材料的强化与韧化
- 格式:pptx
- 大小:4.01 MB
- 文档页数:45
强化韧化机理
强化韧化是一种通过改变材料的微观结构和化学成分,提高材料的强度和韧性的方法。
它涉及到一系列的力学和物理机制,以下是一些常见的强化韧化机理:
1.晶粒细化:通过控制材料的热处理或变形加工条件,可以
使晶粒变得更加细小。
细小的晶粒能够阻碍位错和裂纹的运动,从而提高材料的抗拉强度和韧性。
2.相界增多:通过形成更多的相界面,例如晶界、相界以及
位错堆垛等,可以阻碍位错和裂纹扩展。
相界增多提供了额外的韧性机制,从而提高材料的韧性。
3.增强相分散:在基体材料中加入第二相颗粒或纳米颗粒,
可以形成复相结构。
这种复相结构能够阻碍位错运动和裂纹扩展,提供更高的强度和韧性。
4.锁定位错:通过在材料中引入位错锁定机制,可以阻止位
错的移动和滑移,从而提高材料的强度和韧性。
5.固溶强化:通过向基体材料中加入合金元素,调整其晶格
结构,形成的固溶体能够在晶内形成固溶强化效应,提高材料的强度和韧性。
6.相互作用增强:通过精细调控材料的化学成分和结构,使
不同相之间发生特定的相互作用,例如化学键的形成、界面的相容性等,从而提高材料的抗拉强度和韧性。
通过利用上述强化韧化机制,材料科学家和工程师能够设计和
制造出具有优异综合性能的材料,满足不同领域对材料性能的需求。
每种机制的适用性取决于材料的类型和应用要求。
第十章材料的强韧化节材料强化基本原理结合键和原子排列方式的不同,是金属材料、陶瓷材料、高分子材料力学性能不同的根本原因。
通过改变材料的内制材料性能的目的。
不同种类的材料,提高其强度的机理、方法也不同。
一、金属材料的强化原理纯金属经过适当的合金化后强度、硬度提高的现象,称为固溶原因可归结于溶质原子和位错的交互作用,这些作用起源于溶质引发的局变。
固溶体可分为无序固溶体和有序固溶体,其强化机理也不相同。
(1)无序固溶强化固溶强化的实质是溶质原子的长程位错的交互作用导致致错运动受阻。
溶质相位错的交互作用是二者应力场用。
作用的大小要看溶质本身及溶质与基体之间的交互作用,这种作用使成弯曲形状。
如图10—l所示.图中的A、B、C表示溶质原子强烈地钉扎了位错。
x—x',A的乎直位错线,被钉后呈观曲线形状。
处于位错线上的少数溶质原子与位互作用很强,这些原子允许位错线的局部曲率远大于根据平均内应力求出钉扎的第一个效应就是使位错线呈曲折形状。
相对于x—x'的偏离为x在方向的外加切应力τ作用下,由于B点位错张力的协助作用,将使ABC段AB'C,在B'处又被钉扎起来。
位错之所以能够这样弯曲,其原因是因位增加而升高的弹件能被强钉扎所释放的能量抵偿旧有余,位错的弹性能反低.位错经热激活可以脱钉,因而被钉扎时相对处于低能态。
在切应力τ动到AB'C.ABC和AB'C是相邻的平衡位置,阻力最大在位错处于中间位置AC时产生,外加切应力要克服这样的阻。
若AC≈2y,ABC比2y略大,近似地当作2y。
由ABC变为AC方面要脱钉需要能量,另一方面要缩短位错长度释放是位错脱扎所需能量;EI为单位长度位错由于加长而升高的能量,EI与Eb相比小而略去。
由ABC变为AC,平均位力需要做功为τb(2y)·x/2,故1看,沿着xx'方向,单位长度上有1/y个溶质原子。
用柯氏气团的概念,如果位错和溶质原子交互作用能为U0,溶质钉扎将降低的能量为所以设C为溶质原子百分数,在滑移面单位面积上有1/62个原子,其中有C/62个为溶质原子。
金属材料的强化与韧化机械工程学院机械工程1班刘文龙2011201120 对于金属材料来讲,最重要的性能指标包括了材料的强度和韧性等。
简单的说,强度是指材料抵抗变形和断裂的能力,而韧性指的是材料变形和断裂过程中吸收能量的能力。
