应该怎样去选择变压器的熔丝
- 格式:docx
- 大小:341.93 KB
- 文档页数:2
熔断器的选择(一)熔断器类型的选择应根据使用场合选择熔断器的类型。
电网配电一般用刀型触头熔断器(如HDLRT0 RT36系列);电动机保护一般用螺旋式熔断器;照明电路一般用圆筒帽形熔断器;保护可控硅元件则应选择半导体保护用快速式熔断器.(二)熔断器规格的选择1.熔体额定电流的选择(1)对于变压器、电炉和照明等负载,熔体的额定电流应略大于或等于负载电流.(2)对于输配电线路,熔体的额定电流应略大于或等于线路的安全电流.(3) 在电动机回路中用作短路保护时,应考虑电动机的启动条件,按电动机启动时间的长短来选择熔体的额定电流。
对启动时间不长的电动机,可按下式决定熔体的额定电流IN熔体=Ist/(2.5~3)式中Ist-—电动机的启动电流,单位:A对启动时间较长或启动频繁的电动机,按下式决定熔体的额定电流IN熔体=Ist/(1。
6~2)对于多台电动机供电的主干母线处的熔断器的额定电流可按下式计算:In=(2。
0~2.5)Imemax+∑Ime注:In熔断器的额定电流;Ime电动机的额定电流;Imemax多台电动机容量最大的一台电动机的额定电流; ∑Ime其余电动机的额定电流之和。
电动机末端回路的保护,选用aM型熔断器,熔断体的额定电流In稍大于电动机的额定电流;(4) 电容补偿柜主回路的保护,如选用gG型熔断器,熔断体的额定电流In约等于线路计算电流1。
8~2。
5倍;如选用aM 型熔断器,熔断体的额定电流In 约等于线路电流的1~2.5倍。
(5)线路上下级间的选择性保护,上级熔断器与下级熔断器的额定电流In的比等于或大于1。
6,就能满足防止发生越级动作而扩大故障停电范围的需要.(6) 保护半导体器件用熔断器,熔断器与半导体器件串联,而熔断器熔体的额定电流用有效值表示,半导体器件的额定电流用正向平均电流表示,因此,应按下式计算熔体的额定电流:IRN≥1。
57 IRN ≈1。
6 IRN 式中IRN 表示半导体器件的正向平均电流。
熔断器的选择(一)熔断器类型的选择应根据使用场合选择熔断器的类型。
电网配电一般用刀型触头熔断器(如HDLRT0 RT36系列);电动机保护一般用螺旋式熔断器;照明电路一般用圆筒帽形熔断器;保护可控硅元件则应选择半导体保护用快速式熔断器.(二) 熔断器规格的选择1.熔体额定电流的选择(1)对于变压器、电炉和照明等负载,熔体的额定电流应略大于或等于负载电流。
(2) 对于输配电线路,熔体的额定电流应略大于或等于线路的安全电流。
(3)在电动机回路中用作短路保护时,应考虑电动机的启动条件,按电动机启动时间的长短来选择熔体的额定电流.对启动时间不长的电动机,可按下式决定熔体的额定电流IN熔体=Ist/(2。
5~3)式中Ist-—电动机的启动电流,单位:A对启动时间较长或启动频繁的电动机,按下式决定熔体的额定电流IN熔体=Ist/(1。
6~2)对于多台电动机供电的主干母线处的熔断器的额定电流可按下式计算:In=(2。
0~2。
5)Imemax+∑Ime注:In熔断器的额定电流;Ime电动机的额定电流;Imemax多台电动机容量最大的一台电动机的额定电流;∑Ime其余电动机的额定电流之和.电动机末端回路的保护,选用aM型熔断器,熔断体的额定电流In稍大于电动机的额定电流; (4)电容补偿柜主回路的保护,如选用gG型熔断器,熔断体的额定电流In约等于线路计算电流1。
8~2.5倍;如选用aM 型熔断器,熔断体的额定电流In 约等于线路电流的1~2。
5倍。
(5) 线路上下级间的选择性保护,上级熔断器与下级熔断器的额定电流In的比等于或大于1。
