高一数学集合的基本运算2
- 格式:pptx
- 大小:885.54 KB
- 文档页数:8
第02讲集合的运算(7大考点13种解题方法)考点考向集合之间的基本运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }1.由所有属于集合A 或属于集合B 的元素组成的集合叫A 与B 的并集,记作A ∪B ;符号表示为A ∪B ={x |x ∈A 或x ∈B }2.并集的性质A ∪B =B ∪A ,A ∪A =A ,A ∪∅=A ,A ⊆A ∪B .3.对于两个给定的集合A 、B ,由所有属于集合A 且属于集合B 的元素组成的集合叫A 与B 的交集,记作A ∩B。
符号为A ∩B ={x |x ∈A 且x ∈B }。
4.交集的性质A ∩B =B ∩A ,A ∩A =A ,A ∩∅=∅,A ∩B ⊆A .5、对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,记作∁U A 。
符号语言:∁U A ={x |x ∈U ,且x ∉A }。
【要点注意】1.A ⊆B ⇔A ∩B =A ⇔A ∪B =B ()()UUA B A B U ⇔=∅⇔=痧.2.德▪摩根定律:①并集的补集等于补集的交集,即()=()()U UU A B A B 痧;②交集的补集等于补集的并集,即()=()()U UU AB A B 痧.方法技巧1.求集合并集的两种基本方法:(1)定义法:若集合是用列举法表示的,可以直接利用并集的定义求解;(2)数形结合法:若集合是用描述法表示的由实数组成的数集,则可以借助数轴求解.2.求集合交集的方法为:(1)定义法,(2)数形结合法.(3)若A ,B 是无限连续的数集,多利用数轴来求解.但要注意,利用数轴表示不等式时,含有端点的值用实点表示,不含有端点的值用空心点表示.3.集合基本运算的求解规律(1)离散型数集或抽象集合间的运算,常借用Venn 图求解.(2)集合中的元素若是连续的实数,常借助数轴求解,但是要注意端点值能否取到的情况.(3)根据集合运算求参数,先把符号语言译成文字语言,然后灵活应用数形结合求解.考点精讲考点一:交集题型一:交集的概念及运算1.(2022·浙江衢州·高一阶段练习)已知集合{1,2,3}A =,{2,3,4}B =,则A B =()A .{1,2,3,4}B .{2,3}C .{1,2}D .∅【答案】B【分析】根据交集的定义可求A B .【详解】{}2,3AB =,故选:B.2.(2022·全国·高一)已知集合{}22A x x =-<<,{}2,0,1,2B =-,则A B =()A .{}1,0,1-B .{}0,1C .{}2,0,1,2-D .{}1,0,1,2-【答案】B【分析】根据集合的交集运算,即可得答案.【详解】因为{}22A x x =-<<,{}2,0,1,2B =-,所以{0,1}A B =,故选:B .题型二:根据交集的结果求集合或参数3.(2017·浙江·长兴县教育研究中心高一期中)已知集合{}2,3,4,5A =,{}1,B a =,若{}5A B =,则=a ()A .2B .3C .4D .5【答案】D【分析】根据集合的交运算结果,即可求得参数值.【详解】因为{}5A B =,故可得{}51,a ∈,则5a =.故选:D.4.(2021·湖北·车城高中高一阶段练习)若集合{}322P x x =<≤,非空集合{}2135Q x a x a =+≤<-,则能使()Q PQ ⊆成立的所有实数a 的取值范围为()A .(1,9)B .[1,9]C .[6,9)D .(6,9]【答案】D【分析】由()Q P Q ⊆知Q P ⊆,据此列出不等式组即可求解.【详解】∵()Q P Q ⊆,∴P Q Q ⋂=,Q P ⊆,∴21352133522a a a a +<-⎧⎪+>⎨⎪-≤⎩,解得69a <≤,故选:D.题型三:根据交集的结果求集合元素个数5.