第四章整环里的因子分解.doc
- 格式:doc
- 大小:1.78 MB
- 文档页数:12
因子分解在数论中,因子分解是一个古老而又困难的问题。
现代的算法并不能测试出一个树所有可能的素因子。
尽管如此,人们在这方面还是取得了不少的进展。
(一)因子分解法目前,比较好的因子分解算法有:二次筛选法数域筛法椭圆曲线法连式分解法试除法因子分解是一个迅速发展的领域,如果没有发展一种新方法,那么2048比特数(由两个1024比特素数相乘产生)从因子分解上来说是安全的。
然而,没有人能够预见未来。
在发现数域筛法之前,许多人猜测二次筛法接近于任何因子分解方法所能做到的最快(极限),但事实并非如此。
(二)模N 的平方根如果n 是两个素数的乘积,那么计算模n 的平方根的能力在计算上等价于对n 进行因子分解的能力。
换句话说,某人知道n 的素因子,那么就能容易计算出一个数模n 的平方根;这个计算已被证明与计算n 的素因子一样困难。
素数生成元两个大的素数相乘,据推测它是一个单向函数,因为这两个数数相乘得到一个数是容易的,但分解这个大数且恢复原来的两个大素数却是困难的。
这样,就有办法利用这个单向函数设计一个陷门单向函数。
一、单向函数的概念及其基本意义由于本章所提出的方案中,单向函数具有特殊的应用,在此有必要对其作一简单介绍。
定义1 令函数f 是集合A 到集合B 的映射,以B A f →:表示。
若对任意,21x x ≠A x x ∈21,,有)()(21x f x f ≠则称f 为单射,或可逆的函数。
f 为可逆的充要条件是:存在函数AB g →:,使对所有A x ∈有x x f g =))((。
定义2 一个可逆函数B A f →:,若它满足:(1) 对所有A x ∈,计算)(x f 是容易的;(2) 对“几乎所有A x ∈”由)(x f 求x “极为困难”以至于实际上不可能做到,则称f 为单向函数。
定义中的“极为困难”是对现有的计算资源和算法而言。
Massey 称之为视在困难性,相应函数称之为视在单向函数,以此来和本质上的困难相区别。
第四章整环里的因子分解§1、素元、唯一分解一、整除、单位、相伴元定义在整环I中,若a=bc,则称a能被b整除,也说b整除a,记为b|a。
b不能整除a记作b|a。
定义整环I的一个元ε叫做I的一个单位,假如ε是一个有逆元的元。
元b叫做元a的相伴元(a与b相伴),假若b是a 和一个单位ε的乘积:b=εa。
单位元必是单位,反之不然。
例1在整数环Z中,单位即是1和-1,b是a的相伴元⇔b=±a。
在数域F的多项式环F[x]中,单位即是零次多项式c∈F*,g(x)是f(x)的相伴元⇔g(x)=cf(x)。
定理1 两个单位ε1和ε2的乘积ε1ε2也是单位。
单位ε的逆元ε-1也是一个单位。
推论整环I中全体单位的集U关于乘法作成群。
二、素元定义单位以及元a的相伴元叫做a平凡因子。
其余的a的因子,假如还有的话,叫做a的真因子。
定义整环I的一个元p叫做一个素元(注:应是不可约元),假如p0≠,p不是单位,并且p只有平凡因子。
例2 在例1的Z中,素元就是素数。
在F[x]中,素元就是不可约多项式。
定理2 单位ε同素元p的乘积εp也是一个素元。
定理3整环I的一个非零元a有真因子⇔a=bc,b和c都不是单位。
推论假定a≠0,并且a有真因子b:a=bc。
那么c也是a的真因子。
三、唯一分解定义一个整环I的一个元a说是在I 里有唯一分解,假如以下条件能被满足:(i)a=p1p2…p r(p i是I的素元)(ii)若同时a=q1q2…q s(q i是I的素元)那么r=s并且我们可以把q i的次序掉换一下,使得q i=εi p i (εi是 I的单位)零元和单位都不能唯一分解。
例3 在整环I={}Z+,3中:a∈-bab(1)ε是单位1=⇔。
⇔ε=1ε2±(2)若4α2=,则α是素元。
(3)4∈I有两种不同的分解(不相伴分解):()()3+-=-⋅=113224-§2、唯一分解环一、唯一分解环定义一个整环I叫做一个唯一分解环,假如I的每一个既不等于零又不是单位的元都有唯一分解。
第四章 整环里的因子分解§4.1 不可约、素元、最大公因子1. 证明:0不是任何元的真因子.注 这里的0是指整环I 的零元,“任何元”是指整环I 中的任何元.证明 由于0不能整除整环I 中的非零元,因此0不是整环I 中的非零元的真因子.虽然0整除0,但0与0相伴,因此0不是0的真因子.所以0不是整环I 中任何元的真因子.2.找出Gauss 整数环},|{][Z Z ∈+==n m ni m i I 的所有单位.解 假设Z ∈b a ,,使得bi a +是I 中的单位,则存在Z ∈d c ,,使得1))((=++di c bi a ,从而,1))((2222=++d c b a .由此可见,i bi a ±±=+,1.所以i ±±,1就是I 中的所有单位.3.证明:在Gauss 整数环][i I Z =中,3是不可约元,5是可约元.证明 显然,3和5既不是零元,也不是单位.设Z ∈d c b a ,,,,使得3))((=++di c bi a .于是9))((2222=++d c b a .显然322≠+b a .因此122=+b a 或122=+d c ,从而,bi a +是单位或di c +是单位.所以3是不可约元.由5)2)(2(=-+i i 可知,i +2和i -2都是5的真因子.所以5是可约元.4.设I 是整环,I b a ∈,,直接证明:a b a ⇔=)()(~b .证明 由于I 是有单位元的交换环,根据定理3.16的推论1(3),aI a =)(,bI b =)(. 因此⇔=)()(b a 存在R s r ∈,,使得rb a =,sa b =a ⇔~b .5.设p 是整环I 的素元,m a a a p 21|(2≥m ),证明:至少存在一个i a (m i ≤≤1),使i a p |.证明 我们用数学归纳法来证明.当2=m 时,根据素元的定义,我们的断言成立.假设当n m =(2≥n )时,结论成立.当1+=n m 时,根据素元的定义,n a a a p 21|或1|+n a p .若p 不整除1+n a ,则n a a a p 21|.于是,根据归纳假设,至少存在一个i a (n i ≤≤1),使i a p |.所以当1+=n m 时,我们的断言成立.6.设整环I 中任意两个元的最大公因子都存在,m a a a ,,,21 是I 中m 个不全为零的元,若m m db a db a db a ===,,,2211 ,证明:d 是m a a a ,,,21 的最大公因子m b b b ,,,21 ⇔互素.证明 假定m m db a db a db a ===,,,2211 .m b b b ,,,21 不互素⇔I 中存在元素',,','21m b b b 和非零、非单位的元素c ,使得',,','2211m m cb b cb b cb b ===⇔I 中存在元素',,','21m b b b 和非零、非单位的元素c ,使得',,','2211m m dcb a dcb a dcb a ===d ⇔不是m a a a ,,,21 的最大公因子.所以d 是m a a a ,,,21 的最大公因子m b b b ,,,21 ⇔互素.§4.2 惟一分解环1.证明:整环},|10{]10[Z Z ∈+==n m n m I 不是惟一分解环.证明 显然,I ∈10,10,5,2,10,5,2都不是单位,也都不是零元,2和5都不是10的相伴元,但是10105210⋅=⋅=.所以I 不是惟一分解环.2.证明:Gauss 整数环][i I Z =中,5是唯一分解元.证明 首先,由§1习题第2题知,在I 中只有1±和i ±是单位.其次,显然i ±2都不是零元和单位元.事实上,i ±2是I 中的不可约元.为了阐明这一事实,考察任意的Z ∈d c b a ,,,.若i di c bi a ±=++2))((,则5))((2222=++d c b a ,由此可见,122=+b a 或122=+d c ,从而,bi a +是单位或di c +是单位.因此i ±2没有非平凡的因子.所以i ±2是I 中的不可约元.当然,它们的相伴元)2(i ±-,)2(i i ±,)2(i i ±-也都是不可约元.现在设Z ∈d c b a ,,,,使得5))((=++di c bi a . (*)于是,25))((2222=++d c b a .由此可见,122=+b a 或522=+b a .当122=+b a ,i bi a ±±=+,1是I 中的单位,从而,di c +是5的相伴元.这时(*)式不是5的不可约元分解式.当522=+b a 时,bi a +的值只能是如下八个数之一:i ±2,)2(i ±-,)2(i i ±,)2(i i ±-.显然,这八个数都是5的真因子.这样一来,根据(*)式可以断言,)2)(2(5i i -+=是5的不可约元分解式,并且:对于5的任意一个不可约元分解式n p p p 215=,必有2=n ;必要时,交换1p 和2p 的下标和次序后,1p 与i +2相伴且2p 与i -2相伴.所以5是唯一分解元.2.按惟一分解环定义直接证明定理4.11.注 定理4.11的内容如下:在一个惟一分解环I 中,每一个不可约元都是素元.证明 设I p ∈是一个不可约元.任意给定I b a ∈,,并假设ab p |.于是,存在I c ∈,使得pc ab =.当0=a 或0=b 时,显然a p |或b p |.当a 为单位时,有pc a b 1-=,从而,b p |.同理,当b 为单位时,有a p |.现在假定a 和b 都不是零元和单位.显然,c 不是零元,也不是单位.由于I 是惟一分解环,不妨设m p p p a 21=,n q q q b 21=,u r r r c 21=.其中,j p (m j ≤≤1),k q (n k ≤≤1)和l r (u l ≤≤1)都是不可约元.于是,n m u q q q p p p r r pr 212121=. (*)由于I 是惟一分解环,可以断言:或者存在j (m j ≤≤1),使得p 与j p 相伴,从而,a p |; 或者存在k (n k ≤≤1),使得p 与k q 相伴,从而,b p |.