6,就能满足防止发生越级动作而扩大故障停电范围的需要.(6)保护半导体器件用熔断器,熔断器与半导体器件串联,而熔断器熔体的额定电流用有效值表示,半导体器件的额定电流用正向平均电流表示,因此,应按下式计算熔体的额定电流: IRN≥1.57 IRN ≈1.6 IRN 式中IRN 表示半导体器件的正向平均电流。
熔断器的选择方法为了更好的保护电路和产品,熔断器的选择很关键。
下面主要从不同的角度来进行说明。
(一) 从熔断器的类型选择应根据使用场合选择熔断器的类型。
电网配电一般用刀型触头熔断器(如Fe rraz shawmut Amp-trap系列或者Bussmann FRS-R 系列);电动机保护一般用螺旋式熔断器;照明电路一般用圆筒帽形熔断器;保护可控硅元件则应选择半导体保护用快速式熔断器.(二) 从熔断器的规格选择1. 熔体额定电流的选择(1) 对于变压器、电炉和照明等负载,熔体的额定电流应略大于或等于负载电流.(2) 对于输配电线路,熔体的额定电流应略大于或等于线路的安全电流.(3) 在电动机回路中用作短路保护时,应考虑电动机的启动条件,按电动机启动时间的长短来选择熔体的额定电流.对启动时间不长的电动机,可按下式决定熔体的额定电流IN熔体=Ist/(2.5~3)式中 Ist——电动机的启动电流,单位:A对启动时间较长或启动频繁的电动机,按下式决定熔体的额定电流IN熔体=Ist/(1.6~2)对于多台电动机供电的主干母线处的熔断器的额定电流可按下式计算:In=(2.0~2.5)Imemax+∑Ime注:In熔断器的额定电流;Ime电动机的额定电流;Imemax多台电动机容量最大的一台电动机的额定电流; ∑Ime其余电动机的额定电流之和.电动机末端回路的保护,选用aM型熔断器,熔断体的额定电流In稍大于电动机的额定电流;(4) 电容补偿柜主回路的保护,如选用gG型熔断器,熔断体的额定电流In约等于线路计算电流1.8~2.5倍;如选用aM 型熔断器,熔断体的额定电流In 约等于线路电流的1~2.5倍.(5) 线路上下级间的选择性保护,上级熔断器与下级熔断器的额定电流In的比等于或大于1.6,就能满足防止发生越级动作而扩大故障停电范围的需要.(6) 保护半导体器件用熔断器,熔断器与半导体器件串联,而熔断器熔体的额定电流用有效值表示,半导体器件的额定电流用正向平均电流表示,因此,应按下式计算熔体的额定电流:IRN≥1.57 IRN ≈1.6 IRN 式中 IRN 表示半导体器件的正向平均电流.(7) 降容使用在20℃环境温度下,我们推荐熔断体的实际工作电流不应超过额定电流值.选用熔断体时应考虑到环境及工作条件,如封闭程度空气流动连接电缆尺寸(长度及截面) 瞬时峰值等方面的变化;熔断体的电流承载能力试验是在20℃环境温度下进行的,实际使用时受环境温度变化的影响.环境温度越高,熔断体的工作温度就越高, 其寿命也就越短.相反,在较低的温度下运行将延长熔断体的寿命.来源: (8) 在配电线路中,一般要求前一级熔体比后一级熔体的额定电流大2~3倍,以防止发生越级动作而扩大故障停电范围.2.熔断器的选择(1)UN熔断器≥UN线路.(2)I N熔断器≥IN 线路.(3)熔断器的最大分断能力应大于被保护线路上的最大短路电流。
变压器跌落保险高压熔丝的选择如250KVA变压器高压端跌落保险高压熔丝的选择计算方法是:I=S/(1.732*10*0.75).I是电流,S是容量,1.732就是根号3啦,0.75是一般的功率因数。
I=250/(1.732*10*0.75)=19.25A选择熔丝Ie=20A.如何正确选用变压器熔断器保护熔断器由于结构简单,运行维护方便,价格低廉,所以一直在低压小容量的电网中广泛应用。
在高压电网上使用的熔断器,虽有限流式和跌落式等种类,但使用量大的则是户外跌落式熔断器。
