成才之路人教版数学必修一1-1-2
- 格式:ppt
- 大小:1.97 MB
- 文档页数:96
一、选择题1.对于集合A,B,“A⊆B”不成立的含义是()A.B是A的子集B.A中的元素都不是B的元素C.A中至少有一个元素不属于BD.B中至少有一个元素不属于A[答案] C[解析]“A⊆B”成立的含义是集合A中的任何一个元素都是B 的元素.不成立的含义是A中至少有一个元素不属于B,故选C.2.若集合M={x|x<6},a=35,则下列结论正确的是() A.{a} M B.a MC.{a}∈M D.a∉M[答案] A[解析]∵a=35<36=6,即a<6,∴a∈{x|x<6},∴a∈M,∴{a} M.[点拨]描述法表示集合时,大括号内的代表元素和竖线后的制约条件中的代表形式与所运用的符号无关,如集合A={x|x>1}=B{y|y>1},但是集合M={x|y=x2+1,x∈R}和N={y|y=x2+1,x ∈R}的意思就不一样了,前者和后者有本质的区别.3.下列四个集合中,是空集的是()A.{0} B.{x|x>8,且x<5}C.{x∈N|x2-1=0} D.{x|x>4}[答案] B[解析] 选项A 、C 、D 都含有元素.而选项B 无元素,故选B.4.已知集合M ={(x ,y )|x +y <0,xy >0},P ={(x ,y )|x <0,y <0},则( )A .P MB .M PC .M =PD .M P [答案] C[解析] 本题考查两集合之间的关系,由⎩⎪⎨⎪⎧x +y <0,xy >0得x <0,y <0,这与集合P 中的元素(x ,y )限定的条件相同,故M =P .5.设集合A ={x |x =2k +1,k ∈Z },B ={x |x =2k -1,k ∈Z },则集合A ,B 间的关系为( )A .A =BB .A BC .B AD .以上都不对[答案] A[解析] A 、B 中的元素显然都是奇数,A 、B 都是有所有等数构成的集合.故A =B .选A.[探究] 若在此题的基础上演变为k ∈N .又如何呢?答案选B 你知道吗?6.已知集合M ={x |-5<x <3,x ∈Z },则下列集合是集合M 的子集的为( )A .P ={-3,0,1}B .Q ={-1,0,1,2}C .R ={y |-π<y <-1,y ∈Z }D .S ={x ||x |≤3,x ∈N }[答案] D[解析]先用列举法表示集合,再观察元素与集合的关系.集合M={-2,-1,0,1},集合R={-3,-2},集合S={0,1},不难发现集合P中的元素-3∉M,集合Q中的元素2∉M,集合R中的元素-3∉M,而集合S={0,1}中的任意一个元素都在集合M中,所以S⊆M,且S M.故选D.7.已知集合M={(x,y)|3x+4y-12<0,且x,y∈N*},则集合M的真子集的个数是()A.4 B.6C.7 D.8[答案] C[解析]因为M={(x,y)|3x+4y-12<0,且x,y∈N*}={(1,2),(2,1),(1,1)},所以M的真子集有23-1=7(个).8.(2012-2013瓮安一中高一期末试题)设P,Q是两个非空集合,定义P×Q={(a,b)|a∈P,b∈Q},若P={3,4,5}.Q={4,5,6,7},则P×Q中元素的个数是()A.3 B.4C.7 D.12[答案] D[解析]根据定义,集合P×Q是一个由有序数对(a,b)组成的集合,所以分别为(3,4),(3,5),(3,6),(3,7),(4,4),(4,5),(4,6),(4,7),(5,4),(5,5),(5,6),(5,7),共12个.二、填空题9.设A={正方形},B={平行四边形},C={四边形},D={矩形},E={多边形},则A、B、C、D、E之间的关系是________.[答案]A D B C E[解析] 由各种图形的定义可得.10.用适当的符号填空.(∈,∉,⊆,⊇, , ,=)a ________{b ,a };a ________{(a ,b )};{a ,b ,c }________{a ,b };{2,4}________{2,3,4};∅________{a }.[答案] ∈,∉, , ,11.已知A ={1,2,3},B ={1,2},定义集合A 、B 之间的运算“*”:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则集合A *B 中最大的元素是________,集合A *B 所有子集的个数是________.