(2021·河南·襄城县实验高级中学高一阶段练习)已知集合()1,A x y y x ⎧⎫==⎨⎬⎩⎭,(){},B x y y x ==,则AB 中元素的个数为()A .0B .1C .2D .3【答案】C【分析】联立方程解得11x y =⎧⎨=⎩或11x y =-⎧⎨=-⎩,得到答案.【详解】1y x y x⎧=⎪⎨⎪=⎩,解得11x y =⎧⎨=⎩或11x y =-⎧⎨=-⎩,故A B 中有两个元素.故选:C.6.(2022·江苏·高一)若集合{}1,2,3,4A B =,{}1,2A B =,集合B 中有3个元素,则A中元素个数为()A .1B .2C .3D .不确定【答案】C【分析】根据条件得到{}1,2,3B =或{}1,2,4B =,进而可得集合A 中元素个数.【详解】{}1,2AB =,则集合B 中必有元素1,2当{}1,2,3B =时,{}1,2,4A =,当{}1,2,4B =时,{}1,2,3A =,故集合A 中元素个数为3.故选:C.考点二:并集题型四:并集的概念及运算1.(多选)(2021·福建·晋江市磁灶中学高一阶段练习)已知集合{|2}A x x =<,{|320}B x x =->,则()A .32AB x x ⎧⎫⋂=<⎨⎬⎩⎭B .A B =∅C .{}2A B x x ⋃=<D .A B R=【答案】AC【分析】先求得集合B ,由此确定正确选项.【详解】3{|320}{|}2B x x B x x =->==<,所以32A B x x ⎧⎫⋂=<⎨⎬⎩⎭,{}2A B x x ⋃=<.故选:AC2.(多选)(2021·福建省同安第一中学高一阶段练习)已知集合{|2}A x x =<,{|320}B x x =->,则()A .32AB x x ⎧⎫⋂=<⎨⎬⎩⎭B .A B =∅C .A B R=D .{}A B 2x x ⋃=<【答案】AD【解析】先化简集合B ,再由交集和并集的概念,即可得出结果.【详解】因为集合{|2}A x x =<,{}33202B x x x x ⎧⎫=->=<⎨⎬⎩⎭,因此32A B x x ⎧⎫⋂=<⎨⎬⎩⎭,{}A B 2x x ⋃=<.故选:AD.题型五:根据并集的结果求集合或参数3.(多选)(2022·湖北武汉·二模)已知集合{}{}1,4,,1,2,3A a B ==,若{}1,2,3,4A B =,则a 的取值可以是()A .2B .3C .4D .5【答案】AB【分析】根据并集的结果可得{}1,4,a {}1,2,3,4,即可得到a 的取值;【详解】解:因为{}1,2,3,4A B =,所以{}1,4,a {}1,2,3,4,所以2a =或3a =;故选:AB4.(多选)(2021·湖南·高一期中)已知集合{}1,4,M x =,{}2,3N =,若{}1,2,3,4M N =U ,则x 的可能取值为()A .1B .2C .3D .4【答案】BC【分析】根据题意,结合集合中元素的互异性及两个集合的并集的定义,即可求解.【详解】由题意,集合{}1,4,M x =,{}2,3N =,且{}1,2,3,4M N =U 根据集合中元素的互异性及两个集合的并集的定义,可得2x =或3x =.故选:BC.题型六:根据并集的结果求集合元素个数5.(多选)(2021·广东揭阳·高一期末)若集合{}0,1,2,A x =,2{1,}B x =,A B A ⋃=则满足条件的实数x 为()A .0B .1C .D .【答案】CD【分析】由A B A ⋃=说明B 是A 的子集,然后利用子集的概念分类讨论x 的取值.【详解】解:由A B A ⋃=,所以B A ⊆.又{}0,1,2,A x =,2{1,}B x =,所以20x =,或22x =,或2x x =.20x =时,集合A 违背集合元素的互异性,所以20x ≠.22x =时,x =或x =2x x =时,得0x =或1x =,集合A 均违背集合元素互异性,所以2x x ≠.所以满足条件的实数x 的个数有2个.故选CD .【点睛】本题考查了并集及其运算,考查了子集的概念,考查了集合中元素的特性,解答的关键是要考虑集合中元素的互异性,是基本的概念题,也是易错题.考点三:补集、全集题型七:补集的概念及运算1.