农村配电网使用的跌落式熔断器。
存在着熔管自动跌落,铜铝接触不良,导电系统过热,触头熔焊,熔管变形或烧坏,合闸操作动触头摇摆,特性曲线不稳定,不能可靠动作等问题。
甚至造成变压器高压绕组谐振过电压,在断开保障电流时,产生反喷造成相间短路或烧坏熔断器。
这主要是由于产品的电气机械.性能、制造质量、选择不匹配和运行维护等方面的原因造成的。
为了保证熔断器的安全运行,除对产品质量运行整顿、改进和提高外,还要正确地选择和使用,应符合可靠性、选择性和灵敏性的要求,不致于发生误动和拒动,因此首先要正确地选择其额定电流和额定断流容量。
小容量的变压器,一般采用熔断器保护。
低压倒熔断器可根据变压器的额定电流并适当考虑其过负荷能力,即熔丝额定电流等于或略大于变压器的额定电流进行选择。
变压器高压倒的熔断器,为保证其有选择性地动作,应与低压侧熔断器保持一定的关系:容量在150千伏安以下的变压器,可按其额定电流的2~3倍选择;容量在150千伏安以上的变压器,按其1.5~2倍的额定电流选择。
按此原则,320千伏安以下容量的变压器,高压侧熔丝选择可参照表1。
熔丝通过的电流与熔化时间(秒)的关系称为安秒特性。
也可根据安秒特性进行熔丝选择,要求高低压熔丝安秒特性曲线的时限阶段大于0.5秒。
熔断器是一种依靠自身能量灭弧的开断电器,因此选择熔断器时还应考虑其额定断流容量,并与技装地点的实际短路容量相匹配。
变压器保险丝的选用
包括变压器保险丝的特性、分类及选用原则等
一、变压器保险丝的特性
1.变压器保险丝是高度可靠的电气安全器件,具有快速切断负载电流的能力,具有过载、过热、短路等功能,可以保护变压器安全运行。
2.变压器保险丝有优良的绝缘性能,能有效抑制变压器在超负荷条件下产生的电磁干扰。
3.变压器保险丝具有良好的热稳定性,通过改变和调节保险丝触点的温升分布,可以更加精确地控制变压器运行的湿度和温度。
二、变压器保险丝分类
1.按热机构分:变压器保险丝可以分为普通型保险丝和温度保护型保险丝。
普通型保险丝按功率分为大功率型、中功率型及小功率型。
温度保护型保险丝具有温升环和可调节内阻的功能,它可以自行检测变压器的温升率。
2.按工作电压分:变压器保险丝可分为低压次电流保护型、中压次电流保护型和高压次电流保护型。
如何选择配电变压器一、二次侧熔丝的容量刘晓军在城镇和农村电力设备供用电安全检查中,经常会遇到配电变压器本身或二次侧出线短路时,其一次侧或二次侧或一、二次侧熔丝未熔断,发生变电所线路开关跳闸或配电变压器烧损事故,造成长时间停电和重大的直接和间接的经济损失,对工农业生产和城乡人民生活产生很大影响。
配电变压器一、二次侧熔丝是运行中的配电变压器本身及二次侧短路和过负荷的主要保护方式,其中一次侧熔丝的主要作用是作为配电变压器本身和二次侧出线短路故障的后备保护,二次侧熔丝的主要作用是作为配电变压器过负荷和二次侧出线短路故障的主保护。
配电变压器一、二次侧熔丝的正确选择,对于配电变压器的安全经济运行,提高供电可靠性都十分重要的。
发生类似事故的主要原因是配电变压器的一、二次侧熔丝容量选择不正确造成的。
当配电变压器本身或二次侧出线发生短路事故时,由于配电变压器的一、二次侧熔丝容量选择不正确,容量过大,短路电流无法使其熔断,造成配电变压器脱离一、二次侧熔丝保护,从而发生变电所线路开关跳闸或配电变压器烧损事故。
配电变压器一、二次侧熔丝容量的选择方法,根据按额定容量和实际负荷容量可分两种。
1按额定容量选择方法按照配电变压器额定容量选择一、二次侧熔丝容量时,又根椐配电变压器有无铭牌情况,区别计算。
⑴有铭牌情况对于有铭牌的配电变压器,在铭牌上标明了配电变压器的额定容量一、二次侧额定电流和阻抗电压等参数,在选择一、二次侧熔丝容量时,根据铭牌上标明的一、二次侧额定电流,按运行规程规定进行选择。