[答案] 5,16[解析] 由已知A *B ={2,3,4,5},∴A *B 中最大元素是5.∵A *B 中共有4个元素,∴其子集共有24=16.12.已知集合A ={x |x =k 2+14,k ∈Z },B ={x |x =k 4+12,k ∈Z },则集合A 、B 满足的关系是________(用⊆, ,=, 连接A 、B 的关系).[答案] A B[解析] 解法1:用列举法,令k =-2,-1,0,1,2…可得A ={…-34,-14,14,34,54…},B ={…0,14,12,34,1…},∴A B .解法2:集合A 的元素为:x =k 2+14=2k +14(k ∈Z ),集合B 的元素为:x =k 4+12=k +24(k ∈Z ),而2k +1为奇数,k +2为整数,∴A B .[规律总结]本题解法从分式的结构出发,运用整数的性质方便地获解.注意若k是任意整数,则k+m(m是一个整数)也是任意整数,而2k+1,2k-1均为任意奇数,2k为任意偶数.三、解答题13.判断下列表示是否正确:(1)a⊆{a};(2){a}∈{a,b};(3)∅ {-1,1};(4){0,1}={(0,1)};(5){x|x=3n,n∈Z}={x|x=6n,n∈Z}.[解析](1)错误.a是集合{a}的元素,应表示为a∈{a}.(2)错误.集合{a}与{a,b}之间的关系应用“ (⊆)”表示.(3)正确.空集是任何一个非空集合的真子集.(4)错误.{0,1}是一个数集,含有两个元素0,1,{(0,1)}是一个以有序实数对(0,1)为元素的集合,所以{0,1}≠{(0,1)}.(5)错误.集合{x|x=3n,n∈Z}中的元素表示所有能被3整除的数,或者说是3的倍数,而{x|x=6n,n∈Z}中的元素表示所有能被6整除的数,即是6的倍数,因此应有{x|x=6n,n∈Z} {x|x=3n,n ∈Z}.14.若集合A={x|x2+x-6=0},B={x|mx+1=0},且B A,求m的值.[解析]∵A={x|x2+x-6=0}={-3,2},且B A.∴(1)当B=∅时,方程mx+1=0无解,故m=0;(2)当B≠∅时,则B={-1m}.若-1m =-3,则m =13;若-1m =2,则m =-12.综上知,m 的值为0,-12,13.15.已知A ={x |x <-1或x >2},B ={x |4x +a <0},当B ⊆A 时,求实数a 的取值范围.[解析] ∵A ={x |x <-1或x >2},B ={x |4x +a <0}={x |x <-a 4},∵A ⊇B ,∴-a 4≤-1,即a ≥4,所以a 的取值范围是a ≥4.16.设集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}.(1)若B ⊆A ,求实数m 的取值范围;(2)当x ∈Z 时,求A 的非空真子集个数;(3)当x ∈R 时,不存在元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.[解析] (1)当m +1>2m -1,即m <2时,B =∅,满足B ⊆A . 当m +1≤2m -1,即m ≥2时,要使B ⊆A 成立,只需⎩⎪⎨⎪⎧m +1≥-2,2m -1≤5,即2≤m ≤3. 综上,当B ⊆A 时,m 的取值范围是{m |m ≤3}.(2)当x ∈Z 时,A ={-2,-1,0,1,2,3,4,5},∴集合A 的非空真子集个数为28-2=254.(3)∵x ∈R ,且A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},又不存在元素x 使x ∈A 与x ∈B 同时成立,∴当B =∅,即m +1>2m -1,得m <2时,符合题意; 当B ≠∅,即m +1≤2m -1,得m ≥2时,⎩⎪⎨⎪⎧ m ≥2,m +1>5,或⎩⎪⎨⎪⎧m ≥2,2m -1<-2,解得m >4. 综上,所求m 的取值范围是{m |m <2或m >4}.。
