⎧⎪∴⎨⎨-+=⎩⎪=-⎩∴一次函数的表达式为112y x =--.∵OD=4,OD ⊥x 轴,∴C (-4,y ).将x= - 4代入112y x =--,得y=1, ∴C(-4,1),∴14m =-,∴m= - 4, ∴反比例函数的表达式为4y x =-.(2) x<-4.21. 解:(1)∵反比例函数x k y 1-=图像的两个分支分别位于第一、三象限,∴01>-k ,∴1>k .(2)①设交点坐标为(a ,4),代入两个函数表达式,得⎪⎩⎪⎨⎧-=+=a kk a 1424 解得⎪⎩⎪⎨⎧==321k a ∴反比例函数的表达式为x y 2=.当x=-6时反比例函数y 的值为3162-=-=y .②由①可知,两图像交点坐标为(21,4),所以一次函数的表达式是y=2x+3,它的图像与y 轴交点坐标是(0,3). 由图像可知,当210<<x 时,y 的取值范围是43<<y .22.解:(1)∵点A (1,6),B (a ,2)在x my =2的图像上,∴61=m,6=m . 2=a m ,326==a .∵点A (1,6),B (3,2)在函数y 1=kx+b 的图像上,∴⎩⎨⎧=+=+.23,6b k b k 解得⎩⎨⎧=-=.8,2b k∴一次函数的表达式为y 1=-2x+8,反比例函数的表达式为x y 62=.(2)1≤x ≤3.23. 解:(1)设反比例函数的解析式为y=x k,将(25,6)代入解析式,得k=25×6=150,则反比例函数的解析式为y=x 150.将y=10代入y=x 150,得x=15,故A (15,10).所以反比例函数自变量的取值范围为x ≥15. 设正比例函数的解析式为y=nx ,将A (15,10)代入,得n=1510=32,则正比例函数的解析式为y=32x (0≤x ≤15).(2)由32x=2,解得x=3;由x 150=2,解得x=75.所以从消毒开始后,从第3分钟开始直至第75分钟内,师生不能进入教室.。
苏教版八年级数学下册反比例函数单元复习题含答案GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-《反比例函数》复习检测试题一、填空题:(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)1、反比例函数y=xk的图象经过(2,﹣1)点,则k2、如图1,一次函数与反比例函数的图象相交于A、B 使反比例函数的值小于一次函数的值的x 的取值范围是3、若反比例函数)0k (xky <=的函数图像过点P (2,m )、Q (1,n ),则m 与n 的大小关系是:m n (选择填“>” 、“=”、“<”=.) 4、过反比例函数(0)ky k x=>的图象上的一点分别作x 、y 轴的垂线段,如果垂线段与x 、y 轴所围成的矩形面积是6,那么该函数的表达式是______;若点A(-3,m)在这个反比例函数的图象上,则m=______. 5、已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是____; 6、两个反比例函数k y x =和1y x=在第一象限内的图象如图2所示,点P 在k y x =的图象上,PC ⊥x 轴于点C ,交1y x=的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P 在ky x =的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等; ④当点A 是PC 的中点时,点B 一定是PD 的中点.图1x_4其中一定正确的是 。
(把你认为正确结论的序号都填上,少填或错填不给分)7、如图3,直线)0(>=k kx y x=交于标分别为A ()11,y x ,B (2,y x 的值为 。
8、已知反比例函数2(y x x=>数解析式为 。