变压器规程规定①100kV A以下的变压器,一次侧熔丝容量可按2~3倍额定电流选择,考虑到熔丝的机械强度,一般一次侧熔丝容量不小于10A,二次侧熔丝容量应按二次额定电流选择。
②100kV A及以上的变压器,一次侧熔丝容量可按1.5~2倍额定电流选择,二次侧熔丝容量应按二次额定电流选择。
例1:一台75kV A、10kV/400V的配电变压器,铭牌上标明:一次额定电流为4.33A,二次额定电流为108A,问如何选择一、二次侧熔丝容量?解:由于铭牌标明:I1N=4.33A I2N=108A根据运行规程规定:一次侧熔丝电流I1=(2~3)I1N二次侧熔丝电流I2=I2N则I1=(2~3)×4.33=8.66~12.99A,一次侧熔丝容量可选择10A~15A熔丝;I2=I2N=108A二次侧熔丝容量可选择100A或120A熔丝。
常见配电变压器熔丝配置表
配电变压器熔丝配置表
说明:低压侧熔丝中的×2指变压器低压侧两回出线
10kV侧,跌落式熔断器熔丝的配置,容量在100千伏安及以上的,按变压器额定电流的1.5倍配置熔体;容量在100千伏安以下的,按变压器额定电流的2倍配置熔体。
400V侧,采用开关熔体(丝)保护,熔体(丝)按变压器额定电
流配置。
采用塑壳空气开关保护,开关额定电流按变压器额定电流的1.3倍选择。
馈(分)线开关额定电流,按出线回路数平均分配变压器额定电流的1.2倍选择。
一般情况下总开关开断电流不小于50kA,馈(分)线开关开断电流不小于35kA,总开关配置三段式过流保护(瞬时、短延时、长延时),缺相保护及故障类显示指示灯;馈(分)线开关设二段式过流保护(瞬时、长延时)。
变压器高压熔丝对照表随着现代工业的发展,电力设备在我们的生产和生活中扮演着越来越重要的角色。
而变压器作为电力设备中的一种重要设备,其负责将高压电流转换为低压电流,为我们的生产和生活提供了稳定的电力保障。
而在变压器的运行过程中,高压熔丝也是一个非常重要的部件。
因此,我们需要了解变压器高压熔丝对照表,以便更好地维护和修理变压器。
变压器高压熔丝是为了保护变压器而设置的一种安全装置。
其作用是在短路或过载时,通过熔断来保护变压器。
因此,熔丝的选择是非常重要的。
如果选择不当,就会导致熔丝的熔断时间不合适,从而无法起到保护作用,或者熔丝的熔断电流过低,导致变压器无法正常工作。
因此,我们需要根据变压器的额定电压和额定电流来选择适当的熔丝。
变压器高压熔丝对照表是一种非常重要的参考工具。
它列出了各种额定电压和额定电流的变压器所需要的熔丝规格和熔断时间。
通过对照表,我们可以很方便地选择适当的熔丝,从而保证变压器的正常工作和安全运行。
下面是一个变压器高压熔丝对照表的示例:额定电压(kV)额定电流(A)熔丝规格熔断时间(s)6 400 3A 0.16 630 4A 0.16 800 5A 0.110 400 2A 0.110 630 3A 0.110 800 4A 0.1通过对照表,我们可以看出,当变压器的额定电压为6kV,额定电流为400A时,需要选择3A的熔丝,并且熔断时间为0.1秒。
同样地,当变压器的额定电压为10kV,额定电流为630A时,需要选择3A 的熔丝,并且熔断时间为0.1秒。
需要注意的是,变压器高压熔丝的选择不仅要考虑变压器的额定电压和额定电流,还要考虑变压器的型号、制造商和工作环境等因素。
因此,在选择熔丝时,我们需要仔细阅读变压器的说明书,并咨询专业的电气工程师或技术人员的建议。
除了选择适当的熔丝外,我们还需要定期检查变压器高压熔丝的状态。
如果熔丝出现熔断现象,就需要及时更换熔丝,并找出熔丝熔断的原因。