1.2.2.2一、选择题1.集合A ={a ,b ,c },B ={d ,e }则从A 到B 可以建立不同的映射个数为( ) A .5 B .6 C .8D .9[答案] C[解析] 用树状图写出所有的映射为:a →d ⎩⎨⎧b →d ⎩⎪⎨⎪⎧ c →d c →e b →e⎩⎪⎨⎪⎧c →d c →ea →e ⎩⎨⎧b →d ⎩⎪⎨⎪⎧ c →d c →e b →e⎩⎪⎨⎪⎧c →dc →e 共8个.2.已知f (x )=⎩⎪⎨⎪⎧x 2+3 (x >0),1 (x =0),x +4 (x <0).则f (f (f (-4)))=( ) A .-4 B .4 C .3D .-3[答案] B[解析] f (-4)=(-4)+4=0, ∴f (f (-4))=f (0)=1,f (f (f (-4)))=f (1)=12+3=4.故选B.3.已知函数f (x )=-x 2+2x +m 的图象与x 轴有交点,则实数m 的范围是( ) A .m >-1 B .m >1 C .m ≥-1 D .m ≥1[答案] C[解析] f (x )=-x 2+2x +m 的图象与x 轴有交点,即方程-x 2+2x +m =0有实根,∴Δ≥0即4+4m ≥0,∴m ≥-1,故选C.4.下列从P 到Q 的各对应关系f 中,不是映射的是( ) A .P =N ,Q =N *,f :x →|x -8|B .P ={1,2,3,4,5,6},Q ={-4,-3,0,5,12},f :x →x (x -4)C .P =N *,Q ={-1,1},f :x →(-1)xD .P =Z ,Q ={有理数},f :x →x 2 [答案] A[解析] 对于选项A,当x =8时,|x -8|=0∉N *, ∴不是映射,故选A. 5.给出下列四个命题:(1)若A ={整数},B ={正奇数},则一定不能建立从集合A 到集合B 的映射; (2)若A 是无限集,B 是有限集,则一定不能建立从集合A 到集合B 的映射; (3)若A ={a },B ={1,2},则从集合A 到集合B 只能建立一个映射; (4)若A ={1,2},B ={a },则从集合A 到集合B 只能建立一个映射. 其中正确命题的个数是( ) A .0个 B .1个 C .2个 D .3个[答案] B[解析] 对于(1)f :A →B 对应法则f :x →2|x |+1故(1)错;(2)f :R →{1},对应法则f :x →1,(2)错;(3)可以建立两个映射,(3)错;(4)正确,故选B.6.(广东梅县东山中学2009~2010高一期末)已知函数f (x )=⎩⎪⎨⎪⎧2 x ∈[-1,1]x x ∉[-1,1],若f [f (x )]=2,则x 的取值范围是( )A .∅B .[-1,1]C .(-∞,-1)∪(1,+∞)D .{2}∪[-1,1] [答案] D[解析] 首先当x =2时,f (2)=2, ∴f [f (2)]=2,其次当x ∈[-1,1]时,f (x )=2, ∴f [f (x )]=2.7.已知函数f (x )=x 2+px +q 满足f (1)=f (0)=0,则f (4)的值是( ) A .5 B .-5 C .12 D .20[答案] C[解析] 由f (1)=f (0)=0得到:1+p +q =0①,q =0②,由①和②联立解得p =-1,q =0.于是f (x )=x 2-x ,则f (4)=42-4=12.8.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程.在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图四个图形中较符合该学生走法的是( )[答案] D[解析] t =0时,该学生到学校的距离为d 0,排除A 、C,随着跑步开始,此学生到学校距离迅速缩短,而转入步行后,此学生到学校距离继续缩短,但较跑步时缩的慢了,∴选D9.某产品的总成本y (万元)与产量x 之间的函数关系式是y =3000+20x -0.1x 2,x ∈(0,240).若每台产品的售价为25万元,则生产者不亏本时的最低产量为( )A .25台B .75台C .150台D .200台[答案] C[解析] 由题意得:y ≤25x 得3000+20x -0.1x 2≤25x ∴x 2+50x -30000≥0解得:x ≥150或x ≤-200 又0<x <240,∴150≤x <240,最低产量为150台.10.定义域为R 的函数f (x )满足f (x )+2f (-x )=2x +1,则f (x )=( ) A .-2x +1B .2x -13C .2x -1D .-2x +13[答案] D[解析] ∵f (x )+2f (-x )=2x +1 (x ∈R ) ∴f (-x )+2f (x )=-2x +1, 消去f (-x )得,f (x )=-2x +13.二、填空题11.