总而言之,a p |或b p |.这样一来,由于I b a ∈,的任意性,我们断言p 是素元.4.设I 是惟一分解环,m a a a ,,,21 是I 中m (2≥m )个元,证明:在I 中m a a a ,,,21 的最大公因子存在,且任意两个最大公因子互为相伴元.证明 首先,我们用数学归纳法来证明m a a a ,,,21 有最大公因子.事实上,定理4.10告诉我们,当2=m 时,结论成立.假设当n m =2(≥n )时结论成立.现在考察1+=n m 的情形:根据归纳假设,不妨设a 是n a a a ,,,21 的一个最大公因子.根据定理4.10,可设d 是a 与1+n a 的最大公因子.显然,d 是121,,,,+n n a a a a 的一个公因子.假设'd 是121,,,,+n n a a a a 的一个公因子.则'd 是n a a a ,,,21 一个公因子.由于a 是n a a a ,,,21 的一个最大公因子,因此a d |'.由于1|'+n a d ,因此'd 是a 与1+n a 的公因子.这样一来,由于d 是a 与1+n a 的最大公因子,因此d d |'.所以d 是121,,,,+n n a a a a 的一个最大公因子.所以当1+=n m 时m a a a ,,,21 有最大公因子.§4.3 主 理 想 环1.设I 是主理想环,d 是I b a ∈,的一个最大公因子,证明:I t s ∈∃,,使bt as d +=. 证明 根据定理3.16的推论2,),()()(b a b a =+,其中),(b a 表示},{b a 生成的理想.根据定理 4.15,),()(b a d =.因此)()()(d b a =+.由)()(b a d +∈可知,存在I t s ∈,,使bt as d +=.2.设I 是主理想环,I b a ∈,,证明:b a ,互素I t s ∈∃⇔,,使1=+bt as .证明 根据定义4.8、第1题、定理3.16的推论2以及定理4.15,我们有b a ,互素⇔1是a 与b 的一个最大公因子⇒存在I t s ∈,,使1=+bt as)()(1b a +∈⇒),()()()1(b a b a =+=⇒⇒1是a 与b 的一个最大公因子.所以b a ,互素I t s ∈∃⇔,,使1=+bt as .3.设I 是主理想环,I b a ∈,,证明:(1)若b a ,互素,且bc a |,则c a |;(2)若b a ,互素,且c a |,c b |,则c ab |.证明 (1) 当0=a 时,由bc a |可知,0=bc ;由a 与b 互素可知,b 是单位.因此0=c .所以c a |.当a 是单位时,显然c a |.假设a 既不是0,也不是单位.由于bc a |,因此bc 既不是0,也不是单位;从而,b 和c 都不是0.若b 是单位,则由bc a |可知c a |.现在假定b 不是单位.由于I 是主理想环,根据定理4.14,I 是惟一分解整环.不妨设m p p p a 21=,n q q q b 21=,其中m p p p ,,,21 和n q q q ,,,21 都是R 中的既约元.于是存在I k ∈,使得c q q q p p kp n m 2121=.由于a 与b 互素,因此i p (),,2,1m i =与j q (),,2,1n j =不相伴.这样一来,由上式可知,c 可以表示成如下形式:m p p p k c 21'=.所以c a |.(2)显然,当0=a 或0=b 时,0=c ,从而,c ab |;当a 是单位或b 是单位时,c ab |.现在假设a 和b 既不是0,也不是单位.由于I 是主理想环,根据定理4.14,I 是惟一分解整环.不妨设m p p p a 21=,n q q q b 21=,其中m p p p ,,,21 和n q q q ,,,21 都是I 中的既约元.于是,n m q q q p p p ab 2121=,n m q q q k p p kp c 2121'==.如果a 与b 互素,那么,i p (),,2,1m i =与j q (),,2,1n j =不相伴.这样一来,因为I 是唯一分解整环,c 可以表示成如下形式:ab k q q q p p p k c n m ''''2121== .所以c ab |.4.在整数环Z 中,求出包含)6(的所有极大理想.证明 我们知道,整数环Z 是主理想环.设)(a 是包含)6(的一个极大理想.根据定理4.4,a 是6的真因子.因此2±=a 或3±=a .所以)2()2(-=和)3()3(-=就是包含)6(的所有极大理想.5.在有理数域Q 上的一元多项式环][x Q 中,理想)23,1(23+++x x x 等于怎样一个主理想?解 显然,1+x 是13+x 与232++x x 的一个最大公因子.根据定理3.16的推论2和定理4.15,)1()23,1(23+=+++x x x x .6.证明:)3/(][2+x x Q 是一个域.证明 首先, 由于Q 是域,根据§3.7中的例1,][x Q 是主理想环.其次,显然32+x 是][x Q 中的不可约元.这样一来,根据定理4.16和定理3.23,)3/(][2+x x Q 是一个域.§4.4 欧 氏 环1.证明:域F 是欧氏环.证明 定义}0{\F 到到}0{ N 的映射φ如下:1)(=a φ,}0{\F a ∈∀.显然,对于任意的}0{\F a ∈和F b ∈,存在F q ∈,使得0+=aq b .所以F 是欧氏环.2.证明:整环},|2{]2[Z Z ∈-+=-n m n m 关于*-]2[Z 到}0{ N 的映射222)2(n m n m φ+=-+是一个欧氏环.证明 考察任意的*-∈]2[Z α和]2[-∈Z β:设2-+=b a α,,2-+=d c β其中Z ∈d c b a ,,,.于是,222222)(2(22222222-+-+++=+---+=-+-+=b a bc ad b a bd ac b a b a d c b a d c αβ. 根据带余除法,存在Z ∈v u q q ,,,21,使得u q b a bd ac ++=+122)2(2,)2(21||022b a u +≤≤; v q b a bcd ad ++=-222)2(,)2(21||022b a v +≤≤. 令221-+=q q q .则222222222222b a v u q b a bc ad b a bd ac αβ+-++=-+-+++=, 从而222)2(b a αv u q αβ+-++=.注意到]2[,,-∈Z q βα,由上式可知,]2[2)2(22-∈+-+Z b a αv u .令222)2(ba αv u r +-+=,则]2[-∈Z r ,并且 r q αβ+=.当0≠r 时,222222||)2(|)2(|||)(αb a v u r r φ⋅+-+== )(2||22||222222αφb a v b a u ⋅⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⋅+⎪⎭⎫ ⎝⎛+= )()(2141αφαφ<⋅⎪⎭⎫ ⎝⎛+≤. 所以整环]2[-Z 关于*-]2[Z 到}0{ N 的映射φ是一个欧氏环.3.证明:整环},|2{]2[Z Z ∈+=n m n m 关于*]2[Z 到}0[ N 的映射|2|)2(22n m n m φ-=+是一个欧氏环.证明 令},|2{]2[Q Q ∈+=b a b a .定义*]2[Q 到Q 的映射ψ如下:|2|)2(22b a b a ψ-=+,*∈+∀]2[2Q b a ,其中Q ∈b a ,.于是,对于任意的*∈++]2[2,2Q d c b a (其中Q ∈d c b a ,,,),我们有)2()2(d c ψb a ψ+⋅+|)2)(2(|2222d c b a --=|)2)(2)(2)(2(|d c d c b a b a -+-+=|)2)(2)(2)(2(|d c b a d c b a --++=|)2)()2)((2)()2((|bc ad bd ac bc ad bd ac +-++++=|)(2)2(|22bc ad bd ac +-+=)2)()2(bc ad bd ac ψ+++=))2)(2((d c b a ψ++=.此外,显然]2[]2[Q Z ⊆,并且ψ在*]2[Z 上的限制就是φ.任意给定]2[2,]2[2Z Z ∈+=∈+=*d c βb a α,其中Z ∈d c b a ,,,.为了证明]2[Z 是欧氏环,现在只需阐明存在]2[,Z ∈r q ,使得r q αβ+=,其中,0=r 或)()(αφr φ<.事实上,我们有222222)()2(2)2)(2(b a bc ad bd ac b a d c b a αβ--+-=-+-=.根据带余除法,存在Z ∈v u q q ,,,21,使得u b a q bd ac +-=-)2(2221,|2|21||022b a u -≤≤; v b a q bc ad +-=-)2(222,|2|21||022b a v -≤≤. 令221q q q +=.于是,2222222b a v b a u q αβ-+-+=, 从而,αbc v b a u q αβ)222(2222-+-+= 22222222b c bu av b a bv au q α-++-++=. 注意到]2[,,Z ∈q βα,由上式可知,2222b a bv au -+和222b a bu av -+都是整数.令 22222222ba bu avb a bv au r -++-+=. 于是,]2[Z ∈r ,并且r q αβ+=.当0≠r 时,)()(r ψr φ=)()222(2222αψb a v b a u ψ⋅-+-= )(222222222αφb a v b a u ⋅⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=)(22222222αφb a v b a u ⋅⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-≤ )()(2141αφαφ<⋅⎪⎭⎫ ⎝⎛+≤.