熔丝的选择1.照明和电热设备:I R = (0.9-l) ∙I (安)式中:I R一熔体额定电流(安)I一负荷额定电流总和(安)2.电动机;对单台电动机;IR= (1.5~2.5) ∙3(安)式中;I R一熔体额定电流(安)电动机额定电流(安)当电动机容量较小。
轻负荷或降压起动时。
倍数可选接近L 5。
重负荷。
直接起动或电动机容量较大。
可取接近2. 5的值如是直流或降压起动的绕线式电动机。
其倍数可取L2~1.50对多台电动机共用一路熔体时;IR= (1.5-2.5)IDD +%I(安)式中;IR一熔体额定电流(安)3D—容量最大一台电动机的额定电流(安)∑nl-其余各台电动机额定电流之和(安)3.交流电焊机;I R=(1.2~1.5) √JCI式中:IR一熔体额定电流(安)JC—电焊机的暂载率(%)I—电焊机的额定电流4.直流电焊机;如直流电焊机是采用交流电动机的直流发电机组,可按交流电动机选取熔丝的办法选,如采用硅整流器的按(0. 8~1.0)倍额定工作电流选取I计 + (K-Kz) Im5.吊车;1.6-2式中;I计一计算电流(安)见下表,对单台电动葫芦或单台梁式吊车,可取其主钩电机的额定电流。
最大一台电动机的额定电流K一最大一台电动机的起动电流倍数,绕线式电机K=2,鼠笼式电机K值按产品样本查得(一般为5~7倍)kz—综合系数见下表计算电流注;Pe为各电动机的铭牌功率(双钩吊车的付钩电动机功率不算在内)6.配电变压器容量为IOO千伏及以下的配电变压器。
其高压侧熔体额定电流按变压器高压侧额定电流的2~3倍选取,容量为100千伏安以上的配电变压器,其高压侧熔体额定电流按变压器高压侧额定电流的1. 5~2倍选取。
配电变压器低压侧熔体的额定电流按变压器低压侧额定电流的1.2倍选取。
7.无功功率补偿的电力电容器的容量选取;Qc = aqcP式中;Qc-电力电容器,需用容量(千乏)P一高峰有功负荷a一平均负荷因数。
熔断器的选择(一) 熔断器类型的选择应根据使用场合选择熔断器的类型。
电网配电一般用刀型触头熔断器(如HDLRT0 RT36系列);电动机保护一般用螺旋式熔断器;照明电路一般用圆筒帽形熔断器;保护可控硅元件则应选择半导体保护用快速式熔断器.(二) 熔断器规格的选择1.熔体额定电流的选择(1)对于变压器、电炉和照明等负载,熔体的额定电流应略大于或等于负载电流。
(2) 对于输配电线路,熔体的额定电流应略大于或等于线路的安全电流。
(3)在电动机回路中用作短路保护时,应考虑电动机的启动条件,按电动机启动时间的长短来选择熔体的额定电流。
对启动时间不长的电动机,可按下式决定熔体的额定电流IN熔体=Ist/(2.5~3)式中Ist—-电动机的启动电流,单位:A对启动时间较长或启动频繁的电动机,按下式决定熔体的额定电流IN熔体=Ist/(1。
6~2)对于多台电动机供电的主干母线处的熔断器的额定电流可按下式计算:In=(2。
0~2。
5)Imemax+∑Ime注:In熔断器的额定电流;Ime电动机的额定电流;Imemax多台电动机容量最大的一台电动机的额定电流; ∑Ime其余电动机的额定电流之和。
电动机末端回路的保护,选用aM型熔断器,熔断体的额定电流In稍大于电动机的额定电流;(4)电容补偿柜主回路的保护,如选用gG型熔断器,熔断体的额定电流In约等于线路计算电流1。
8~2。
5倍;如选用aM 型熔断器,熔断体的额定电流In 约等于线路电流的1~2.5倍。
(5) 线路上下级间的选择性保护,上级熔断器与下级熔断器的额定电流In的比等于或大于1。
6,就能满足防止发生越级动作而扩大故障停电范围的需要。
(6)保护半导体器件用熔断器,熔断器与半导体器件串联,而熔断器熔体的额定电流用有效值表示,半导体器件的额定电流用正向平均电流表示,因此,应按下式计算熔体的额定电流:IRN≥1。