(2010·陕西文,13)已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =________.[答案] 2[解析] 由题意得,f (f (0))=f (2)=4+2a =4a ,a =2.12.已知函数φ(x )=f (x )+g (x ),其中f (x )是x 的正比例函数,g (x )是x 的反比例函数,且φ(13)=16,φ(1)=8,则φ(x )的表达式为________.[答案] 3x +5x[解析] 设f (x )=kx (k ≠0),g (x )=mx (m ≠0)则φ(x )=kx +m x,由题设⎩⎪⎨⎪⎧k 3+3m =16k +m =8解之得:⎩⎪⎨⎪⎧k =3m =5,∴φ(x )=3x +5x.三、解答题13.在国内投寄外埠平信,每封信不超过20克重付邮资80分,超过20克而不超过40克重付邮资160分.试写出x (0≤x ≤40)克重的信应付的邮资y (分)与x (克)的函数关系,并求函数的定义域,然后作出函数的图象.[解析] y =⎩⎪⎨⎪⎧0 (x =0)80 (0<x ≤20),160 (20<x ≤40)定义域为[0,40],图象如下14.作出下列函数的图象. (1)f (x )=2x ,x ∈Z ,且|x |≤2;[解析] (1)这个函数的定义域是集合{-2,-1,0,1,2},对应法则是“乘以2”,故它的图象由5个孤立的点(-2,-4),(-1,-2),(0,0),(1,2),(2,4)组成,函数图象如图(1)所示.(2)这个函数分为两部分, 当x ∈(0,+∞)时,f (x )=1, 当x ∈(-∞,0]时,f (x )=-1,函数图象如图(2)所示.15.(1)一次函数的图象如图(1),求其解析式.(2)设二次函数的图象如图(2)所示,求此函数的解析式.[解析] (1)设y =kx +b (k ≠0),由图知过(-1,0)和(0,2)点,∴⎩⎪⎨⎪⎧ -k +b =0b =2,∴⎩⎪⎨⎪⎧k =2b =2, ∴y =2x +2.(2)设y =ax 2+bx +c (a ≠0),由图知过A (-3,0)、B (1,0)、C (0,-2)三点, ∴⎩⎪⎨⎪⎧9a -3b +c =0a +b +c =0c =-2,∴⎩⎨⎧a =23b =43c =-2,∴y =23x 2+43x -2.[点评] 设y =ax 2+bx +c ,由图知y =0时,x =-3或1,即一元二次方程ax 2+bx +c =0有两根-3和1,故可用根与系数关系求解,也可设ax 2+bx +c =a (x +3)(x -1).由过(0,-2)求出a ,进而求出b 、c .16.设A =B ={(x ,y )|x ∈R ,y ∈R },f :(x ,y )→(kx ,y +b ).是从集合A 到集合B 的映射,若B 中元素(6,2)在映射f 下对应A 中元素(3,1),求k ,b 的值.[解析] (3,1)对应元素为(3k,1+b ),∴⎩⎪⎨⎪⎧ 3k =6,b +1=2,解得⎩⎪⎨⎪⎧k =2b =1. 17.作出函数f (x )=|x -2|-|x +1|的图象,并由图象求函数f (x )的值域. [解析] f (x )=⎩⎪⎨⎪⎧-3 (x ≥2)1-2x (-1<x <2)3 (x ≤-1)如图:由图象知函数f (x )值域为{y |-3≤y ≤3}.。
实用文档1.3.2.2一、选择题1.已知定义域为R 的函数f (x )在(8,+∞)上为减函数,且函数f (x +8)为偶函数,则( )A .f (6)>f (7)B .f (6)>f (9)C .f (7)>f (9)D .f (7)>f (10)[答案] D[解析] ∵y =f (x +8)为偶函数,∴y =f (x )的图象关于直线x =8对称,又f (x )在(8,+∞)上为减函数,∴f (x )在(-∞,8)上为增函数,∴f (10)=f (6)<f (7)=f (9),故选D.2.(胶州三中2009~2010高一模块测试)设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f (x )-f (-x )x<0的解集为( )A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,0)∪(0,1)[答案] D[解析] 奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,f (x)-f(-x)x=2f(x)x<0.