§4.5 惟一分解环上的一元多项式环1.证明:设)(),(21x f x f 是][x I 中两个本原多项式,若它们在][x Q 中相伴(Q 为I 的商域),则在][x I 中也相伴.证明 假设)(),(21x f x f 在][x Q 中相伴,则存在][x Q 中的单位u ,使得)()(21x uf x f =.由于][x Q 中的单位就是Q 中的非零元,且Q 为I 的商域,因此可设ab u =,其中b a ,是I 中的非零元.于是,)()(21x bf x af =.这样一来,根据引理1可以断言,)(),(21x f x f 在][x I 中相伴.2.设I 是惟一分解环,][)(),(x I x g x f ∈,且)()(1x af x f =,)()(1x bg x g =,I b a ∈,,)(),(11x g x f 是本原多项式,证明:若)(|)(x f x g ,则a b |.证明 不妨设)()()(x q x g x f =.于是,)()()(11x g x bq x af =.由于)(),(11x g x f 是本原多项式,根据上式和引理1可以断言,a ~)(x bq .由此可见,I x q ∈)(,从而,a b |.3.设)(x f 是][x Z 中首项系数为1的多项式,证明:若)(x f 有有理根a ,则a 是整数. 证明 假定)(x f 有有理根a .则))(()(a x x q x f -=,其中][)(x x q Q ∈.根据引理1,存在Q ∈21,r r 和本原多项式)(),(21x f x f ,使得)()(11x f r x q =,)(22x f r a x =-.于是,)()()(2121x f x f r r x f =.根据Gauss 引理,)()(21x f x f 是本原多项式.由于)(x f 的首项系数为1,由上式可知121=r r ,从而,)()()(21x f x f x f =.由此可见,)(2x f 的首项系数为1或1-.这样一来,由)(22x f r a x =-可知,a x x f -=)(2或a x x f +-=)(2.因为)(2x f 是本原多项式,所以a 是整数.4.域F 上的二元多项式环],[y x F 是惟一分解环,但不是主理想环. 证明 ]][[],[y x F y x F =.由于F 是域,根据定理 4.17可以断言,][x F 是欧氏环.根据定理4.18又可以断言,][x F 是惟一分解环.由于]][[],[y x F y x F =,根据定理4.21,可以断言,],[y x F 是惟一分解环.令A 表示],[y x F 中次数大于或等于1的所有多项式和零多项式组成的集合.显而易见,A 是],[y x F 的一个理想.考察任意的A y x f ∈),(:显然,或者)),((y x f x ∉,或者)),((y x f y ∉,但是A y x ∈,.因此)),((y x f A ≠.由此可见,A 不是],[y x F 的主理想.所以],[y x F 不是主理想环.5.证明:1053532),(22---+-=y x y xy x y x f 是],[y x Z 中不可约多项式. 证明 令][x I Z =.则][],[y I y x =Z .由于整数环Z 是惟一分解整环(参看§4.2),根据定理4.22,],[][y x y I Z =也是惟一分解整环.由于][5)53()1032(),(22y I y y x x x y x f ∈++---=,53+x 是I 中的不可约元,53+x ł5,)53(|53+-+x x ,53+x ł10322--x x ,根据定理4.23(Eisenstein 判别法),),(y x f 是],[y x Z 中不可约多项式.§4.6 因子分解与多项式的根1.问:][16x Z 中多项式2)(x x f =在16Z 中有多少个根?答 由直接演算知,][16x Z 中2)(x x f =在16Z 中有如下四个根:]0[,]4[,]8[,]12[.2.证明:][6x Z 中多项式x x x f -=3)(在6Z 中有6个根.证明 由直接演算知,6Z 中的]4[],3[],2[],1[],0[和]5[都是][6x Z 中多项式x x x f -=3)(的根.所以][6x Z 中多项式x x x f -=3)(在6Z 中有6个根.3.试求][5x Z 中多项式1)(5-=x x f 在5Z 中的根.解 由于5Z 是特征为5的域,因此55)1(1)(-=-=x x x f .由于5Z 无零因子,因此只有当]1[=x 时)(x f 的值为]0[,从而,)(x f 只有]0[=x 这个根.显然它是5重根.4.判断:(1)][3x Z 中多项式1)(2+=x x f 是否可约?(2)][5x Z 中多项式1)(2+=x x f 是否可约?解 (1)显然1)(2+=x x f 在3Z 中没有根,所以)(x f 是][3x Z 中的不可约多项式.(2)显然,5Z 中的]2[是)(x f 的根,所以)(x f 是][5x Z 中的可约多项式.5.设0ch =I ,][)(x I x f ∈,I a ∈,1≥k ,证明:a 是)(x f 的k 重根⇔a 是)(x f 的根,且a 是)('x f 的1-k 重根.证明 我们有a 是)(x f 的k 重根⇔存在][)(x I x g ∈,使k a x x g x f ))(()(-=,且a 不是)(x g 的根⇔存在][)(x I x g ∈,使1)))()((')(()('---+=k a x a x x g x kg x f .由于0ch =I ,0)(≠a g ,因此0)())((')(≠=-+a kg a a a g a kg ,从而,a 是)('x f 的1-k 重根.所以a 是)(x f 的k 重根⇔a 是)(x f 的根,且a 是)('x f 的1-k 重根.复 习 题 四1.设整环⎭⎬⎫⎩⎨⎧∈∈=}0{,2 N Z n m m I n ,找出I 中的所有单位与不可约元. 解 假设n m 2(其中Z ∈m ,}0{ N ∈n )是单位.于是,存在Z ∈k 和}0{ N ∈s ,使得122=⋅s n k m .由此可见,存在Z ∈j ,使得j n m 22±=.反过来,显然,对于任意的Z ∈j ,有I j ∈±2.显然I j ∈±21并且是j 2±的逆元.所以I 中的所有单位为:j 2±,Z ∈j . 假设n m 2(其中Z ∈m ,}0{ N ∈n )是不可约元.于是,0≠m 且s m 2±≠,Z ∈∀s .不妨设r s p p p m 212±=,其中1≥r ,Z ∈s ,r p p p ,,,21 为奇素数.若1>r ,则0212222r n s n p p p m ⋅±=.由于n j p 221和022r p p 都不是单位,这与n m 2是不可约元矛盾.所以1=r ,从而,n s n p m 2221±=,即存在Z ∈j 和奇素数p ,使得p m j n 22±=.反过来,设Z ∈j ,p 是奇素数,考察p j 2:显然,I p j ∈2并且既不是零元,也不是单位.假设I k m s n ∈2,2(其中Z ∈k m ,,}0{, N ∈s n ),并且|2p j s n k m 22⋅,即存在I l t ∈2(其中Z ∈j ,}0{ N ∈t ),使得s n t j k m l p 2222⋅=⋅.于是,m p |或k p |.当m p |时,我们有)2(22)(j n j n pm p m +-⋅⋅=, 其中I p m j n ∈⋅+-)(2,从而,n j m p 2|2.同理,当k p |时,s j k p 2|2.由此可见,p j 2是素元.因此p j 2±是不可约元.所以I 中的所有不可约元为:p j 2±,Z ∈j ,p 为奇素数. 2.求模8剩余类环8Z 的所有非零理想,以及它们的交. 解 8Z 的非零理想有:8Z ,]}6[],4[],2[],0{[,]}4[],0{[;它们的交是]}4[],0{[.3.证明:在惟一分解环I 中,任意两个元b a ,都有一个最小公倍元,即I m ∈∃,使m b m a |,|,并且若n b n a |,|,则n m |.(用],[b a 表示a 与b 的任意一个最小公倍元.)证明 设b a ,是惟一分解环I 中任意两个元.根据定理 4.10,b a ,有最大公因子.令),(b a 表示a 与b 的任意一个最大公因子,p b a a ),(=,'),(p b a b =. 由§4.1习题第6题知,p 与'p 互素.令'],[ap b a =.现在我们来阐明],[b a 就是a 与b 的一个最小公倍元.事实上,首先,由],[b a 的定义知],[|b a a .其次,我们有bp p p b a pp b a ap b a ===='),('),('],[,从而,],[|b a b .最后,假设I c ∈,使得c a |且c b |,则存在I q q ∈',,使得'bq aq c ==.于是,我们有''),(),(q p b a pq b a c ==.当0),(=b a 时,由pq b a aq c ),(==可知0=c ,从而,c b a |],[.当0),(≠b a 时,由等式''),(),(q p b a pq b a c ==可知''q p pq =.由于p 与'p 互素,根据等式''q p pq =和§4.3习题第3题可以断言q p |'.设t p q '=.于是,t b a t ap t pp b a pq b a c ],[''),(),(====,从而,c b a |],[.所以],[b a 是a 与b 的一个最小公倍元.4.证明:在一个惟一分解环I 中,ab ~),](,[b a b a . 证明 设),(b a 是a 与b 的任意一个最大公因子,],[b a 是a 与b 的任意一个最小公倍元,p b a a ),(=,'),(p b a b =,'ap m =.由上题知,bp m =,并且m 是a 与b 的一个最小公倍元.此外,我们我们还有),(),(b a m pb b a ab ==.此外,由最小公倍元的定义可知,m ~],[b a .因此),(b a m ~),](,[b a b a ,即ab ~),](,[b a b a .5.