二、选择题:(本大题共109、下列四个点,在反比例函数6y x=图象上的是( ) A .(1,6-) B .(2,4) C .(3,2-) D .(6-,1-) 10、若反比例函数1k y x-=的图象在其每个象限内,y 随x 的增大而减小,则k 的值可以是( )A.-1B.3C.0D.-311、设反比例函数)0(≠-=k xky 中,y 随x 的增大而增大,则一次函数k kx y -=的图象不经过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 12、对于反比例函数2y x=,下列说法正确的是( ) A 、点()2,1-在它的图像上 B 、它的图像经过原点图A yOBxC 、它的图像在第一、三象限D 、当0x >时,y 随x 的增大而增大 13、如果两点P 1(x 1,y 1)和P 2(x 2,y 2)都在反比例函数y=x1的图象上,且0<x 2<x 1,那么( )A 、y 2<y 1<0B 、y 1<y 2<0C 、y 2>y 1>0D 、y 1>y 2>0 14、已知反比例函数ky x=的图象如图5所示,则一次函数y kx k =+的图象经过( )A 、一、二、三象限B 、二、三、四象限C 、一、二、四象限D 、一、三、四象限15、物理学知识告诉我们,一个物体所受到的压强P 与所受压力F 及受力面积S 之间的计算公式为SFP =. 当一个物体所受压力为定值时,那么该物体所受压强P 与受力面积S 之间的关系用图象表示大致为( )16、在反比例函数4y x=的图象中,阴影部分的面积不等于4的是( )A .B .C .D .17、7.某闭合电路中,电源电压为定值,电流I (A )与电阻R (Ω)成反比例,如图6所表示的是该电路OPSSOP OPSOPA B C DSxyO图6中电流I 与电阻R 之间的函数关系的图象,则用电阻R 表示电流I•的函数解析式为( ). A .I=6R B .I=-6R C .I=3R D .I=2R18、如图7:等腰直角三角形ABC 位于第一象限,AB=AC=2,直角顶点A 在直线y =x 上,其中A 点的横坐标为1,且两条直角边AB 、AC 分别平行于x 轴、y 轴,若双曲线ky x=(k ≠0)与ABC ∆有交点,则k 的取值范围是( ) A 、12k << B 、13k ≤≤C 、14k ≤≤D 、14k <≤三、解答题(本大题共6个小题,每个小题6分,共计36分)19、已知:如图,反比例函数的图象经过点A B ,,点A 的坐标为(13),,点B 的纵坐标为1,点C 的坐标为(20),.(1)求该反比例函数的解析式;(2)求直线BC 的解析式.20、如图,已知反比例函数y =xm的图象经过点A (1,- 3),一次函数y = kx + b 的图象经过点A 与点C (0,- 4),且与反比例函数的图象相交于另一点B.(1)试确定这两个函数的表达式; (2)求点B 的坐标.y1 xOA B C 图721、如图,反比例函数ky x=的图象与一次函数y mx b =+的图象交于(13)A ,,(1)B n -,两点。
(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x 取何值时,反比例函数的值大于一次函数的值.22、如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于(31)(2)A B n -,,,两点,直线AB 分别交x 轴、y 轴于D C ,(1)求上述反比例函数和一次函数的解析式;(2)求AD CD23、如图,正比例函数y=x与反比例函数y=x1的图象相交于A 、C 两点,AB ⊥x 轴于B ,CD ⊥y 轴于D ,求四边形24、如图a ,已知双曲线(0)ky k x=>与直线y k x '=交于A ,B 两点,点A 在第一象限.试解答下列问题:(1)若点A 的坐标为(4,2),则点B 的坐标为 ;若点A的横坐标为m , 则点B 的坐标可表示为 ;(2)如图b,过原点O 作另一条直线l ,交双曲线(0)ky k x=>于 P ,Q 两点,点P 在第一象限.①说明四边形APBQ 一定是平行四边形;②设点A ,P 的横坐标分别为m ,n , 四边形APBQ 可能是矩形吗? 可能是正方形吗?若可能, 直接写出m ,n四、拓宽你的视野(本体满分10分)(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等, 试判断AB 与CD 的位置关系,并说明理由.(2)结论应用:① 如图2,点M ,N 在反比例函数xky (k >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F .② 若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断 MN与EF 是否平行.