随着制造业及材料工业的快速发展,人们对高性能材料的需求已经越来越迫切,从目前角度来看,在不更改加工方式与行业整体现状的情况下,高性能材料主要由制备新型高性能材料与对原有材料进行改性以提高其性能两种方法,显然的,第二种方法更易实现,也更接近工程实际。
在现有的研究中,提高材料的强度主要有以下两种途径:1、完全消除材料内部的位错以及其他的缺陷,使它的强度接近于理论强度,例如金属晶须等,但实际应用难度较大;2、在金属中引入大量缺陷,以此阻碍位错的运动,如加工硬化、固溶强化、细晶强化、沉淀强化等。
其中金属材料的强化主要有以下几种放法:1、固溶强化此方法是利用点缺陷对位错运动的阻力使金属基体获得强化的一种方法,一般通过在金属基体中溶入一种或数种溶质元素形成固溶体而使其强度和硬度升高。
2、细晶强化此方法通过细化晶粒以增加晶界对位错的阻滞效应来提高金属强度。
3、第二相粒子强化此法按获得粒子的工艺可分为析出强化与弥散强化。
4、形变强化金属在塑性变形过程中,位错密度会逐渐增加,使得弹性应力场不断变大,位错间交互作用增强,使得位错困难增强金属强度。
这里以金属的细晶强化方式举例,在王艳林[1]等人关于热轧钢材晶粒细化的文章中指出,在保证相同变形量、变形温度以及化学成分的前提下,对22mm棒材进行热轧制后通过强制冷去的方式进行细化晶粒组织,将晶粒度的等级由7.5级提高到8.0级,见图1。
通过试验发现,轧后强制冷却的热轧钢材延伸率为22.68%,与空冷状态下的24.30%基本相等,但是其屈服强度由空冷状态下的358.03MPa提高到了498.37MPa,提高了大约39.20%,抗拉强度由空冷状态下的508.33MPa提高到了626.44Mpa,提高了23.23%,可见通过此种方法对热轧钢材进行细晶强化对提高其综合性能效果十分明显,适宜推广;而目前首钢、水城钢铁公司等单位都进行了细晶钢螺纹钢的研究开发,均实现了细晶钢棒线材的工业化生产,并进行了推广应用。
材料的强韧性及其应用强度:金属材料在外力作用下抵抗永久变形和断裂的能力称为强度。
韧性:表示材料在塑性变形和断裂过程中吸收能量的能力。
金属材料的强化1. 材料强化的类型:主要有细晶强化(晶界强化)、固溶强化、形变强化(位错强化)、第二相粒子沉淀(沉淀强化和弥散强化)、相变强化等。
2. 强化机制:(1) 细晶强化(晶界强化):晶界分为大角度晶界和小角度晶界。
晶界两边相邻晶粒的位向和亚晶块的原子排列位向存在位向差,处于原子排列不规则的畸变状态。
晶界处位错密度较大,对金属滑移(塑性变形)、位错运动起阻碍作用,即晶界处对塑性变形的抗力较晶内为大,使晶粒变形时的滑移带不能穿越晶界,裂纹穿越也困难。
因此,当晶粒越细,晶界越多,表现阻碍作用也越大,此时金属的屈服强度也越高。
方法:根据晶界强化的原理,在热处理工艺方法上发展了采用超细化热处理的新工艺,即细化奥氏体(A)晶粒或碳化物相,使晶粒度细化到十级以上。
由于超细化作用,使晶界面积增大,从而对金属塑性变形的抗力增加,反映在力学性能方面其金属强韧性大大提高。
如果奥氏体晶粒细化在十级以上,则金属的强韧性将大大提高,为达此目的,现代发展的热处理新技术方法有以下三种。
①利用极高加热速度的能量密度进行快速加热的热处理。
由于极高的加热能量密度,使加热速度大大提高,在10-2~1s的时间内,钢件便可加热到奥氏体(A)状态,此时A的起始晶粒度很小,继之以自冷淬火(冷速达104℃/s以上),可得极细的马氏体(M)组织,与一般高频淬火比较硬度可高出Hv50,而变形只有高频淬火的1/4~1/5,寿命可提高1.2~4倍。
②利用奥氏体(A)的逆转变钢件加热到A后,淬火成M,然后快速(20s)内重新加热到A状态,如此反复3~4次,晶粒可细化到13~14级。
③采用A-F两相区交替加淬火采用亚温淬火(F+A双相区加热),在提高材料强韧性的同时显著降低临界脆化温度,抑制回火脆性。
在A-F两相区交替加热,可使A/F相界面积大大增加,因而使奥氏体形核率大大增多,晶粒也就越细化。