设I 是惟一分解环, ),(,),(),(21x f x f x f n 是][x I 中本原多项式的序列,并且)(|)(1x f x f i i +, ,,,2,1n i =.证明:这个序列只有有限个互不相伴的项.证明 由于I 是惟一分解环,根据定理4.21,][x I 也是惟一分解环.由惟一分解环的定义可知,][x I 中每个非零元至多有有限个互不相伴的因子.假设序列 ),(,),(),(21x f x f x f n 中有无限个互不相伴的项.不失一般性,假定其各项互不相伴.由于)(|)(1x f x f i i +, ,,,2,1n i =,因此)(|)(1x f x f i ,N ∈∀i .这样一来,)(1x f 有无限个互不相伴的因子.因此0)(1=x f .这与)(1x f 为本原多项式的事实矛盾.所以 ),(,),(),(21x f x f x f n 中只有有限个互不相伴的项.6.设I 是惟一分解环,][)(),(x I x g x f ∈,且1))(),((=x g x f .证明:1))()(),()((=+x g x f x g x f .证明 由于I 是惟一分解环,根据定理4.21,][x I 是惟一分解环.令d x g x f x g x f =+))()(),()((.由1))(),((=x g x f 可知,0≠d .假设d 不是单位.则存在素元][)(x I x p ∈,使得d x p |)(,从而,)()(|)(x g x f x p 且)()(|)(x g x f x p +.因为)(x p 是素元,由)()(|)(x g x f x p 可知,)(|)(x f x p 或)(|)(x g x p .又因)()(|)(x g x f x p +,故)(|)(x f x p 且)(|)(x g x p ,这与1))(),((=x g x f 矛盾.所以d 不是单位,从而,1))()(),()((=+x g x f x g x f .7.设0I 是一个主理想环,I 是整环,且0I ≤I .证明:假若d 是0I 中的a 和b 的一个最大公因子,那么d 也是I 中的a 和b 的一个最大公因子.证明 设由于d 是0I 中的a 和b 的一个最大公因子.由于0I ≤I ,因此d 也是I 中的a 和b 的一个公因子.设'd 是I 中的a 和b 的任意一个公因子.则存在I b a ∈',',使得''a d a =,''b d b =.其次,由于d 是0I 中的a 和b 的一个最大公因子,根据§4.3习题第2题,存在0,I t s ∈,使得bt as d +=,从而,)''('''''t b s a d t b d s a d d +=+=.因此d d |'.所以d 也是I 中的a 和b 的一个最大公因子.8.设一元多项式环][x I 是主理想环,][)(),(x I x g x f ∈,)(x m 是)(x f 与)(x g 的一个最小公倍元,证明:))(())((())((x g x f x m =.注 这里假定I 是整环.证明 由于][x I 是主理想环,根据定理 4.14,][x I 是唯一分解环.由于)(x m 是)(x f 与)(x g 的一个最小公倍元,不妨设)()()()()(x g x q x f x p x m ==.显而易见,1))(),((=x q x p .这样一来,对于任意的][)(x I x h ∈,我们有))(()(x m x h ∈⇔存在][)(x I x r ∈,使得)()()(x m x r x h =⇔存在][)(x I x r ∈,使得)()()()()()()(x g x q x r x f x p x r x h == ))(())(()(x g x f x h ∈⇒⇒存在][)(),(21x I x r x r ∈,使得)()()()()(21x g x r x f x r x h == )(|)(x h x m ⇒))(()(x m x h ∈⇒.所以))(())((())((x g x f x m =.9.证明:(1)1)(3++=x x x p 是][2x Z 中不可约多项式;(2))1/(][32++x x x Z 是域.证明 (1)显然,1)1()0(==p p .因此x 和11+=-x x 都不是)(x p 的因子.由此可见,)(x p 是][2x Z 中不可约多项式.(2)首先,由于2Z 是域,根据§3.7中的例1,][2x Z 是主理想环.其次,根据(1),13++x x 是][2x Z 中的不可约元.这样一来,根据定理 4.16和定理3.23,)1/(][32++x x x Z 是一个域.10.设I 是一个主理想环,I a ∈≠0.证明:当a 是不可约元时,)/(a I 是一个域;当a 是可约元时,)/(a I 不是整环.证明 当a 是不可约元时,根据定理4.16和定理3.23,)/(a I 是一个域.当a 是可约元时,存在a 的真因子c b ,,使得bc a =.于是,)()(a a b ≠+,)()(a a c ≠+.但是)()()()()())())(((a a a a bc a c a b =+=+=++.这就是说,)(a b +和)(a c +是)/(a I 中的零因子.所以)/(a I 不是整环.。
第四章整环里的唯一分解概述:本章主要讨论与因子分解有关的问题,我们知道在整数环里有唯一分解定理,即任何大于1的整数皆可唯一的写成一些素数的乘积. 在这一章我们要看一看,在一个抽象的环里这个定理是否成立;但由于在一个一般的环里去研究这个问题有相当的困难,所以我们仅把整数中的因子分解的概念推广到一般的整环中.*.本章中的环I均表示整环,I的单位元均记为1,I中的非零元记为}0{\II=第一节素元、唯一分解基本概念:整除,单位、相伴元,平凡因子、真因子、素元,唯一分解.重点、难点:唯一分解.正文定义4.1.1:整环I中的可逆元ε称为I的一个单位(Unit).注1:单位与单位元是两个概念,单位元一定是单位,而单位未必是单位元.注2:整环I中的全体单位关于I的乘法构成一个Abel群, 称为I的单位群,记为U(I) .定义4.1.2:我们说,整环I的一个元a可以被I的元b整除,假如在I里找得出元c,使得a=bc. 假如a能被b整除,我们说b是a的因子,并且用符号b|a 来表示,否则用b a来表示.定义4.1.3:元b叫做元a相伴元,假如b=εa ,其中ε是I的一个单位.定义4.1.4:单位以及元a的相伴元叫做a的平凡因子,其余的a的因子,叫做真因子.定义4.1.5:整环I的一个元p叫做一个素元,假如p既不是零元,也不是单位,并且p只有平凡因子.定理4.1.1:两个单位ε和ε′的乘积εε′也是一个单位,单位ε的逆ε-1也是一个单位.定理4.1.2:单位ε同素元p的乘积pε也是一个素元.ε;证明:(1) 0pε,0≠≠p≠⇒pε.(2) 不是单位p p I )()(1εεεεε‘‘‘使得若不然,==∈∃是素元矛盾是单位与p p ⇒.(3) 只有平凡因子p ε.定理4.1.3: 整环中一个不等于零的元a 有真因子的充分而且必要条件是:bc a =,c b ,都不是单位元.证明:(⇒) 的相伴元不是且使得有真因子a b a b I U b a )(∉∃⇒.bc a I c =∈∃⇒使得.若)(),(I U c b a I U c ∉∈是相伴关系,故与则.(⇐) 假定bc a =,的相伴元不是a b I U c b ⇒∉)(,,否则)(1I U c c bc a b ∈⇒=⇒==εεε,矛盾.故a 有真因子.定义4.1.6:我们说,一个整环I 的一个元a 在I 里有唯一分解,假如以下条件能被满足:(1) 中的素元是其中I r i p p p a i r ),1(,1ΛΛ==;(2) 若又有中的素元是其中I s j q q q a j s ),1(,1ΛΛ==,那么的一个排列是其中且n i i r i q p s r r i i i j ,,1,,,,,1,1ΛΛΛ===ε.例: 设则},,3{]3[Z b a b a Z ∈-+=- (1) 是整环]3[-Z . (2) }1,1{])3[(-=-Z U设''1]3[]),3[(3εεεε=-∈∃-∈-+=使得则Z Z U b a .则 2'222')3(1εεεb a +==10,11322±=⇒=±=⇒=+⇒εb a b a . (3) 为素元,则=若ααα4],3[2-∈∀Z . (4) 的相伴元都不是231-±. (5) 中两种不同的分解在是]3[4)31)(31(224----+=⋅=Z .作业:1.设I 刚好包含所有复数(,)a bi a b +是整数的整环. 证明5不是I 的素元. 5有没有唯一分解?第二节 唯一分解环基本概念:唯一分解环,唯一分解环的性质. 公因子、最大公因子,最大公因子的存在性.重点、难点: 唯一分解环.正 文定义4.2.1:整环I 叫做一个唯一分解环(UFD), 如果I 的每一个既不等于零又不是单位的元都有唯一分解.定理4.2.1:唯一分解环有以下性质:(3) 若一个素元ab p , 那么b p a p 或.证明:当b a ,中有一个是零或是单位时,定理显真.现设b a ,皆非零元,也非单位. 也非单位c c pc ab ab p ,0,≠=⇒ .)(之积矛盾可写成两个非单位的元是素元与是单位,则否则若pc pc c于是皆素元诸i n p p p p c ,21Λ=.又令皆素元诸',''2'121,,k j s r q q q q q b q q q a ΛΛ==.于是p q q q q q q s r =''2'121ΛΛn p p p Λ21.由分解唯一性知的相伴元或是某个'j i q q p , 如a p p q 则,1ε=;如b p p q 则ε='1.推论:在一个UFD 中,若素元i n a p a a a p 必整除某一个则,21Λ.定理4.2.2:若整环I 满足:(1) 解式;中每一个元均有一个分)(\I U I *(2) 若I b a b p a p ab p I p ∈∀⇒,,,或则必有的素元是.那么I 一定是唯一分解环.