图② ABDC图 ①图③参考答案一、填空题:(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)1、﹣2;2、x ﹤-1或0﹤x ﹤2;3、>;4、x6y =,2m -=;5、51.2;6、①②④;7、-4;8、2(0)y x x=->;二、选择题:(本大题共10个小题;每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)9、D ;10、B ;11、B ;12、C ;13、D ;14、A ;15、C ;16、B ;17、D ;18、C三、解答题(本大题共6个小题,每个小题6分,共计36分) 19、解:(1)设所求反比例函数的解析式为:(0)ky k x=≠. 点(13)A ,在此反比例函数的图象上,31k∴=, 3k ∴=.故所求反比例函数的解析式为:3y x=. (2)设直线BC 的解析式为:11(0)y k x b k =+≠. 点B 的反比例函数3y x=的图象上,点B 的纵坐标为1,设(1)B m ,,31m∴=,3m =. ∴点B 的坐标为(31),.由题意,得111302k b k b =+⎧⎨=+⎩,.解得:112k b =⎧⎨=-⎩,.∴直线BC 的解析式为:2y x =-.20、反比例函数my x=的图象经过点(13)A -, 31m∴-=,即3m =- ∴反比例函数的表达式为3y x=-一次函数y kx b =+的图象经过点(13)(04)A C --,,,34k b b +=-⎧∴⎨=-⎩,.解得14k b =⎧⎨=-⎩,.∴一次函数的表达式为4y x =-(2)由34y x y x ⎧=-⎪⎨⎪=-⎩,消去y ,得2430x x -+=即(1)(3)0x x --=1x ∴=或3x = 可得3y =-或1y =-于是13x y =⎧⎨=-⎩,或31x y =⎧⎨=-⎩,.而点A 的坐标是(13)-,∴点B 的坐标为(31)-,21、解:(1)(13)A ,在ky x=的图象上 3k ∴=,3y x∴=又(1)B n -,在3y x=的图象上3n ∴=-,即(31)B --, 313m bm b =+⎧⎨-=-+⎩, 解得:1m =,2b = 反比例函数的解析式为3y x=,一次函数的解析式为2y x =+ (2)从图象上可知,当3x <-或01x <<时,反比例函数的值大于一次函数的值22、解:(1)把3x =-,1y =代入my x=,得:3m =- ∴反比例函数的解析式为3y x=-把2x =,y n =代入3y x=-得32n =-把3x =-,1y =;2x =,32y =-分别代入y kx b =+得31322k b k b -+=⎧⎪⎨+=-⎪⎩解得1212k b ⎧=-⎪⎪⎨⎪=-⎪⎩ ∴一次函数的解析式为1122y x =-- (2)过点A 作AE x ⊥轴于点EA 点的纵坐标为1,1AE ∴=由一次函数的解析式为1122y x =--得C 点的坐标为102⎛⎫- ⎪⎝⎭,, 12OC ∴=在Rt OCD △和Rt EAD △中,Rt COD AED ∠=∠=∠,CDO ADE ∠=∠,∴Rt Rt OCD EAD △∽△(第21题)2AD AECD CO∴== 23、224、解:(1)(-4,-2) (-m ,-k'm )或 (-m , k m-) (2)① 由勾股定理OA=OB=∴OA=OB 同理可得OP=OQ ,所以四边形APBQ 一定是平行四边形 ②四边形APBQ 可能是矩形 m,n 应满足的条件是mn=k 四边形APBQ 不可能是正方形理由:点A,P 不可能达到坐标轴,即∠POA≠900. 四、拓宽你的视野(本体满分10分)(1)证明:分别过点C ,D ,作CG ⊥AB ,DH ⊥AB , 垂足为G ,H ,则∠CGA =∠DHB =90° ∴ CG ∥DH∵ △ABC 与△ABD 的面积相等∴ CG =DH∴ 四边形CGHD 为平行四边形∴ AB ∥CD(2)①证明:连结MF ,NE设点M 的坐标为(x 1,y 1),点N 的坐标为(x 2,y 2)图 2∵ 点M ,N 在反比例函数xk y =(k >0)的图象上, ∴ k y x =11,k y x =22 ∵ ME ⊥y 轴,NF ⊥x 轴 ∴ OE =y 1,OF =x 2. ∴ S △EFM =k y x 212111=⋅ S △EFN =k y x 212122=⋅ ∴S △EFM =S △EFN .由(1)中的结论可知:MN ∥EF ② MN ∥EF(若学生使用其他方法,只要解法正确,皆给分.)图 3。