材料的强化与韧化
- 格式:pptx
- 大小:4.01 MB
- 文档页数:45
强化韧化机理
强化韧化是一种通过改变材料的微观结构和化学成分,提高材料的强度和韧性的方法。
它涉及到一系列的力学和物理机制,以下是一些常见的强化韧化机理:
1.晶粒细化:通过控制材料的热处理或变形加工条件,可以
使晶粒变得更加细小。
细小的晶粒能够阻碍位错和裂纹的运动,从而提高材料的抗拉强度和韧性。
2.相界增多:通过形成更多的相界面,例如晶界、相界以及
位错堆垛等,可以阻碍位错和裂纹扩展。
相界增多提供了额外的韧性机制,从而提高材料的韧性。
3.增强相分散:在基体材料中加入第二相颗粒或纳米颗粒,
可以形成复相结构。
这种复相结构能够阻碍位错运动和裂纹扩展,提供更高的强度和韧性。
4.锁定位错:通过在材料中引入位错锁定机制,可以阻止位
错的移动和滑移,从而提高材料的强度和韧性。
5.固溶强化:通过向基体材料中加入合金元素,调整其晶格
结构,形成的固溶体能够在晶内形成固溶强化效应,提高材料的强度和韧性。
6.相互作用增强:通过精细调控材料的化学成分和结构,使
不同相之间发生特定的相互作用,例如化学键的形成、界面的相容性等,从而提高材料的抗拉强度和韧性。
通过利用上述强化韧化机制,材料科学家和工程师能够设计和
制造出具有优异综合性能的材料,满足不同领域对材料性能的需求。
每种机制的适用性取决于材料的类型和应用要求。
第十章材料的强韧化节材料强化基本原理结合键和原子排列方式的不同,是金属材料、陶瓷材料、高分子材料力学性能不同的根本原因。
通过改变材料的内制材料性能的目的。
不同种类的材料,提高其强度的机理、方法也不同。
一、金属材料的强化原理纯金属经过适当的合金化后强度、硬度提高的现象,称为固溶原因可归结于溶质原子和位错的交互作用,这些作用起源于溶质引发的局变。
固溶体可分为无序固溶体和有序固溶体,其强化机理也不相同。
(1)无序固溶强化固溶强化的实质是溶质原子的长程位错的交互作用导致致错运动受阻。
溶质相位错的交互作用是二者应力场用。
作用的大小要看溶质本身及溶质与基体之间的交互作用,这种作用使成弯曲形状。
如图10—l所示.图中的A、B、C表示溶质原子强烈地钉扎了位错。
x—x',A的乎直位错线,被钉后呈观曲线形状。
处于位错线上的少数溶质原子与位互作用很强,这些原子允许位错线的局部曲率远大于根据平均内应力求出钉扎的第一个效应就是使位错线呈曲折形状。
相对于x—x'的偏离为x在方向的外加切应力τ作用下,由于B点位错张力的协助作用,将使ABC段AB'C,在B'处又被钉扎起来。
位错之所以能够这样弯曲,其原因是因位增加而升高的弹件能被强钉扎所释放的能量抵偿旧有余,位错的弹性能反低.位错经热激活可以脱钉,因而被钉扎时相对处于低能态。
在切应力τ动到AB'C.ABC和AB'C是相邻的平衡位置,阻力最大在位错处于中间位置AC时产生,外加切应力要克服这样的阻。
若AC≈2y,ABC比2y略大,近似地当作2y。
由ABC变为AC方面要脱钉需要能量,另一方面要缩短位错长度释放是位错脱扎所需能量;EI为单位长度位错由于加长而升高的能量,EI与Eb相比小而略去。
由ABC变为AC,平均位力需要做功为τb(2y)·x/2,故1看,沿着xx'方向,单位长度上有1/y个溶质原子。
用柯氏气团的概念,如果位错和溶质原子交互作用能为U0,溶质钉扎将降低的能量为所以设C为溶质原子百分数,在滑移面单位面积上有1/62个原子,其中有C/62个为溶质原子。
金属材料的强化与韧化机械工程学院机械工程1班刘文龙2011201120 对于金属材料来讲,最重要的性能指标包括了材料的强度和韧性等。
简单的说,强度是指材料抵抗变形和断裂的能力,而韧性指的是材料变形和断裂过程中吸收能量的能力。