定义4.2.2:n i n a a d n i a d I a a d ,,,,,1,,,,11ΛΛΛ为则称如果假定=∈ 的一个公因子;d a a a a d n n 除的每一个公因子都能整若的一个公因子为假定,,,,,11ΛΛ,则称的一个最大公因子为n a a d ,,1Λ.定义4.2.3:,则称中的最大公因子是单位在如果假定I a a I a a n n ,,,,11ΛΛ∈ 互素n a a Λ,1.定理4.2.3:假定I 是唯一分解环, 那么有,,I b a ∈(1)在I 中, 有最大公因子;和b a(2)是相伴关系的最大公因子,则和均为若d d b a d d '',,.作业:1. 假定,()().()()I a b I a b =是一个整环和是的两个主理想证明:当且仅当b 是a 的相伴元的时候.2.证明:10.⎡⎤⎣⎦不是唯一分解环Z第三节 主理想环基本概念::主理想环,主理想和极大理想、主理想环与唯一分解环的关系. 重点、难点: 主理想、极大理想.正 文定义4.3.1:如果整环I 中的每一个理想都是主理想,则称I 是一个主理想环,记为P.I.D.例 1:是主理想环整数环)1,0,,,(⋅+Z .证明:设A a a A Z A ⊆⊂)(,}0{则中的最小正整数为的理想,记是)(. 另一方面,若a a m A m 则),(,∉∈∃,0,,a r e as m m <<+=设则)().(a A a A a A as m r =⊆∈-=从而的最小性矛盾,故此与.例 2:是主理想环是域,则)1,0,,],[(⋅+x F F .证明:设的理想,是)(][}0{x F A ⊂A x f x f A ⊆))((),(则中次数最低的多项式为记.另一方面,若)()),(()(,)(x f x f x g A x g 则∉∈∃),(x g次数最小矛盾此与而设)()())(())((),()()()(x f A x v x f x v x v x u x f x g ∈∂<∂+=. 故))(()),((x f A x f A =⊆从而.引理4.3.1:设)1,0,,,(⋅+I 是一个PID, 则I 中的每一个真因子序列一定是有限序列. 即若序列)(,,,21I a a a i ∈Λ中每一个元素都是前面一个元的真因子,则该列一定是有限序列.证明:由于i i a a 1+,所以Λ⊂⊂)()(21a a令)(Y ii a A =,则的一个理想是I A . 事实上:A a ra I r i ⊆∈∈∀)(,.)()()(),()(,,j i j i a a a a b a a j i j i A b a ⊂∈⇒∈∈≤∃⇒∈∀使得不妨设A a b a j ⊆∈-⇒)( .而PID I 是,则存在).(,d A I d =∈使得 而Y ii a A d )(=∈,则)(n a d n ∈∃使得,我们断言,n a 为序列中的最后一个,如若不然,设还有一个的真因子为使得n n n a a a 11++. 由于111,)(),(+++⇒⇒∈∈n n n n n n a a a d d a d a a d 又n n a a 1+,则n a 是1+n a 相伴关系,这与的真因子矛盾为n n a a 1+.故原结论成立.引理4.3.2:设)1,0,,,(⋅+I 是一个PID,p I 是中的素元, 则(p)为I 的极大理想. 证明:设()()()()A a I p A I p a a p =⊂⊆⇒∈⇒是的理想,.()().1a p p a p a p a A a εε⎧=⇒⊂⇒=⇒⎨=⇒∈⇒⎩是的相伴元()()矛盾是单位()=I.故(p)为I 的极大理想.定理4.3.1:设)1,0,,,(⋅+I 是一个PID, 则I 是UFD .证明:(1) \(),.a I U I a a *∀∈一定有分解式事实上,若是素元,则不用再证. 现设,a a bc b c =有真因子,若皆素元,则不用再证. 对a 的不是素元的真因子重复上面的讨论过程,这样的分解过程经有限步后必终止(否则会得到无穷序列12,,,a a a L 后面的元是前面一个元的真因子,这与I 是PID 的前提矛盾),此时已把a 分解成有限个素元之积.(2) 设素元()(),0.p ab ab a b ==⋅I I 于是在中有但是域p p 因此 ()()00a b a p b p p a p b ==⇒∈∈⇒或或或.由定理4.2.2知I 是UFD.注:定理的逆不成立. 例如[].x UFD PID ¢是但不是作业:证明:一个主理想环的非零最大理想都是由一个素元所生成的.第四节 欧氏环基本概念:欧氏环的定义,欧氏环和主理想环的关系.重点、难点: 欧氏环.正 文定义4.4.1:设I 是整环,若(1) 存在映射{}::0.I n n ϕ*→∈≥=Z Z(2) ,,0,,a b I a q r I ∀∈≠∈则存在使,b qa r =+其中0()().(..)r r a I E D ϕϕ=<或则称是一个欧氏环.例1.整环(,,,0,1)+⋅是一个欧氏环.Z证明:令:;,.a a a ϕ**→∀∈a Z Z Z则,,,,a b q r ϕ*∀∈∈是一个映射且一定存在使得Z Z,0()().b aq r r r r a a ϕϕ=+==<=或故(,,,0,1)+⋅是一个欧氏环.Z例2.数域F 上的多项式环([],,,0,1)F x +⋅是一个欧氏环.例3.Gauss 整数环([],,,0,1)i +⋅是欧氏环.Z证明:易证([],,,0,1)i +⋅Z 是整环. 令22:[]\{0};i a bi a b ϕ→++a Z Z ,则ϕ是一个映射.设[]\{0},[]a bi i c di i αβ=+∈=+∈Z Z ,,,k li k l βα=+∈Z ,则存在'',k l ∈Z 使得''11,22k k l l -≤-≤.令''[],k l i i γδβαγ=+∈=-Z ,则βαγδ=+. 若20,βδϕδϕβαγϕαγα≠则()=(-)=()- 22''1()()()2k k l l ϕϕαϕα-+-≤<=. 因此([],,,0,1)i +⋅是欧氏环.Z定理 4.4.1:任何一个欧氏环一定是一个主理想环,因而一定是一个唯一分解环.证明:设{0},.A I ϕ≠是欧氏环的一个理想是欧氏环的映射 令a A a ϕϕ∈≠∈使()=min{(x)x(0)A},则()A a =. 事实上, ,,b A q r I ∀∈∃∈使得,0b qa r r a ϕϕ=+=∈或(r )<(),r A .若0().r a a a ϕ≠∈则与()的最小性矛盾. 故r=0,b=q 注:定理4.4.1的逆不真,P.I.D 未必是欧氏环. 如复数域的子环,R a b ⎧⎫⎪⎪=+∈⎨⎬⎪⎪⎩⎭Z 是一个P.I.D 但不是欧氏环. 定理4.4.2:(,,,0,1)+⋅是欧氏环,从而是唯一分解环.Z引理4.4.1:假定[][]I x I I x 是整环上的一元多项式,的元1110()n n n n g x a x a x a x a --=++++L的最高系数(),()[],(),()[]n a U I f x I x q x r x I x ∈∀∈∈那么对存在使得()()()(),f x q x g x r x =+其中()0()r x r x x =或的次数小于g()的次数.n定理4.4.3:域F 上的一元多项式环[].F x 是一个欧氏环证明:显然[]F x 是一个整环,令[];()deg(()),()[].F x f x f x f x F x ϕ*→∈a :Z则ϕ是一个映射. ()[],()[],g x F x f x F x *∀∈∈()0()0,,.n n n g x g x a a F a *≠⇒≠∈的最高项系数而则可逆由引理4.4.1可知,(),()[]q x r x F x ∃∈使得()()()(),f x q x g x r x =+其中()0()r x r x x =或的次数小于g()的次数.n即()0(())(()).[].r x r x g x F x ϕϕ=<或故是唯一分解环作业:1.下列环是否是欧氏环,并证明之:(1) {},.a b =+∈Z Z(2) {},.a b =+∈Z Z 2. 证明:一个域一定是一个欧氏环.附注 本章中介绍的几种常见的整环之间有如下的关系图:其中,例①可取Z ; 例②可取[]x Z ;例③可取12⎡+⎢⎣⎦Z ; 例④可取Z 或数域F 上的一元多项式环[]F x ;例⑤可取有理数域、实数域、复数域等.第五节 多项式环的因子分解基本概念:本原多项式的定义及其引理.重点、难点:多项式的可约性判断.正 文设..I U F D 为,[]I x F 为上的一元多项式环,则有如下简单事实:(1) ([])(),[]U I x U I I x =且为整环;(2)[]()()I x f x f x 中多项式称为本原多项式,如果系数的最大公因子是单位.(3) 若本原多项式(),f x 可约则()()(),(),()[]deg ()deg ()0f x g x h x g x h x I x f x g x =∈>>且.(4) ()()()()();f x g x h x g x h x =⇔是本原的和均是本原的(5) ()[],deg ()0,()()([])f x I x f x f x f x U I x ∈=⇔∈若则是本原的.引理4.5.1: ,0()[],I f x x ≠∈设是的商域则Z Z (1) 00()(),,,()[];b f x f x a b I f x I x a=∈是中的本原多项式 (2) 0000()()(),,,,,(),()b d f x f x g x a b c d I f x g x a c ==∈若 []I x 均为中的本原 多项式,则00()([])()().U I U I x f x g x εε∃∈==使得引理4.5.2: 假设00()[],()[]f x I x f x I x 是中的一个本原多项式在中可约的充分必要条件是0()[].f x x I 在Q 中可约,其中Q 为的商域引理 4.5.3: []()[]I x f x I x 的任一个次数大于零的本原多项式在里有唯一分解.定理4.5.1: 若..,[]...I U F D I x U F D 是则也是定理 4.5.2: 若1212..,[,,,]...,,,,n n I U F D I x x x U F D x x x L L 是则也是其中是 I 上的无关未定元.