由函数的图象得解集为(-1,0)∪(0,1).3.f(x)为偶函数,当x>0时,f(x)=2x-1,则当x<0时,f(x)=( )A.2x-1 B.-2x+1C.2x+1 D.-2x-1[答案] D[解析] x<0时,-x>0,∴f(-x)=2·(-x)-1,∵f(x)为偶函数,∴f(x)=-2x-1.4.偶函数f(x)=ax2-2bx+1在(-∞,0]上递增,比较f(a-2)与f(b+1)的大小实用文档关系( )A.f(a-2)<f(b+1)B.f(a-2)=f(b+1)C.f(a-2)>f(b+1)D.f(a-2)与f(b+1)大小关系不确定[答案] A[解析] 由于f(x)为偶函数,∴b=0,f(x)=ax2-1,又在(-∞,0]上递增,∴a<0,因此,a-2<-1<0<1=b+1,∴f(a-2)<f(-1)=f(1)=f(b+1),故选A.5.已知f(x)为奇函数,当x∈(-∞,0)时,f(x)=x+2,则f(x)>0的解集为( ) A.(-∞,-2)B.(2,+∞)C.(-2,0)∪(2,+∞)D.(-∞,-2)∪(0,2)[答案] C[解析] 如图,∵x<0时,f(x)=x+2,又f(x)为奇函数,其图象实用文档实用文档关于原点对称,可画出在(0,+∞)上的图象,∴f (x )>0时,-2<x <0或x >2.6.对于函数f (x )=⎩⎪⎨⎪⎧(x -1)2 (x ≥0)(x +1)2 (x <0),下列结论中正确的是( )A .是奇函数,且在[0,1]上是减函数B .是奇函数,且在[1,+∞)上是减函数C .是偶函数,且在[-1,0]上是减函数D .是偶函数,且在(-∞,-1]上是减函数[答案] D[解析] 画出函数图象如图,可见此函数为偶函数,在(-∞,-1]上为减函数.7.(曲师大附中2009~2010高一上期末)若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且f (3)=0,则使得f (x )<0的x 的取值范围是( )A .(-∞,3)∪(3,+∞)B .(-∞,3)实用文档C .(3,+∞)D .(-3,3)[答案] D[解析] ∵f (x )为偶函数,f (3)=0,∴f (-3)=0,又f (x )在(-∞,0]上是减函数,故-3<x ≤0时,f (x )<0.x <-3时,f (x )>0,故0<x <3时,f (x )<0,x >3时,f (x )>0,故使f (x )<0成立的x ∈(-3,3).[点评] 此类问题画示意图解答尤其简便,自己试画图解决.8.(09·浙江)若函数f (x )=x 2+a x(a ∈R),则下列结论正确的是( )A .∀a ∈R,f (x )在(0,+∞)上是增函数B .∀a ∈R,f (x )在(0,+∞)上是减函数C .∃a ∈R,f (x )是偶函数D .∃a ∈R,f (x )是奇函数[答案] C[解析] 显见当a =0时,f (x )=x 2为偶函数,故选C.[点评] 本题是找正确的选项,应从最简单的入手,故应从存在性选项考察.若详加讨论本题将变得复杂.对于选项D,由f(-x)=-f(x)得x=0,故不存在实数a,使f(x)为奇函数;对于选项B,令a=0,则f(x)=x2在(0,+∞)上单调增,故B错;对于选项A,若结论成立,则对∀x1,x2∈R,x1<x2时,有f(x1)-f(x2)=x21+a x1-x22-ax2=(x1-x2)[x1+x2-ax1x2]<0恒成立,∴x1+x2>ax1x2恒成立,这是不可能的.9.(2010·安徽理,6)设abc>0,二次函数f(x)=ax2+bx+c的图象可能是( )[答案] D[解析] 若a<0,则只能是A或B选项,A中-b2a<0,∴b<0,从而c>0与A 图不符;B中-b2a>0,∴b>0,∴c<0与B图也不符;若a>0,则抛物线开口向上,只能是C或D选项,则当b>0时,有c>0与C、D不符.当b<0时,有c<0,此时-b2a>0,实用文档实用文档且f (0)=c <0,故选D.10.(2010·广东文,10)在集合{a ,b ,c ,d }上定义两种运算、⊗如下:那么d ⊗(a c )=( )A .aB .bC .cD .d[答案] A[解析] 要迅速而准确地理解新规则,并能立即投入运用,a c =c ,d ⊗c =a ,故选A.二、填空题11.已知函数y =ax 2+bx +c 的图象过点A (0,-5),B (5,0),它的对称轴为直线x =2,则这个二次函数的解析式为________.