(2022·广东汕尾·高一期末)全集U =R ,集合{}3A x x =≤-,则 U A =ð______.【答案】{}3x x >-【分析】直接利用补集的定义求解【详解】因为全集U =R ,集合{}3A x x =≤-,所以 U A =ð{}3x x >-,故答案为:{}3x x >-2.(2022·江苏·高一单元测试)若全集S ={2,3,4},集合A ={4,3},则S A ð=____;若全集S ={三角形},集合B ={锐角三角形},则S B ð=______;若全集S ={1,2,4,8},A =∅,则S A ð=_______;若全集U ={1,3,a 2+2a +1},集合A ={1,3},U A ð={4},则a =_______;已知U 是全集,集合A ={0,2,4},U A ð={-1,1},U B ð={-1,0,2},则B =_____.【答案】{2}{直角三角形或钝角三角形}{1,2,4,8}1或-3{1,4}【分析】利用补集的定义,依次分析即得解【详解】若全集S ={2,3,4},集合A ={4,3},由补集的定义可得S A ð={2};若全集S ={三角形},集合B ={锐角三角形},由于三角形分为锐角、直角、钝角三角形,故S B ð={直角三角形或钝角三角形};若全集S ={1,2,4,8},A =∅,由补集的定义S A ð={1,2,4,8};若全集U ={1,3,a 2+2a +1},集合A ={1,3},U A ð={4},故{1,3,4}U U A A =⋃=ð即2214a a ++=,即223(1)(30a a a a +-=-+=),解得=a 1或-3;已知U 是全集,集合A ={0,2,4},U A ð={-1,1},故{1,0,1,2,4}U U A A =⋃=-ð,U B ð={-1,0,2},故B ={1,4}。
高一数学集合知识点全总结一、集合的概念集合是具有某种特定性质的事物的总体或类别。
集合中具体的元素称为集合的成员。
集合的表示方法有三种:列举法、描述法和集合的图示法。
1. 列举法:集合A = {a, b, c, d, e}2. 描述法:集合A = {x|x具有某种特定的性质}3. 图示法:通常用Venn图来表示,也可以用数轴、区间等形式表示。
二、集合的基本运算1. 并集设A和B是两个集合,A和B的并集,记作A∪B,是一个集合C,C中的元素是A和B 中所有元素的集合,即C={x | x∈A或x∈B}。
2. 交集设A和B是两个集合,A和B的交集,记作A∩B,是一个集合C,C中的元素是A和B 中共有元素的集合,即C={x | x∈A且x∈B}。
3. 差集设A和B是两个集合,A和B的差集,记作A-B,是一个集合C,C中的元素是属于A 但不属于B的所有元素的集合,即C={x | x∈A,x∉B}。
4. 补集A的补集,记作Ā,是一个集合C,C中的元素是不属于A的所有元素的集合,即C={x | x∈U,x∉A},其中U为全集。
5. 交叉并集设A和B是两个集合,A和B的交叉并集,记作A⊕B,是一个集合C,C中的元素是A 和B中所有元素的集合减去A和B的交集,即C={x | x∈A或x∈B,但x∉A∩B}。
6. 笛卡尔积对于两个集合A和B,在数学上,A和B的笛卡尔积,记作AxB,是一个集合C,C中的元素是由A和B中的每个元素按一定次序组成的。
写作C={(a,b)|a∈A,b∈B}以上的集合运算规则和公式需要通过具体的例题来进行练习和理解。
三、集合的关系1. 包含关系若集合A的每个元素都是集合B的元素,则A是B的子集,记作A⊆B或B⊇A。
特别地,空集是每个集合的子集。
2. 相等关系若集合A和B有相同的元素,则A等于B,记作A=B。
3. 差集和补集的关系若A⊆B,则A-B=BĀ。
四、集合论的重要定理1. 德摩根定理对于任意两个集合A和B,有以下两个等式成立:A∪B = AĀ∩BĀA∩B = AĀ∪BĀ2. 韦恩图定理对于任意三个集合A、B和C,有以下等式成立:A∪(B∩C) = (A∪B)∩(A∪C)A∩(B∪C) = (A∩B)∪(A∩C)3. 分配率对于任意三个集合A、B和C,有以下等式成立:A∪(B∩C) = (A∪B)∩(A∪C)A∩(B∪C) = (A∩B)∪(A∩C)以上定理是在集合论中非常重要的定理,需要通过具体的例题来进行理解和应用。