作业:1. 假定[].()[],()I x I f x I x I f x 是整环上的一元多项式环属于但不属于并且的最高系数是I 的一个单位. 证明:()[].f x I x 在里有分解2. 设12,()1,().p p p x x x x x ϕϕ--=++++L 为素数判断在上是否可约Z第六节 因子分解与多项式的根基本概念:多项式的根、重根、导数;重根的判别定理.重点、难点: 多项式和多项式的根.正 文定义4.6.1: 设()[],()0,().f x I x a I f a a f x ∈∈=如果存在使得则称是的根 定理 4.6.1: 假定,()[],,()I f x I x a I a f x ∈∈是整环那么是的根的充分必要条件是()().x a f x -定理4.6.2: 12()[],,,,,k f x I x a a a I k ∈L 是中个不同的元素则12,,,()k a a a f x L 均是的根1()()().k x a x a f x ⇔--L推论:()[],()f x I x n f x I n 若是中的次多项式则在中至多有个根.定义4.6.2:,()[],1,a I f x I x k ∈∈∃>如果使得()(),()k x a f x a f x -则称为的一个重根.定理4.6.3:()(),,f x I x a I ∈∈设那么'()()().a f x x a f x ⇔-为的重根推论:...,()[],,I U F D f x I x a I ∈∈若为那么'()()()()a f x x a f x f x ⇔-为的重根能整除与的最大公因子.作业:1. 假定216.[]I I x x I 是模的剩余类环的多项式在里有多少个根?2. 假定F 是模3的剩余类环, 我们看[]F x 的多项式3().f x x x =-证明:不管是的哪一个元f a a F()0,.11。
第四章整环里的因子分解§1、素元、唯一分解一、整除、单位、相伴元定义在整环I中,若a=bc,则称a能被b整除,也说b整除a,记为b|a。
b不能整除a记作b|a。
定义整环I的一个元ε叫做I的一个单位,假如ε是一个有逆元的元。
元b叫做元a的相伴元(a与b相伴),假若b是a 和一个单位ε的乘积:b=εa。
单位元必是单位,反之不然。
例1在整数环Z中,单位即是1和-1,b是a的相伴元⇔b=±a。
在数域F的多项式环F[x]中,单位即是零次多项式c∈F*,g(x)是f(x)的相伴元⇔g(x)=cf(x)。
定理1 两个单位ε1和ε2的乘积ε1ε2也是单位。
单位ε的逆元ε-1也是一个单位。
推论整环I中全体单位的集U关于乘法作成群。
二、素元定义单位以及元a的相伴元叫做a平凡因子。
其余的a的因子,假如还有的话,叫做a的真因子。
定义整环I的一个元p叫做一个素元(注:应是不可约元),假如p0≠,p不是单位,并且p只有平凡因子。
例2 在例1的Z中,素元就是素数。
在F[x]中,素元就是不可约多项式。
定理2 单位ε同素元p的乘积εp也是一个素元。
定理3整环I的一个非零元a有真因子⇔a=bc,b和c都不是单位。
推论假定a≠0,并且a有真因子b:a=bc。
那么c也是a的真因子。
三、唯一分解定义一个整环I的一个元a说是在I 里有唯一分解,假如以下条件能被满足:(i)a=p1p2…p r(p i是I的素元)(ii)若同时a=q1q2…q s(q i是I的素元)那么r=s并且我们可以把q i的次序掉换一下,使得q i=εi p i (εi是 I的单位)零元和单位都不能唯一分解。
例3 在整环I={}Z+,3中:a∈-bab(1)ε是单位1=⇔。
⇔ε=1ε2±(2)若4α2=,则α是素元。
(3)4∈I有两种不同的分解(不相伴分解):()()3+-=-⋅=113224-§2、唯一分解环一、唯一分解环定义一个整环I叫做一个唯一分解环,假如I的每一个既不等于零又不是单位的元都有唯一分解。
第四章整环里的因子分解本章讨论环的一个特殊问题,即整环里的唯一分解定理§4.1 素元唯一分解●课时安排约2课时●教学内容P125-130定义:我们说,整环R的一个元a可以被I的元b整数,假如在R里找得出元c,使:a=bc假如a能被b整除,我们说b是a的因子,并且用符号b|a来表示,否则 b a来表示。
定理1:两个单位ε和ε′的乘积εε′也是一个单位,单位ε的逆ε-1也是一个单位。
定义:单位以及元a的相伴元叫做a的平凡因子,其余的a的因子,叫做真因子。
定义:整环R的一个元P叫做一个素元,假如P既不是零元,也不是单位,并且P只有平凡因子。
定理2:单位q同素元P的乘积qp也是一个素元。
定理3:整理中一个不等于零的元a有真因子的充分而且必要条件是:a=bcb和c都不是单位元。
推论:假定a≠0,并且a有真因子,b:a=bc,那么C也是a的真因子。
定义:我们说,一个整环R的一个元a在R里有唯一分解,假如以下条件能被满足:(i)a=P1P2…Pr(Pi是R的素元1)(ii)若同时a=那么r=s,且可把的次序掉换一下使( I是R的单位)例1:P129●教学重点掌握和理解素元概念●教学难点几个定理的证明过程●布置作业P1301,2●例题精讲P1303§4.2 唯一分解环●课时安排约2课时●教学内容P130-135定义:一个整环R叫做一个唯一分解环,假如R的每个既不等于零又不是单位的元都有唯一分解。
定理1:一个唯一分解环有以下性质:(iii)若一个素元P能够整除ab,那么P能够整除a或b。
定理2:假定一个整环R有以下性质:(i)R 每一个即不是零也不是单位的元a都有一个分解。
A=P1P2…Pr(Pr是R的素元)(iii)R的一个素元P若能整除ab,那么P能整除a或b。
则R一定是一个唯一分解环。
定理3:一个唯一分解环R的两个元a和b,在R里一定有最大公因子,a和b的两个最大公因子d和d′只能差一个单位因子。
第四章整环里的唯一分解概述:本章主要讨论与因子分解有关的问题,我们知道在整数环里有唯一分解定理,即任何大于 1 的整数皆可唯一的写成一些素数的乘积. 在这一章我们要看一看,在一个抽象的环里这个定理是否成立;但由于在一个一般的环里去研究这个问题有相当的困难,所以我们仅把整数中的因子分解的概念推广到一般的整环中.本章中的环I 均表示整环,I 的单位元均记为1,I 中的非零元记为I I {0} .第一节素元、唯一分解基本概念:整除,单位、相伴元,平凡因子、真因子、素元,唯一分解.重点、难点: 唯一分解.正文定义 4.1.1 :整环I中的可逆元称为I的一个单位(Unit ).注1:单位与单位元是两个概念,单位元一定是单位,而单位未必是单位元.注2:整环I 中的全体单位关于I 的乘法构成一个Abel 群, 称为I 的单位群,记为U(I) . 定义 4.1.2:我们说,整环I 的一个元a可以被I 的元b整除,假如在I 里找得出元c,使得a=bc. 假如 a 能被 b 整除,我们说 b 是 a 的因子,并且用符号b|a 来表示,否则用 b a来表示.定义 4.1.3:元b叫做元a相伴元,假如b=εa其, 中ε是I的一个单位.定义 4.1.4:单位以及元a的相伴元叫做a的平凡因子,其余的 a 的因子,叫做真因子.定义 4.1.5:整环I的一个元p叫做一个素元,假如p既不是零元,也不是单位,并且p只有平凡因子.定理 4.1.1:两个单位ε和ε的′乘积εε也′是一个单位,单位ε的逆ε-1也是一个单位.定理 4.1.2:单位同素元p的乘积p 也是一个素元.证明:(1) 0,p 0 p 0;(2) p不是单位 .若不然,‘I使得1 ‘( p) ( ‘)p p是单位与p是素元矛盾 .(3) p只有平凡因子 .定理 4.1.3:整环中一个不等于零的元 a 有真因子的充分而且必要条件是: a bc,b, c都不是单位元.证明:( ) a有真因子 b U (I)使得 b a且b不是a的相伴元.c I使得a bc.若c U (I ),则a与b是相伴关系,故 c U(I) .( ) 假定 a bc,b,c U(I) b不是a的相伴元,否则b a bc c 1 c U (I ) , 矛盾.故 a 有真因子.定义4.1.6 :我们说,一个整环I 的一个元a在I 里有唯一分解,假如以下条件能被满足:(1) a p1p r ,其中p i (i 1,r) 是I 中的素元 ;(2)若又有a q1q s,其中q j (j 1,s)是I中的素元,那么r s且p i i q i j,i 1, ,r,其中i j1, ,i r 是1, , n的一个排列.例:设Z[3] {a b 3a,b Z}, 则(1) Z[ 3]是整环 .(2) U(Z[ 3]) {1, 1}设 a b 3 U(Z[ 3]), 则' Z[ 3]使得1 '.22则 1 '(a2 3b2) ' a2 3b2 1 a 1,b 0 1.2(3) Z[ 3], 若2=4,则为素元.(4) 1 3都不是2的相伴元 .(5) 4 2 2 (1 3)(1 3)是4在Z[ 3]中两种不同的分解 .作业:1.设I 刚好包含所有复数a bi (a, b是整数) 的整环. 证明 5 不是I 的素元. 5 有没有唯一分解?第二节唯一分解环基本概念:唯一分解环,唯一分解环的性质. 公因子、最大公因子,最大公因子的存在性.重点、难点: 唯一分解环.正文定义 4.2.1 :整环I 叫做一个唯一分解环(UFD), 如果I 的每一个既不等于零又不是单位的元都有唯一分解.定理 4.2.1 :唯一分解环有以下性质:(3) 若一个素元pab, 那么pa或pb.证明:当a,b 中有一个是零或是单位时,定理显真.现设a,b 皆非零元,也非单位. pab ab pc,c 0,c也非单位.(否则若c是单位,则pc是素元与pc可写成两个非单位的元之积矛盾)于是c p1p2 p n,诸p i皆素元 .又令a q1q2 q r,b q1'q2'q s',诸q j,q k'皆素元. 于是q1q2 q r q1'q2'q s'=p p1p2 p n .由分解唯一性知p是某个q i或q j的相伴元 , 如q1 p,则pa;如q1 p则pb. 推论:在一个UFD中,若素元pa1a2 a n ,则p必整除某一个a i.