随着制造业及材料工业的快速发展,人们对高性能材料的需求已经越来越迫切,从目前角度来看,在不更改加工方式与行业整体现状的情况下,高性能材料主要由制备新型高性能材料与对原有材料进行改性以提高其性能两种方法,显然的,第二种方法更易实现,也更接近工程实际。
在现有的研究中,提高材料的强度主要有以下两种途径:1、完全消除材料内部的位错以及其他的缺陷,使它的强度接近于理论强度,例如金属晶须等,但实际应用难度较大;2、在金属中引入大量缺陷,以此阻碍位错的运动,如加工硬化、固溶强化、细晶强化、沉淀强化等。
其中金属材料的强化主要有以下几种放法:1、固溶强化此方法是利用点缺陷对位错运动的阻力使金属基体获得强化的一种方法,一般通过在金属基体中溶入一种或数种溶质元素形成固溶体而使其强度和硬度升高。
2、细晶强化此方法通过细化晶粒以增加晶界对位错的阻滞效应来提高金属强度。
3、第二相粒子强化此法按获得粒子的工艺可分为析出强化与弥散强化。
4、形变强化金属在塑性变形过程中,位错密度会逐渐增加,使得弹性应力场不断变大,位错间交互作用增强,使得位错困难增强金属强度。
这里以金属的细晶强化方式举例,在王艳林[1]等人关于热轧钢材晶粒细化的文章中指出,在保证相同变形量、变形温度以及化学成分的前提下,对22mm棒材进行热轧制后通过强制冷去的方式进行细化晶粒组织,将晶粒度的等级由7.5级提高到8.0级,见图1。
通过试验发现,轧后强制冷却的热轧钢材延伸率为22.68%,与空冷状态下的24.30%基本相等,但是其屈服强度由空冷状态下的358.03MPa提高到了498.37MPa,提高了大约39.20%,抗拉强度由空冷状态下的508.33MPa提高到了626.44Mpa,提高了23.23%,可见通过此种方法对热轧钢材进行细晶强化对提高其综合性能效果十分明显,适宜推广;而目前首钢、水城钢铁公司等单位都进行了细晶钢螺纹钢的研究开发,均实现了细晶钢棒线材的工业化生产,并进行了推广应用。
材料的强韧性及其应用强度:金属材料在外力作用下抵抗永久变形和断裂的能力称为强度。
韧性:表示材料在塑性变形和断裂过程中吸收能量的能力。
金属材料的强化1. 材料强化的类型:主要有细晶强化(晶界强化)、固溶强化、形变强化(位错强化)、第二相粒子沉淀(沉淀强化和弥散强化)、相变强化等。
2. 强化机制:(1) 细晶强化(晶界强化):晶界分为大角度晶界和小角度晶界。
晶界两边相邻晶粒的位向和亚晶块的原子排列位向存在位向差,处于原子排列不规则的畸变状态。
晶界处位错密度较大,对金属滑移(塑性变形)、位错运动起阻碍作用,即晶界处对塑性变形的抗力较晶内为大,使晶粒变形时的滑移带不能穿越晶界,裂纹穿越也困难。
因此,当晶粒越细,晶界越多,表现阻碍作用也越大,此时金属的屈服强度也越高。
方法:根据晶界强化的原理,在热处理工艺方法上发展了采用超细化热处理的新工艺,即细化奥氏体(A)晶粒或碳化物相,使晶粒度细化到十级以上。
由于超细化作用,使晶界面积增大,从而对金属塑性变形的抗力增加,反映在力学性能方面其金属强韧性大大提高。
如果奥氏体晶粒细化在十级以上,则金属的强韧性将大大提高,为达此目的,现代发展的热处理新技术方法有以下三种。
①利用极高加热速度的能量密度进行快速加热的热处理。
由于极高的加热能量密度,使加热速度大大提高,在10-2~1s的时间内,钢件便可加热到奥氏体(A)状态,此时A的起始晶粒度很小,继之以自冷淬火(冷速达104℃/s以上),可得极细的马氏体(M)组织,与一般高频淬火比较硬度可高出Hv50,而变形只有高频淬火的1/4~1/5,寿命可提高1.2~4倍。
②利用奥氏体(A)的逆转变钢件加热到A后,淬火成M,然后快速(20s)内重新加热到A状态,如此反复3~4次,晶粒可细化到13~14级。
③采用A-F两相区交替加淬火采用亚温淬火(F+A双相区加热),在提高材料强韧性的同时显著降低临界脆化温度,抑制回火脆性。