第一章集合与常用逻辑用语1.3 集合的基本运算第2课时补集及综合运用【学习目标】1.能从教材实例中抽象出全集和补集的含义,准确翻译和使用补集符号和Venn图..(数学抽象) 2.掌握有关的术语和符号,并会用它们正确进行集合的补集运算.(数学运算)3.会用Venn图、数轴解决集合综合运算问题.(直观想象)【使用说明及学法指导】1.预学指导:精读教材的内容,完成预学案,找出自己的疑惑;2.探究指导:小组成员依次发表观点,有组织,有记录,有展示,有点评;3.展示指导:规范审题,规范书写,规范步骤,规范运算;4.检测指导:课堂上定时训练,展示答案;5.总结指导:回扣学习目标,总结本节内容.【预学案】知识点1 全集1.概念:如果一个集合含有所研究问题中涉及的所有元素,那么就称这个集合为_______.2.记法:通常记作U.思考1:在集合运算问题中,全集一定是实数集吗?知识点2 补集思考2:怎样理解补集?预学自测:1.已知集合A={x|x<-5或x>7},则∁R A=( )A.{x|-5<x<7} B.{x|-5≤x≤7}C.{x|x<-5}∪{x|x>7} D.{x|x≤-5}∪{x|x≥7}2.(2019·贵州遵义市高一期末测试)已知集合U={1,2,3,4,5},集合A={1,3,4},B={2,4},则(∁U A)∪B=( )A.{2,4,5} B.{1,3,4} C.{1,2,4} D.{2,3,4,5}3.(2019·浙江,1)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁U A)∩B=( ) A.{-1} B.{0,1} C.{-1,2,3} D.{-1,0,1,3}4.设全集U=Z,A={x∈Z|x<4},B={x∈Z|x≤2},则∁U A与∁U B的关系是___________.5.已知全集U,集合A={1,3,5,7,9},∁UA={2,4,6,8},∁U B={1,4,6,8,9},求集合B.【我的疑惑】_____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________【探究案】探究一:补集的基本运算例1 (1)已知全集为U,集合A={1,3,5,7},∁U A={2,4,6},∁U B={1,4,6},则集合B=_________.(2)已知全集U={x|x≤5},集合A={x|-3≤x<5},则∁U A=_______________.【对点练习】❶ (1)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=( ) A.∅B.{2} C.{5} D.{2,5}(2)已知全集U={x|1≤x≤5},A={x|1≤x<a},若∁U A={x|2≤x≤5},则a=_____.探究二:交集、并集、补集的综合运算例2 已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B,(∁U A)∪B,A∩(∁U B).【对点练习】❷ (1)已知集合U={1,2,3,4},A={1,3},B={1,3,4},则A∪(∁U B)=________;(2)设U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)=( )A.{x|0≤x<1} B.{x|0<x≤1}C.{x|x<0} D.{x|x>1}探究三:与补集相关的参数值的求解例3 已知集合A={y|y>a2+1或y<a},B={y|2≤y≤4},若A∩B≠∅,求实数a的取值范围.【对点练习】❸若集合A={x|ax2+3x+2=0}中至多有1个元素,则实数a的取值范围为________.