定理 4.2.2 :若整环I 满足:(1) I U (I )中每一个元均有一个分解式;(2) 若p是I的素元,则必有p ab pa或pb, a,b I .那么I 一定是唯一分解环.定义 4.2.2 :假定d,a1, a n I,如果da i ,i 1, ,n,则称d为a1, ,a n 的一个公因子;假定d为a1, , a n的一个公因子,若a1, , a n的每一个公因子都能整除d ,则称d为a1, , a n的一个最大公因子 .定义 4.2.3 :假定a1, a n I,如果a1, ,a n在I中的最大公因子是单位,则称a1, a n 互素 .定理 4.2.3 :假定I 是唯一分解环, a,b I,那么有(1) 在I 中, a和b有最大公因子;(2) 若d,d 均为a和b的最大公因子,则d , d是相伴关系 .作业:1. 假定I是一个整环,(a)和(b)是I的两个主理想证.明:(a) (b)当且仅当 b 是 a 的相伴元的时候.2 .证明:Z 10 不是唯一分解环.第三节主理想环基本概念::主理想环,主理想和极大理想、主理想环与唯一分解环的关系. 重点、难点: 主理想、极大理想.正文定义 4.3.1 :如果整环I 中的每一个理想都是主理想,则称I 是一个主理想环,记为P.I.D.例 1 :整数环(Z, , ,0,1)是主理想环 .证明:设({ 0} )A是Z的理想,记A中的最小正整数为a,则(a) A . 另一方面,若m A,m (a),则a m,设m as e,0 r a,则r m as A此与a的最小性矛盾,故 A ( a).从而 A (a). 例 2 :F是域,则(F[x], ,,0,1)是主理想环 .证明:设({ 0} )A是F[x]的理想,记A中次数最低的多项式为f(x),则(f (x)) A. 另一方面,若g(x) A,g(x) (f(x)),则f (x) g(x), 设g(x) f (x)u(x) v(x),(v(x)) ( f ( x))而v( x) A此与f (x)次数最小矛盾 . 故 A ( f (x)),从而A(f(x)) .引理 4.3.1 :设(I, , ,0,1) 是一个PID, 则I 中的每一个真因子序列一定是有限序列. 即若序列a1,a2, ,(a i I) 中每一个元素都是前面一个元的真因子,则该列一定是有限序列.证明:由于a i 1a i ,所以(a1) (a2)令 A (a i ),则A是I的一个理想 . 事实上:r I,ra (a i) A.ia,b A i, j(不妨设i j)使得 a (a i ),b (a j ) a (a i ) (a j )a b (a j) A .而I是PID ,则存在 d I,使得 A (d). 而d A (a i ),i则n使得d (a n) ,我们断言,a n为序列中的最后一个,如若不然,设还有一个a n 1使得a n 1为a n的真因子 . 由于d (a n ), a n 1 (d) a n d,da n 1a n a n 1又a n 1 a n ,则a n是a n 1相伴关系,这与a n 1为a n的真因子矛盾 . 故原结论成立.引理 4.3.2 :设(I, , ,0,1)是一个PID, p是I中的素元,则(p) 为I 的极大理想.证明:设 A (a)是I的理想,(p) (A) I p (a) a p.a p是p的相伴元(a) p (a) p 矛盾.a 是单位 1 A ( a)=I.故(p) 为I 的极大理想.定理 4.3.1 :设(I, , ,0,1)是一个PID, 则I是UFD.证明:(1) a I U(I ), a一定有分解式事.实上,若a是素元,则不用再证.现设a有真因子, a bc若b, c皆素元,则不用再证. 对a 的不是素元的真因子重复上面的讨论过程,这样的分解过程经有限步后必终止 (否则会得到无穷序列a,a1,a2,L 后面的元是前面一个元的真因子,这与I 是PID的前提矛盾) , 此时已把a分解成有限个素元之积.(2) 设素元p ab,于是在I p中有ab 0 a b但I p是域. 因此a 0或b 0 a p 或b p p a或p b.由定理 4.2.2 知I 是UFD.注:定理的逆不成立. 例如¢[ x]是UFD但不是PID.作业:证明:一个主理想环的非零最大理想都是由一个素元所生成的.第四节欧氏环基本概念:欧氏环的定义,欧氏环和主理想环的关系. 重点、难点: 欧氏环.正文定义 4.4.1 :设I 是整环,若(1) 存在映射:I n Z:n 0 Z.(2) a,b I,a 0,则存在q,r I使b qa r,其中r 0或(r) (a).则称I是一个欧氏环(E.D.) .例1.整环(Z, , ,0,1)是一个欧氏环.证明:令:Z Z;aa a , a Z .则是一个映射,且a,b Z ,一定存在q,r Z使得b aq r,r 0或(r) r a (a).故(Z, , ,0,1)是一个欧氏环.例2.数域F上的多项式环(F[x], , ,0,1)是一个欧氏环例3.Gauss整数环(Z[i], , ,0,1)是欧氏环.证明:易证(Z[i],则是一个映射.设 a bi Z [i ] \{0}, , ,0,1) 是整环. 令:Z[i]\{0} Z;ac di Z[i] ,'122bi a a2b2,k li,k,l Z ,则存在k',l1.2.Z 使得令 k ' l 'i Z[i], ,则 .2若 0, 则( )=( - )=( ) -'2' 2 1 = (k k ' l l ' ) 2 ( ) ( ) . 因此(Z[i], , ,0,1)是欧氏环 .定理 4.4.1 :任何一个欧氏环一 定是一 个主理想环,因而一 定是一 个唯一分 解环.证明:设 A {0}是欧氏环 I 的一个理想 , 是欧氏环的映射 . 令a A 使( a )=min{ (x)x( 0) A} ,则 A (a). 事实上, b A, q,r I 使得b qa r,r 0或( r )< (a),r A .若 r 0则与( a )的最小性矛盾 . 故 r=0,b=q a (a).注: 定理 4.4.1 的逆不真, P.I.D 未必是欧氏环 . 如复数域的子环 R a b 19 1 a,b Z 是一个 P.I.D 但不是欧氏环 .2定理 4.4.2 :(Z, , ,0,1)是欧氏环 , 从而是唯一分解环 .引理 4.4.1 :假定 I[x]是整环 I 上的一元多项式, I[x]的元的最高系数 a n U (I ),那么对 f (x) I [ x],存在q( x), r (x) I[x]使得 f (x) q(x)g(x) r(x),其中 r(x) 0或r ( x)的次数小于 g(x) 的次数 n.定理 4.4.3 :域 F 上的一元多项式环 F[x]是一个欧氏环 . 证明:显然 F[x]是一个整环,令:F[x] Z;f(x)a deg( f (x)), f(x) F[x].n n 1g(x) a n x a n 1x L a 1x a 02例③可取 Z1 19则 是一个映射 . g(x) F[x] , f(x) F[x],g(x) 0 g(x)的最高项系数 a n 0,而 a n 由引理 4.4.1 可知, q(x),r(x) F[x]使得f (x) q(x)g(x) r(x),其中 r(x) 0或r ( x)的次数小于 g(x) 的次数 n.即 r(x) 0或 (r(x)) (g(x)).故F[x]是唯一分解环 . 作业:1. 下列环是否是欧氏环,并证明之:(1) Z 2 a b 2 a,b Z .(2) Z 3 a b 3 a,b Z .2. 证明:一个域一 定是一 个欧氏环 .例④可取 Z 或数域 F 上的一元多项式环 F[x] ;F ,则a n 可逆 .其中,例①可取 Z 3 ;例②可取 Z[x] ; 附注 本章中介绍的几种常见的整环之间有如下的关系图:例⑤可取有理数域、实数域、复数域等.第五节多项式环的因子分解基本概念:本原多项式的定义及其引理.重点、难点: 多项式的可约性判断.正文设I为U.F.D,I[x]为F 上的一元多项式环,则有如下简单事实:(1)U(I[x]) U(I),且I[x]为整环;(2) I [ x]中多项式 f ( x)称为本原多项式,如果 f (x)系数的最大公因子是单位(3) 若本原多项式 f (x)可约,则f(x) g(x)h(x),g(x),h(x) I[x]且deg f(x) deg g( x) 0.(4) f (x)g(x)h(x)是本原的g(x)和h(x)均是本原的;(5) f (x)I[x],若degf(x) 0,则f (x)是本原的f(x)U(I[x]).引理4.5.1:设Z是I的商域,0 f (x) Z[x],则(1)f(x)b f0(x),a,b I, f 0 ( x)是I [ x]中的本原多项式; a(2)bd若f(x) f0(x) g0(x),a,b,c,d I, f0(x),g0(x)ac均为I [x]中的本原多项式,则U(I) U(I[x])使得f0(x) g0(x).引理4.5.2: 假设f0(x)是I[x]中的一个本原多项式, f0(x)在I[ x]中可约的充分必要条件是f0(x)在Q[x]中可约,其中Q为I的商域.引理 4.5.3: I [ x]的任一个次数大于零的本原多项式f (x)在I[x]里有唯一分解.定理 4.5.1: 若I是U.F.D,则I[x]也是U.F.D.定理 4.5.2: 若I是U.F.D,则I[x1,x2,L ,x n]也是U.F.D.,其中x1,x2,L ,x n是 I 上的无关未定元.作业:1.假定I[ x]是整环I上的一元多项式环.f(x)属于I[x]但不属于I,并且f(x)的最高系数是I 的一个单位. 证明:f(x)在I[x]里有分解.2. 设p为素数, (x) x p 1 x p 2 L x 1,判断(x)在Z 上是否可约.第六节因子分解与多项式的根基本概念:多项式的根、重根、导数;重根的判别定理.重点、难点: 多项式和多项式的根.正文定义 4.6.1: 设 f (x) I [ x],如果存在 a I使得f(a) 0,则称a是f (x)的根.定理 4.6.1: 假定I是整环, f(x) I[x],a I,那么a是f(x)的根的充分必要条件是(x a) f (x).定理 4.6.2 :f(x) I[x],a1,a2,L , a k是I中k个不同的元素,则a1,a2,L ,a k均是f (x)的根(x a1)L (x a k) f(x).推论:若f(x)是I[x]中的n次多项式,则f(x)在I中至多有n个根.定义 4.6.2: a I, f (x) I[x],如果k 1,使得(x a)k f (x),则称a为f ( x)的一个重根.定理 4.6.3 :设f (x) I(x),a I,那么a为f ( x)的重根(x a) f '(x).推论:若I为U.F.D., f(x) I[x],a I,那么a为f ( x)的重根(x a)能整除f(x)与f '(x)的最大公因子.作业:1. 假定I是模16的剩余类环.I [ x]的多项式x2在I 里有多少个根?2. 假定F是模3的剩余类环, 我们看 F [ x]的多项式 f (x) x3 x.证明:f (a) 0,不管a是F的哪一个元11。