57 IRN ≈1。
6 IRN 式中IRN 表示半导体器件的正向平均电流。
变压器熔丝的选择口诀
变压器熔丝的选择口诀通常是根据变压器的额定功率、额定电流和额定电压来进行选择。
具体的选择口诀可以是:
1. 首先确定变压器的额定功率、额定电流和额定电压。
2. 根据变压器的额定功率和额定电流,计算出变压器的额定电流密度。
3. 根据变压器的额定电压,参考标准表格或规范要求,选择合适的熔丝额定电压。
4. 根据变压器的额定电流和额定电压,计算出熔丝的额定电流。
一般来说,熔丝的额定电流应稍大于变压器的额定电流。
5. 根据变压器的额定功率和熔丝的额定电压,计算出熔丝的额定功率。
一般来说,熔丝的额定功率应稍大于变压器的额定功率。
6. 根据变压器的额定电流密度和熔丝的额定功率,确定熔丝的规格。
需要注意的是,以上口诀仅供参考,具体的选择方法还应根据实际情况和相关的标准规范进行综合考虑。
变压器熔丝的计算公式变压器是电力系统中非常重要的一种设备,它能实现电能的变压、升压、降压、分配和传输等功能。
变压器在使用过程中,会发生诸如短路、过载等故障,这时候就需要熔丝保护来保障变压器的安全运行。
本文将介绍变压器熔丝的计算公式。
一、熔丝的作用熔丝是一种过载保护元件,它的作用是在电路中发生过载时,通过自身的熔断来保护电路。
在变压器的保护中,熔丝主要用于保护变压器的绕组和连接线路,防止变压器因过载而损坏。
二、熔丝的选择在选择熔丝时,需要考虑电流大小、额定电压、熔断时间等因素。
通常情况下,熔丝的额定电流应该比电路中最大电流略大一些,这样才能保证熔丝在电路过载时能够及时熔断。
另外,熔丝的熔断时间也是非常重要的,如果熔断时间过长,就会使电路中的设备受到过大的电流冲击,从而导致设备损坏。
因此,在选择熔丝时,需要考虑熔断时间和额定电流的匹配程度。
三、变压器熔丝的计算公式变压器熔丝的计算公式可以通过以下步骤来实现:1、计算变压器的额定容量变压器的额定容量是指变压器正常运行时所能承受的最大负荷。
在计算变压器熔丝时,需要先计算出变压器的额定容量。
变压器的额定容量计算公式如下:S = U × I其中,S为变压器的额定容量,单位为千伏安(KVA);U为变压器的额定电压,单位为千伏(KV);I为变压器的额定电流,单位为安培(A)。
2、计算变压器的额定电流在计算变压器的熔丝时,需要知道变压器的额定电流,根据变压器的额定容量和额定电压,可以计算出变压器的额定电流。
变压器的额定电流计算公式如下:I = S / U其中,I为变压器的额定电流,单位为安培(A);S为变压器的额定容量,单位为千伏安(KVA);U为变压器的额定电压,单位为千伏(KV)。
3、选择熔丝在选择熔丝时,需要根据变压器的额定电流和熔断时间来选择。
通常情况下,变压器的额定电流应该比熔丝的额定电流略大一些,这样才能保证熔丝在电路过载时能够及时熔断。
熔断时间的选择需要根据变压器的额定容量来确定,通常情况下,变压器的额定容量越大,熔断时间就应该越短。
简述变压器保护用熔断器的选择与负荷开关开断能力的配合目前采用负荷开关-熔断器组合电器对10kV变压器保护的数量极大,根据我们公司生产负荷开关多年的情况来看,负荷开关、熔断器、转移电流三者与变压器保护要求如何匹配是用户经常提出的问题,希望作如下简述:一、熔断器额定电流的选择原则变压器的额定容量为SN,额定电压为UN,则变压器高压侧一次额定电流IN1的大小由下式提供:设变压器分接开关按-5%分接抽头计算,同时户内变压器过负荷按120%,那么变压器高压侧可能出现的电流IN可由下式确定:IN=IN1×120%×105%一般情况下,限流式熔断器的额定电流I选用变压器额定电流的1.5~3倍,其大小可由下式确定:I=(1.5~3)×IN1综合变压器容量-SN、额定电流-IN、实际电流-IN1、熔断器电流-I 大小如下:二、变压器励磁电流下熔断器持续时间变压器投入时会产生励磁电流,要求该励磁电流不对所配熔断器构成损伤,那么熔断器的持续时间应大于励磁电流的持续时间,励磁电流 IS 的大小一般为变压器额定电流的10~20倍,绝大多数情况下不超过12倍,因此其值大小可由下式确定:IS=12×IN1 其持续时间为0.1S。