误区警示忽视空集的特殊性例4 已知A={x∈R|x<-2或x>3},B={x∈R|a≤x≤2a-1},若A∪B=A,则实数a的取值范围为_____________.【检测案】1.(2020·吉林乾安七中高一期末测试)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=( )A.{1,3,4} B.{3,4} C.{3} D.{4}2.如图,I是全集,A,B,C是它的子集,则阴影部分所表示的集合是( )A.(∁I A∩B)∩C B.(∁I B∪A)∩CC.(A∩B)∩(∁I C) D.(A∩∁I B)∩C3.设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁U A)∩B=________.4.已知U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},求A∩(∁U B),(∁U A)∩(∁U B).5.设S={x|x是平行四边形或梯形},A={x|x是平行四边形},B={x|x是菱形},C={x|x是矩形},求B∩C,∁S B,∁S A.【课堂小结】。
高一数学必修一集合的基本运算1. 什么是集合?1.1 集合的概念哎,说到集合,你可能会想,它到底是什么呢?其实啊,集合就是把一堆有共同特点的东西,像一个大箱子,装在一起。
比如说,你把所有的苹果放在一个篮子里,这个篮子就是一个集合,里面的苹果就是这个集合的元素。
简简单单,但它可是数学中最基础的概念之一呢!1.2 集合的表示方法集合的表示方法也很简单,我们可以用花括号来表示集合。
比如,集合A={1, 2, 3},这就表示集合A里有1、2、3这几个元素。
还有一种表示方式叫做描述法,比如“所有小于5的自然数”,这也是一个集合。
是不是很直观呢?2. 集合的基本运算2.1 并集好了,我们来聊聊集合的运算。
首先是“并集”。
假如你有两个集合,一个是A={1, 2, 3},另一个是B={3, 4, 5}。
把这两个集合合起来,去掉重复的元素,就得到了它们的并集。
也就是说,A∪B={1, 2, 3, 4, 5}。
想象一下,像你把两个不同的书架上的书,搬到一个新的书架上,这样你就能看到所有的书了,这就是并集的意思。
2.2 交集接下来是“交集”。
交集就是找出两个集合里都出现的元素。
以刚刚的集合A和B为例,它们的交集是A∩B={3}。
就像你和朋友都喜欢吃巧克力饼干,那这个巧克力饼干就是你们的“交集”,两个人都喜欢。
2.3 补集然后是“补集”。
补集有点意思,它就是原集合的“反面”。
比如,集合A是{1, 2, 3},在全集U(假设全集是{1, 2, 3, 4, 5})中,A的补集就是那些不在A中的元素。
也就是说,A的补集是{4, 5}。
就像你从整个果篮里挑出没有苹果的部分,那就是补集。
3. 集合的关系3.1 包含关系集合之间还有“包含关系”。
一个集合A包含在集合B里,意思是A里的所有元素都在B里面。
比如,A={1, 2},B={1, 2, 3},那么A就包含在B里,写作A⊆B。
就像你是一个大家庭的成员,你肯定也属于家庭的每个小分组。
第2课时全集、补集的运算必备知识基础练1.[2022·北京怀柔高一期末]设全集U={1,2,3,4,5,6},集合A={2,4,6},那么∁U A=( )A.{2} B.{3,5}C.{1,3,5} D.{1,4,6}2.已知集合U={1,2,3,4,5,6},M={2,3,5},N={4,5},则∁U(M∪N)=( )A.{2,3,4,5} B.{5}C.{1,6} D.{1,2,3,4,6}3.[2022·江苏无锡高一期末]已知全集U={1,2,3,4,5},A={2,3},B={1,3},则∁U(A∩B)=( )A.{3} B.{4,5}C.{1,2,4,5} D.{1,2,3,5}4.已知集合M={1,2,3},N={3,4},全集I={1,2,3,4,5},则M∪(∁I N)=( )A.{1,2,4} B.{1,2,3,5}C.{1,2,4,5} D.I5.