[答案] y =x 2-4x -5[解析] 设解析式为y =a (x -2)2+k ,把(0,-5)和(5,0)代入得⎩⎪⎨⎪⎧-5=4a +k0=9a +k,∴a实用文档=1,k =-9,∴y =(x -2)2-9,即y =x 2-4x -5.12.函数f (x )=ax +1x +2在区间(-2,+∞)上是增函数,则a 的取值范围是________.[答案] ⎝ ⎛⎭⎪⎫12,+∞[解析] 解法1:f (x )=a +1-2a x +2可视作反比例函数y =1-2ax经平移得到的.由条件知1-2a <0,∴a >12.解法2:∵f (x )在(-2,+∞)上为增函数,故对于任意x 1,x 2∈(-2,+∞)且x 1<x 2,有f (x 1)<f (x 2)恒成立,而f (x 1)-f (x 2)=ax 1+1x 1+2-ax 2+1x 2+2=(x 1-x 2)(2a -1)(x 1+2)(x 2+2)∵-2<x 1<x 2,∴x 1-x 2<0,x 1+2>0,x 2+2>0,若要f (x 1)-f (x 2)<0,则必须且只需2a -1>0,故a >12.实用文档∴a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.三、解答题13.设函数f (x )=ax 2+1bx +c是奇函数(a 、b 、c ∈Z ),且f (1)=2,f (2)<3,求a 、b 、c的值.[解析] 由条件知f (-x )+f (x )=0,∴ax 2+1bx +c+ax 2+1c -bx=0,∴c =0又f (1)=2,∴a +1=2b ,∵f (2)<3,∴4a +12b <3,∴4a +1a +1<3,解得:-1<a <2,∴a =0或1,∴b =12或1,由于b ∈Z ,∴a =1、b =1、c =0.14.已知f (x )是定义在(-1,1)上的偶函数,且在(0,1)上为增函数,若f (a -2)-f (4-a 2)<0,求实数a 的取值范围.[解析] 由f (a -2)-f (4-a 2)<0得 f (a -2)<f (4-a 2)又f (x )在(-1,1)上为偶函数,且在(0,1)上递增,实用文档∴⎩⎪⎨⎪⎧-1<a -2<1-1<4-a 2<10<|a -2|<|4-a 2|,解得3<a <5,且a ≠2.15.设f (x )为定义在R 上的偶函数,当0≤x ≤2时,y =x ;当x >2时,y =f (x )的图象是顶点为P (3,4)且过点A (2,2)的抛物线的一部分.(1)求函数f (x )在(-∞,-2)上的解析式;(2)在图中的直角坐标系中画出函数f (x )的图象;(3)写出函数f (x )的值域和单调区间.[解析] (1)当x >2时,设f (x )=a (x -3)2+4.∵f (x )的图象过点A (2,2),∴f (2)=a (2-3)2+4=2,∴a =-2,∴f (x )=-2(x -3)2+4.设x∈(-∞,-2),则-x>2,∴f(-x)=-2(-x-3)2+4.又因为f(x)在R上为偶函数,∴f(-x)=f(x),∴f(x)=-2(-x-3)2+4,即f(x)=-2(x+3)2+4,x∈(-∞,-2).(2)图象如图所示.(3)由图象观察知f(x)的值域为{y|y≤4}.单调增区间为(-∞,-3]和[0,3].单调减区间为[-3,0]和[3,+∞).*16.已知函数f(x)=2xx2+1(1)求函数的定义域;(2)判断奇偶性;(3)判断单调性;实用文档(4)作出其图象,并依据图象写出其值域.[解析] (1)函数的定义域为R.(2)∵f(-x)=-2x1+x2=-f(x)∴f(x)是奇函数,其图象关于原点O对称,故在区间(0,+∞)上研究函数的其它性质.(3)单调性:设x1、x2∈(0,+∞)且x1<x2,则f(x1)-f(x2)=2x11+x21-2x2 1+x22=2(x1-x2)(1-x1x2) (1+x21)(1+x22)当0<x1<x2≤1时,可知f(x1)-f(x2)<0,∴f(x)在(0,1]上是增函数.当1<x1<x2时,f(x1)-f(x2)>0,∴f(x)在(1,+∞)上是减函数,由于f(x)是奇函数,且f(0)=0,因此,f(x)的减区间为(-∞,-1]、[1,+∞),增区间为[-1,1].并且当x→+∞时,f(x)→0,图象与x轴无限接近.实用文档其图象如图所示.可见值域为[-1,1].实用文档。