为确定励磁电流下熔断器的持续时间,须引入反映熔断器动作特性的时间-电流特性曲线,如下图是我们公司常用的熔断器厂家提供的曲线,以IS作为横坐标值,分别求取对应纵坐标值,此值为不同熔断器规格的持续时间值t。
综合变压器容量-SN、励磁电流-IS 、熔断器电流-I、持续时间-t表如下:由上表可以看出,熔断器按前表原则选择,变压器励磁电流持续时间均小于熔断器在该电流下的熔断持续时间,故励磁电流不会对所配熔断器造成损伤。
二、转移电流与负荷开关的开断能力熔断器应对变压器的短路故障进行保护,特别是最严重的低压侧短路故障保护,变压器阻抗电压按UK=4.5%(630KVA及以上为5%),变压器低压侧故障时,高压侧可能产生的最大故障电流IK可由下式求得:有关转移电流在相关标准和文选中均有详细论述,我们公司生关的负荷开关中,熔断器撞击脱扣器触发负荷开关的分闸时间为T0=60ms,引入熔断器的时间—电流特性曲线,纵坐标中以T=0.9 T0作一水平线分别求出熔断器各规格曲线的电流值,即为熔断器熔断时首开相的电流值ISK,负荷开关二相开断的转移电流值IZ可由下式求得:IZ=0.87 ISK综合变压器容量-SN 首开相电流-ISK 转移电流-IZ短路电流- IK表如下:由上表可以看出,变压器容量在400KVA及以下时,变压器可能产生的最大短路电流值均小于负荷开关的额定开断电流值,负荷开关可自行开断,不会产生转移电流,或者说转移电流小于负荷开关额定开断电流,此时配用630A的负荷开关是满足技术条件的,变压器容量超过上述容量时,短路电流大于630A,熔断器首开相形成后,将产生转移电流,负荷开关两相开断的转移电流的大小超过一般负荷开关的额定开断电流(630A),这就要求进行负荷开关设计时,不应拘泥于额定开断电流为630A,而应考虑配用最大熔断器时可能产生的并且要求负荷开关能够顺利开断的转移电流值,此时意义的负荷开关不再是传统意义上的负荷开关(额定开断电流为630A)。
如没有特性曲线可按以下规定选用:
①一次熔丝的额定电流按变压器额定电流的倍数选定,10-100kVA变压器为1-3倍;100kVA 以上变压器为1.5-2倍。
干式变压器温控器
②多台变压器共用一组熔丝时,其熔丝的额定电流按照各变压器额定电流之和的1.0-1.5倍选用。
③二次熔丝的额定电流按变压器二次额定电流选用。
④单台电动机的专用变压器,考虑起动电流的影响,二次熔丝额定电流可按变压器额定电流的
1.3倍选用。
⑤熔丝的选定应考虑上下级保护的配合。
高压熔丝的选择
高压熔丝的最大规格不宜超过40A,规格越大,故障熔断时间越长。
根据熔丝的熔断特性曲线,在0.1秒内使熔丝熔断的电流应不小于其额定电流的20倍:即短路点发生在分支干线处时,短路电流可能达到800A时才会在0.1秒内熔断。
熔丝在0.5秒内熔断的电流于是熔丝额定电流的4倍即160A。
低压熔丝的选择
变压器低压侧熔丝可按变送器的额定电流或过负荷能力来选择,一般按过负荷20%选择。
对于分支线上或重合保险的熔丝选择,要保证各熔丝相互之间的选择性。
两级保护之间,熔丝的额定电流最少应相差一级。
装在变送器高压侧的熔断器,应与供电线路的继电保护装置相互配合。
熔丝的熔断时间应小于电源侧的继电保护的动作时间。