[2022·山东菏泽高一期末]已知集合U={x∈N|0<x<8},A={1,2,3},B={3,4,5,6},则下列结论错误的是( )A.A∩B={3} B.A∪B={1,2,3,4,5,6}C.∁U A={4,5,6,7,8} D.∁U B={1,2,7}6.已知集合A={x|x>3},B={x|x≥6},则∁A B=( )A.{x|x≤3} B.{x|3<x<6}C.{x|3≤x≤6} D.{x|x>6}7.已知全集U={0,1,2},且∁U A={2},则A=________.8.已知全集U={1,2,3,4,5},且A={2,3,4},B={1,2},则A∩(∁U B)=________.关键能力综合练1.[2022·福建漳州高一期末]正确表示图中阴影部分的是( )A.(∁U A)∪B B.(∁U A)∪(∁U B)C.∁U(A∪B) D.∁U(A∩B)2.[2022·广东汕头高一期末]集合A={x|1<x<3},集合B={x|x>4或x<2},则集合A ∪(∁R B)=( )A.R B.{x|2≤x<3}C.{x|1<x≤4} D.∅3.[2022·辽宁锦州高一期末]已知全集U=R,A={x|x≤3},B={x|x<-3},则A∩(∁U B)=( )A.{x|x<-3}B.{x|-3<x<3}C.{x|-3≤x≤3}D.{x|x≤3}4.对于全集U的子集M,N,若M是N的真子集,则下列集合中必为空集的是( )A.(∁U M)∩N B.M∩(∁U N)C.(∁U M)∩(∁U N) D.M∩N5.[2022·广东东莞高一期末](多选)图中阴影部分的集合表示正确的是( )A.N∩(∁U M) B.M∩(∁U N)C.[∁U(M∩N)]∩N D.(∁U M)∩(∁U N)6.设集合A={x|1<x<4},B={x|-1≤x≤3},则A∩∁R B=________.7.设全集U={2,3,a2+2a-3},A={2,3},∁U A={5},则a=________.8.若U={n|n是小于9的正整数},A={n∈U|n是奇数},B={n∈U|n是3的倍数},则(∁U A)∩(∁U B)=________9.已知集合U={x|1≤x≤7},A={x|2≤x<5},B={x|3<x≤7}.(1)求A∩B;(2)求(∁U A)∪B.10.[2022·北京高一期末]已知集合A={x|-2<x<3},B={x|3x≤a}.(1)求集合∁R A;(2)当a=1时,求A∩B;(3)若B∪(∁R A)=R,求a的取值范围.核心素养升级练1.集合A={1,2,4},B={x|x2∈A},将集合A,B分别用如图中的两个圆表示,则圆中阴影部分表示的集合中元素个数恰好为4的是( )2.设U=R,集合A={x|x2-3x+2=0},B={x|x2-(m+1)x+m=0},若(∁U A)∩B=∅,则实数m=________.3.[2022·山东济宁高一期末]已知全集为R,集合A={x|1≤x≤2},B={x|x<m或x>2m +1,m>0}.(1)当m=2时,求A∩B;(2)若A⊆∁R B,求实数m的取值范围.第2课时全集、补集的运算必备知识基础练1.答案:C解析:由全集U={1,2,3,4,5,6},集合A={2,4,6},所以∁U A={1,3,5}.2.答案:C解析:因为U={1,2,3,4,5,6},M={2,3,5},N={4,5},所以M∪N={2,3,4,5},所以∁U(M∪N)={1,6}.3.答案:C解析:A∩B={2,3}∩{1,3}={3},又U={1,2,3,4,5}则∁U(A∩B)={1,2,4,5}.4.答案:B解析:由题意得∁I N={1,2,5},所以M∪(∁I N)={1,2,3,5}.5.答案:C解析:因为集合U={x∈N|0<x<8}={1,2,3,4,5,6,7},A={1,2,3},B={3,4,5,6},所以A∩B={3},A∪B={1,2,3,4,5,6},∁U A={4,5,6,7},∁U B={1,2,7}.6.答案:B解析:∵A={x|x>3},B={x|x≥6},∴∁A B={x|3<x<6}.7.