一、选择题1.(2012~2013学年度山东临沂一中高一月考试题)已知全集U ={0,1,2,3,4},M={0,1,2},N={2,3}则(∁U M)∩N=() A.{2} B.{3}C.{2,3,4} D.{0,1,2,3,4}[答案] B[解析]∁U M={3,4},(∁U M)∩N={3},故选B.2.(2012辽宁文科2题)已知全集U={0,1,2,3,4,5,6,7,8,9} ,集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A)∩(∁U B)=() A.{5,8} B.{7,9}C.{0,1,3} D.{2,4,6}[答案] A[解析]∁U A={2,4,6,7,9},∁U B={0,1,3,7,9},(∁U A)∩(∁U B)={7,9}故选B.3.(2011·浙江理)设U=R,A={x|x>0},B={x|x>1},则A∩∁U B =()A.{x|0≤x<1} B.{x|0<x≤1}C.{x|x<0} D.{x|x>1}[答案] B[解析]∵B={x|x>1},∴∁U B={x|x≤1},∴A∩∁U B={x|x>0}∩{x|x≤1}={x|0<x≤1}.故选B.4.如图,阴影部分用集合A、B、U表示为()A.(∁U A)∩B B.(∁U A)∪(∁U B)C.A∩(∁U B) D.A∪(∁U B)[答案] C[解析]阴影部分在A中,不在B中,故既在A中也在∁U B中,因此是A与∁U B的公共部分.5.设全集U,M、N是U的非空子集,且∁U M⊇N,则有() A.M⊆∁U N B.M ∁U NC.∁U M=∁U N D.M=N[答案] A[解析]如下图,否定C、D.当∁U M=N时,M=∁U N否定B,故选A.6.设全集为R,A={x|-5<x<5},B={x|0≤x<7},那么(∁R A)∪(∁R B)等于()A.{x|0≤x<5} B.{x|x≤-5或x≥5}C.{x|x≤-5或x≥7} D.{x|x<0或x≥5}[答案] D[解析]∁R A={x|x≥5或x≤-5},∁R B={x|x<0或x≥7},(∁R A)∪(∁R B)={x|x<0或x≥5},故选D.7.(2008·北京)已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∩(∁U B)等于()A.{x|-2≤x<4} B.{x|x≤3或x≥4}C.{x|-2≤x<-1} D.{x|-1≤x≤3}[答案] D[解析]∁U B={x|-1≤x≤4},A∩∁U B={x|-1≤x≤3},故选D.8.(2011·辽宁理,1)已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A=()A.{1,3} B.{3,7,9}C.{3,5,9} D.{3,9}[答案] D[解析]由题意知,A中有3和9,若A中有7或5,则∁U B中无7和5,即B中有7或5,则与A∩B={3}矛盾,故选D.二、填空题9.设全集U=R,集合X={x|x≥0},Y={y|y≥1},则∁U X与∁U Y 的包含关系是∁U X________∁U Y.[答案]10.设U=R,则A={x|a≤x≤b},∁U A={x|x<3或x>4},则a =________,b=________.[答案]3 411.已知U={α|0°<α<180°},A={x|x是锐角},B={x|x是钝角},则∁U(A∩B)=________,(∁U A)∪(∁U B)=________,∁U(A∪B)=________.[答案]U,U,{x|x是直角}12.如果U ={x |x 是自然数},A ={x |x 是正奇数},B ={x |x 是5的倍数},则B ∩∁U A =________.[答案] {x ∈N |x 是10的倍数}[解析] ∁U A ={x |x 是非负偶数}={0,2,4,6,8,10,…},B ={0,5,10,15,…},B ∩∁U A ={0,10,20,…}. 三、解答题13.设全集S 表示某班全体学生的集合,若A ={男生},B ={团员},C ={近视眼的学生},说明下列集合的含义.(1)A ∩B ∩C ; (2)C ∩[∁S (A ∪B )].[解析] (1)A ∩B ∩C ={是团员又是近视眼的男生}. (2)A ∪B ={男生或是团员的学生}, ∁S (A ∪B )={不是团员的女生},C ∩[∁S (A ∪B )]={不是团员但是近视眼的女生}.14.