在A-F两相区交替加热,可使A/F相界面积大大增加,因而使奥氏体形核率大大增多,晶粒也就越细化。
钢的韧化方法钢的韧化方法包括:(1)细化晶粒法;(2)合金化法;(3)纯净化法;(4)位错板条马氏体韧化;(5)高温形变热处理;(6)利用稳定奥氏体使钢韧化;(7)利用介稳奥氏体使钢韧化;(8)回火和其他方法。
(1)细化晶粒法常温或低温下,在利用细化晶粒提高钢的强度的同时,还可改善钢的韧性,特别是低温韧性。
这是细化晶粒方法的突出优点。
因为细化晶粒不仅增大钢的屈服强度(@),而且增大钢的断裂强度O b)。
这样,随着晶粒的不断细化,钢从脆性断裂过渡到韧性断裂(沪os),如图3所示。
晶粒尺寸]/ ■图3新裂强度s和屈服强度6与晶粒尺寸M的关糸(2)合金化法合金元素锰和镍能使钢的韧性提高。
锰因为能减少晶界碳化物,细化珠光体,相应也细化铁素体晶粒,从而提高铁素体一珠光体钢的韧性。
镍是提高钢的韧性最有效的元素,这是因为镍能提高铁素体基体的韧性,并使晶粒细化的缘故。
(3)纯净化法除去钢中夹杂、气体及有害元素,尽可能降低钢的碳含量是提高钢韧性的有效方法。
钢中非金属夹杂物是断裂的裂纹源。
在冶炼上采用真空除气,电渣重熔、真空白耗重熔和各种炉外精炼技术,提高钢的纯净度,可显著改善钢的韧性。
钢中磷、硫、砷、锑等有害元素的去除,也能改善钢的韧性。
钢中的碳,虽然在很多情况下是不可缺少的元素,但碳却使钢的韧性显著恶化,因此,在可能的条件下,应尽量降低钢的碳含量。
(4)位错板条马氏体韧化铁碳合金中,碳含量<0. 30%时,淬火马氏体的形态主要为位错板条马氏体;碳含量>0. 6%时,主要为内孪晶马氏体。
一般认为,化学成分相同,位错马氏体与内孪晶马氏体的强化效果相当,而位错马氏体具有较好的韧性。
原因可能是位错马氏体的板条尺寸很小,类似于非常细的晶粒,可阻止裂纹的传播;而孪晶片状马氏体,厚度较大,且内部孪晶取向相同,类似于粗大的晶粒,从而韧性较差。
另外,位错马氏体板条之间的残留奥氏体塑性良好,使得钢的韧性改善。
(5)高温形变热处理将钢在高于临界点A C3以上的较高温度(如在奥氏体的再结晶温度以上)奥氏体化,然后预冷到稍高于A。
材料的强化与韧化材料的强化与韧化是指通过一系列的方法和工艺,提高材料的强度和韧性,从而增加其使用寿命和可靠性。
在工程领域中,强度和韧性往往是评价材料性能的重要指标之一、强度是指材料抵抗外部应力引起的破坏的能力,而韧性是指材料在受到外部应力时能够发生塑性变形而不破裂的能力。
强度和韧性的提高可以使材料更适合于承受高强度和高载荷的工作环境,以及更好地抵抗损坏和断裂。
1.固溶强化:通过固溶合金元素或合金化来增强材料的强度。
固溶合金元素可以在基体中形成固溶体或形成新的晶体相,从而提高材料的强度。
与基体原子相互作用的固溶元素可以阻碍晶格滑移和位错运动,从而增强材料的强度。
2.细晶强化:通过细化晶粒结构来提高材料的强度。
细小的晶粒可以增加材料的晶界面积,从而增加位错与晶界的相互作用机会,增强材料的抗位错运动能力,提高强度。
3.相变强化:通过相变来改变材料的微观结构,从而提高材料的强度。
相变时会产生局部应变和应力场,从而阻碍位错运动和塑性变形,提高材料的强度。
4.显微组织控制强化:通过控制材料的显微组织,如晶粒形状、相分布和相互作用等,来增加材料的强度。
控制材料的显微组织可以将位错和晶界的相互作用最大化,从而阻碍位错运动和滑移,提高材料的强度。
材料的韧化主要有以下几种方式:1.纳米颗粒强化:纳米颗粒在材料中的分布可以阻断裂纹的扩展,增加材料的韧性。
纳米颗粒可以吸收部分应变能,通过控制纳米颗粒的尺寸和分布,可以有效地提高材料的韧性。
2.相变韧化:通过相变来改变材料的微观结构和组织,从而增强材料的韧性。
相变时会产生内应力和晶界,可以阻碍裂纹扩展,提高材料的韧性。