答案:{0,1}解析:因为全集U={0,1,2},且∁U A={2},则A={0,1}.8.答案:{3,4}解析:全集U={1,2,3,4,5},且A={2,3,4},B={1,2},则∁U B={3,4,5},则A∩(∁U B)={3,4}.关键能力综合练1.答案:C解析:由题意图中阴影部分为:∁U(A∪B).2.答案:C解析:由题意,集合B={x|x>4或x<2},可得∁R B={x|2≤x≤4},又由A={x|1<x<3},所以A∪(∁R B)={x|1<x≤4}.3.答案:C解析:由题意,∁U B={x|x≥-3},所以A∩(∁U B)={x|-3≤x≤3}.4.答案:B解析:集合U ,M ,N 的关系如图,由图形看出,只有(∁U N )∩M 是空集.5.答案:AC解析:由已知阴影部分在集合N 中,而不在集合M 中,故阴影部分所表示的元素属于N ,不属于M (属于M 的补集),即可表示为N ∩(∁U M )或[∁U (M ∩N )]∩N .6.答案:{x |3<x <4}解析:因为B ={x |-1≤x ≤3}, 所以∁R B ={x |x <-1或x >3},所以A ∩∁R B ={x |3<x <4}.7.答案:-4或2解析:因为U ={2,3,a 2+2a -3},A ={2,3},所以∁U A ={a 2+2a -3},因为∁U A ={5},所以a 2+2a -3=5,解得:a =2或-4,经检验,均符合要求.8.答案:{2,4,8}解析:∵U ={n |n 是小于9的正整数},A ={n ∈U |n 是奇数},B ={n ∈U |n 是3的倍数}, ∴U ={1,2,3,4,5,6,7,8},则A ={1,3,5,7},B ={3,6},∴∁U A ={2,4,6,8},∁U B ={1,2,4,5,7,8},∴(∁U A )∩(∁U B )={2,4,8}.9.解析:(1)由A ={x |2≤x <5},B ={x |3<x ≤7},得A ∩B ={x |3<x <5};(2)由U ={x |1≤x ≤7},A ={x |2≤x <5},得∁U A ={x |1≤x <2或5≤x ≤7}, 故(∁U A )∪B ={x |1≤x <2或3<x ≤7}. 10.解析:(1)由题意,A ={x |-2<x <3}, 故∁R A ={x |x ≥3或x ≤-2}.(2)当a =1时,B ={x |3x ≤1}={x |x ≤13}, 故A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-2<x ≤13. (3)由(1)∁R A ={x |x ≥3或x ≤-2},B ={x |3x ≤a }=⎩⎨⎧⎭⎬⎫x |x ≤a 3, 若B ∪(∁R A )=R ,则a 3≥3,解得a ≥9.核心素养升级练1.答案:C解析:因为A ={1,2,4},B ={x |x 2∈A },所以B ={-2,-2,-1,1,2,2}, 记U =A ∪B ={-2,-2,-1,1,2,2,4},对于A 选项,其表示A ∩(∁U B )={4},不满足;对于B 选项,其表示∁U (A ∩B )={-2,-2,-1,2,4},不满足;对于C 选项,其表示(∁U A )∩B ={-2,-2,-1,2},满足;对于D 选项,其表示A ∩B ={1,2},不满足.2.答案:1或2解析:由题得集合A ={1,2},当m =1时,B ={1};当m ≠1时,B ={1,m }.所以当m =1时,(∁U A )∩B =∅,符合题意;当m ≠1时,(∁U A )∩B =∅,所以m =2.综合得m =1或m =2.3.解析:(1)当m =2时,B ={x |x <2或x >5},又A ={x |1≤x ≤2},所以A ∩B ={x |1≤x <2};(2)因为B ={x |x <m 或x >2m +1,m >0},所以∁R B ={x |m ≤x ≤2m +1},又A ⊆∁R B ,所以⎩⎪⎨⎪⎧m ≤12≤2m +1,解得12≤m ≤1. 所以实数m 的取值范围12≤m ≤1.。