已知全集U ={2,3,a 2-2a -3},A ={2,|a -7|},∁U A ={5},求a 的值.[解析] 解法1:由|a -7|=3,得a =4或a =10,当a =4时,a 2-2a -3=5,当a =10时,a 2-2a -3=77∉U ,∴a =4.解法2:由A ∪∁U A =U 知⎩⎪⎨⎪⎧|a -7|=3a 2-2a -3=5,∴a =4.15.(2012~2013唐山一中月考试题)已知全集U ={x |x ≥-4},集合A ={x |-1<x ≤3},B ={x |0≤x <5},求A ∩B ,(∁U A )∪B ,A ∩(∁U B ).[分析] 利用数轴,分别表示出全集U 及集合A ,B ,先求出∁U A 及∁U B ,然后求解.[解析] 如图所示,∵A ={x |-1<x ≤3},B ={x |0≤x <-5},U ={x |x ≥-4},∴∁U A ={x |-4≤x ≤-1或x >3},∁U B ={x |-4≤x <0或x ≥5},∴A ∩B ={x |0≤x ≤3},(∁U A )∪B ={x |-4≤x ≤-1或x ≥0},A ∩(∁U B )={x |-1<x <0}.[规律总结] (1)数轴与Venn 图有同样的直观功效,在数轴上可以直观地表示数集,所以进行数集的交、并、补运算时,经常借助数轴求解.(2)不等式中的等号在补集中能否取到要引起重视,还要注意补集是全集的子集.16.已知全集U =R ,集合A ={x |x <-1},B ={x |2a <x <a +3},且B ⊆∁R A ,求a 的取值范围.[分析] 本题从条件B ⊆∁R A 分析可先求出∁R A ,再结合B ⊆∁R A 列出关于a 的不等式组求a 的取值范围.[解析] 由题意得∁R A ={x |x ≥-1}.(1)若B =∅,则a +3≤2a ,即a ≥3,满足B ⊆∁R A . (2)若B ≠∅,则由B ⊆∁R A ,得2a ≥-1且2a <a +3, 即-12≤a <3. 综上可得a ≥-12.。
1.1。
1一、选择题1.方程组错误!的解集是( )A.错误!B .{x ,y |x =3且y =-7}C .{3,-7}D .{(x ,y )|x =3且y =-7}[答案] D[解析] 解方程组⎩⎨⎧ 3x +y =2,2x -3y =27得错误! 用描述法表示为{(x ,y )|x =3且y =-7},用列举法表示为{(3,-7)},故选D 。
2.集合A ={x ∈Z |y =错误!,y ∈Z }的元素个数为( )A .4B .5C .10D .12[答案] D[解析] 12能被x +3整除.∴y =±1,±2,±3,±4,±6,±12,相应的x 的值有十二个:9,-15,3,-9,1,-7,0,-6,-1,-5,-2,-4。
故选D.3.集合A={一条边长为2,一个角为30°的等腰三角形},其中的元素个数为( )A.2 B.3C.4 D.无数个[答案] C[解析] 两腰为2,底角为30°;或两腰为2,顶角为30°;或底边为2,底角为30°;或底边为2,顶角为30°.共4个元素,因此选C.4.已知a、b、c为非零实数,代数式错误!+错误!+错误!+错误!的值所组成的集合为M,则下列判断中正确的是( )A.0∉M B.-4∉MC.2∈M D.4∈M[答案] D[解析]a、b、c皆为负数时代数式值为-4,a、b、c二负一正时代数式值为0,a、b、c一负二正时代数式值为0,a、b、c皆为正数时代数式值为4,∴M={-4,0,4}.5.在直角坐标系内,坐标轴上的点构成的集合可表示为() A.{(x,y)|x=0,y≠0或x≠0,y=0}B.{(x,y)|x=0且y=0}C.{(x,y)|xy=0}D.{(x,y)|x,y不同时为零}[答案] C[解析]在x轴上的点(x,y),必有y=0;在y轴上的点(x,y),必有x=0,∴xy=0.6.集合M={(x,y)|xy≤0,x,y∈R}的意义是()A.第二象限内的点集B.第四象限内的点集C.第二、四象限内的点集D.不在第一、三象限内的点的集合[答案] D[解析]∵xy≤0,∴xy<0或xy=0当xy<0时,则有错误!或错误!,点(x,y)在二、四象限,当xy=0时,则有x=0或y=0,点(x,y)在坐标轴上,故选D.7.方程组错误!的解(x,y)构成的集合是()A.(5,4) B.{5,-4}C.{(-5,4)} D.{(5,-4)}[答案] D[解析]首先A,B都不对,将x=5,y=-4代入检验知是方程组的解.∴选D.*8。