3.变形和断裂机制的优化:通过调节材料的微观结构,改变材料的变形和断裂机制,从而提高材料的韧性。
例如,增加材料的位错密度和滑移系统数量可以增加材料的塑性变形,提高韧性。
4.多元合金化:通过合金化来改变材料的组成和微观结构,从而增加材料的韧性。
合金化可以引入不同的元素和相,从而改变材料的微观结构,提高材料的韧性。
强化韧化机理
强化韧化机理是金属材料科学中的一个重要概念,它涉及到材料性能的改善,尤其是硬度和韧性这两个重要的力学性能指标。
强化与韧化通常是材料改性处理的目的,使其在保持足够强度的同时,提高抵抗断裂的能力。
1. 强化机制:
强化主要通过以下几种方式进行:
- 固溶强化:通过添加合金元素使基体材料内部形成固溶体,阻碍位错运动,从而提高材料的强度。
- 时效强化:通过加热、保温然后冷却的过程,使材料内部析出第二相粒子,位错运动受到阻挡,提高材料强度。
- 应变强化(加工硬化):通过冷加工(如轧制、锻造等)使材料内部产生大量位错,位错交互作用增加,从而提高材料的抗拉强度。
- 晶粒细化强化:通过控制加工工艺使材料晶粒细化,晶界数量增多,位错运动阻力增大,材料强度提高。
2. 韧化机制:
韧化主要通过以下方式实现:
- 细化晶粒:晶粒越细,晶界越多,晶界能阻止裂纹扩展,从而提高材料韧性。
- 第二相颗粒强化:在材料基体中引入弥散分布的第二相颗粒,如陶瓷颗粒、金属间化合物等,可以阻滞裂纹的扩展,起到钉扎位错的作用,提高材料韧性。
- 亚微观结构调控:通过调整材料内部的层片状、孪晶、位错胞等亚微观结构,使材料在遭受冲击或负载时分散并吸收能量,从而提高韧性。
- 混合韧化:结合多种韧化机制,如相变韧化(马氏体钢的相变)、沉淀强化与韧化并存(航空铝合金的时效处理)等,实现强度和韧性的同步提升。
材料的强化与韧化韧性是材料变形和断裂过程中吸收能量的能力,它是强度和塑性的综合表现;强度是材料抵抗变形和断裂的能力,塑性则表示材料断裂时总的塑变程度。
金属材料的强化方法大体分为四类:固溶强化、细晶强化、形变强化、沉淀相颗粒强化等。
固溶强化是指纯金属经适当的合金化后强度、硬度提高的现象。
根据强化机理可分为无序固溶体和有序固溶体。
固溶强化的特点:(1)溶质原子的原子数分数越大,强化作用越大;(2)溶质原子与基体金属原子尺寸相差越大,强化作用越大;(3)间隙型溶质原子比置换原子有更大的固溶强化作用;(3)溶质原子与基体金属的价电子数相差越大,固溶强化越明显。
晶粒细化是一种有效的既可提高金属材料强度又可改善韧性的手段,这是其他强化方式如加工硬化、时效强化等方法难以达到的。
细化晶粒提高材料强度和硬度主要来源于晶界对位错运动的阻碍作用,而改善韧性源于晶界面积增加使单位面积上偏聚的杂质原子数量减少,降低材料脆性转变温度。
多晶体金属的晶粒通常是大角度晶界,相邻取向不同的的晶粒受力发生塑性变形时,部分晶粒内部的位错先开动,并沿一定晶体学平面滑移和增殖,位错在晶界前被阻挡,当晶粒细化时,需要更大外加力才能使材料发生塑性变形,从而达到强化的目的。
形变强化是指金属的整个形变过程中当外力超过屈服强度后,要塑性变形继续进行必须不断增加外力,从而在真实的应力-应变曲线上表现为盈利不断上升。
随着塑性变形量的增加,金属流变强度也增加。
金属在塑性变形过程中位错密度不断增加,使弹性应力场不断增大,位错间的相互作用不断加强,因而位错运动越来越困难。
晶体中的位错达到一定值后,位错间的弹性交互作用增加了位错运动的阻力,可以有效地提高金属的强度。
曲线明显可分为三个阶段:I.易滑移阶段:发生单滑移,位错移动和增殖所遇到的阻力很小,θI 很低,约为10-4G数量级。
II.线性硬化阶段:发生多系滑移,位错运动困难,θII 远大于θI 约为G/100—G/300 ,并接近于一常数。