第四章 整环里的因子分解§4.1 不可约、素元、最大公因子1. 证明:0不是任何元的真因子.注 这里的0是指整环I 的零元,“任何元”是指整环I 中的任何元. 证明 由于0不能整除整环I 中的非零元,因此0不是整环I 中的非零元的真因子.虽然0整除0,但0与0相伴,因此0不是0的真因子.所以0不是整环I 中任何元的真因子.2.找出Gauss 整数环},|{][Z Z ∈+==n m ni m i I 的所有单位.解 假设Z ∈b a ,,使得bi a +是I 中的单位,则存在Z ∈d c ,,使得1))((=++di c bi a ,从而,1))((2222=++d c b a .由此可见,i bi a ±±=+,1.所以i ±±,1就是I 中的所有单位.3.证明:在Gauss 整数环][i I Z =中,3是不可约元,5是可约元.证明 显然,3和5既不是零元,也不是单位.设Z ∈d c b a ,,,,使得3))((=++di c bi a .于是9))((2222=++d c b a .显然322≠+b a .因此122=+b a 或122=+d c ,从而,bi a +是单位或di c +是单位.所以3是不可约元.由5)2)(2(=-+i i 可知,i +2和i -2都是5的真因子.所以5是可约元.4.设I 是整环,I b a ∈,,直接证明:a b a ⇔=)()(~b .证明 由于I 是有单位元的交换环,根据定理3.16的推论1(3),aI a =)(,bI b =)(. 因此⇔=)()(b a 存在R s r ∈,,使得rb a =,sa b =a ⇔~b .5.设p 是整环I 的素元,m a a a p 21|(2≥m ),证明:至少存在一个i a (m i ≤≤1),使i a p |.证明 我们用数学归纳法来证明.当2=m 时,根据素元的定义,我们的断言成立.假设当n m =(2≥n )时,结论成立.当1+=n m 时,根据素元的定义,n a a a p 21|或1|+n a p .若p 不整除1+n a ,则n a a a p 21|.于是,根据归纳假设,至少存在一个i a (n i ≤≤1),使i a p |.所以当1+=n m 时,我们的断言成立.6.设整环I 中任意两个元的最大公因子都存在,m a a a ,,,21 是I 中m 个不全为零的元,若m m db a db a db a ===,,,2211 ,证明:d 是m a a a ,,,21 的最大公因子m b b b ,,,21 ⇔互素.证明 假定m m db a db a db a ===,,,2211 .m b b b ,,,21 不互素⇔I 中存在元素',,','21m b b b 和非零、非单位的元素c ,使得',,','2211m m cb b cb b cb b ===⇔I 中存在元素',,','21m b b b 和非零、非单位的元素c ,使得',,','2211m m dcb a dcb a dcb a ===d ⇔不是m a a a ,,,21 的最大公因子.所以d 是m a a a ,,,21 的最大公因子m b b b ,,,21 ⇔互素.§4.2 惟一分解环1.证明:整环},|10{]10[Z Z ∈+==n m n m I 不是惟一分解环.证明 显然,I ∈10,10,5,2,10,5,2都不是单位,也都不是零元,2和5都不是10的相伴元,但是10105210⋅=⋅=.所以I 不是惟一分解环.2.证明:Gauss 整数环][i I Z =中,5是唯一分解元.证明 首先,由§1习题第2题知,在I 中只有1±和i ±是单位.其次,显然i ±2都不是零元和单位元.事实上,i ±2是I 中的不可约元.为了阐明这一事实,考察任意的Z ∈d c b a ,,,.若i di c bi a ±=++2))((,则5))((2222=++d c b a ,由此可见,122=+b a 或122=+d c ,从而,bi a +是单位或di c +是单位.因此i ±2没有非平凡的因子.所以i ±2是I 中的不可约元.当然,它们的相伴元)2(i ±-,)2(i i ±,)2(i i ±-也都是不可约元.现在设Z ∈d c b a ,,,,使得5))((=++di c bi a . (*) 于是,25))((2222=++d c b a .由此可见,122=+b a 或522=+b a .当122=+b a ,i bi a ±±=+,1是I 中的单位,从而,di c +是5的相伴元.这时(*)式不是5的不可约元分解式.当522=+b a 时,bi a +的值只能是如下八个数之一:i ±2,)2(i ±-,)2(i i ±,)2(i i ±-.显然,这八个数都是5的真因子.这样一来,根据(*)式可以断言,)2)(2(5i i -+=是5的不可约元分解式,并且:对于5的任意一个不可约元分解式n p p p 215=,必有2=n ;必要时,交换1p 和2p 的下标和次序后,1p 与i +2相伴且2p 与i -2相伴.所以5是唯一分解元.2.按惟一分解环定义直接证明定理4.11.注 定理4.11的内容如下:在一个惟一分解环I 中,每一个不可约元都是素元.证明 设I p ∈是一个不可约元.任意给定I b a ∈,,并假设ab p |.于是,存在I c ∈,使得pc ab =.当0=a 或0=b 时,显然a p |或b p |.当a 为单位时,有pc a b 1-=,从而,b p |.同理,当b 为单位时,有a p |.现在假定a 和b 都不是零元和单位.显然,c 不是零元,也不是单位.由于I 是惟一分解环,不妨设m p p p a 21=,n q q q b 21=,u r r r c 21=.其中,j p (m j ≤≤1),k q (n k ≤≤1)和l r (u l ≤≤1)都是不可约元.于是, n m u q q q p p p r r pr 212121=. (*) 由于I 是惟一分解环,可以断言:或者存在j (m j ≤≤1),使得p 与j p 相伴,从而,a p |; 或者存在k (n k ≤≤1),使得p 与k q 相伴,从而,b p |.总而言之,a p |或b p |.这样一来,由于I b a ∈,的任意性,我们断言p 是素元.4.设I 是惟一分解环,m a a a ,,,21 是I 中m (2≥m )个元,证明:在I 中m a a a ,,,21 的最大公因子存在,且任意两个最大公因子互为相伴元.证明 首先,我们用数学归纳法来证明m a a a ,,,21 有最大公因子.事实上,定理4.10告诉我们,当2=m 时,结论成立.假设当n m =2(≥n )时结论成立.现在考察1+=n m 的情形:根据归纳假设,不妨设a 是n a a a ,,,21 的一个最大公因子.根据定理4.10,可设d 是a 与1+n a 的最大公因子.显然,d 是121,,,,+n n a a a a 的一个公因子.假设'd 是121,,,,+n n a a a a 的一个公因子.则'd 是n a a a ,,,21 一个公因子.由于a 是n a a a ,,,21 的一个最大公因子,因此a d |'.由于1|'+n a d ,因此'd 是a 与1+n a 的公因子.这样一来,由于d 是a 与1+n a 的最大公因子,因此d d |'.所以d 是121,,,,+n n a a a a 的一个最大公因子.所以当1+=n m 时m a a a ,,,21 有最大公因子.§4.3 主 理 想 环1.设I 是主理想环,d 是I b a ∈,的一个最大公因子,证明:I t s ∈∃,,使bt as d +=. 证明 根据定理3.16的推论2,),()()(b a b a =+,其中),(b a 表示},{b a 生成的理想.根据定理 4.15,),()(b a d =.因此)()()(d b a =+.由)()(b a d +∈可知,存在I t s ∈,,使bt as d +=.2.设I 是主理想环,I b a ∈,,证明:b a ,互素I t s ∈∃⇔,,使1=+bt as .证明 根据定义4.8、第1题、定理3.16的推论2以及定理4.15,我们有b a ,互素⇔1是a 与b 的一个最大公因子⇒存在I t s ∈,,使1=+bt as)()(1b a +∈⇒),()()()1(b a b a =+=⇒⇒1是a 与b 的一个最大公因子.所以b a ,互素I t s ∈∃⇔,,使1=+bt as .3.设I 是主理想环,I b a ∈,,证明:(1)若b a ,互素,且bc a |,则c a |;(2)若b a ,互素,且c a |,c b |,则c ab |.证明 (1) 当0=a 时,由bc a |可知,0=bc ;由a 与b 互素可知,b 是单位.因此0=c .所以c a |.当a 是单位时,显然c a |.假设a 既不是0,也不是单位.由于bc a |,因此bc 既不是0,也不是单位;从而,b 和c 都不是0.若b 是单位,则由bc a |可知c a |.现在假定b 不是单位.由于I 是主理想环,根据定理4.14,I 是惟一分解整环.不妨设m p p p a 21=,n q q q b 21=,其中m p p p ,,,21 和n q q q ,,,21 都是R 中的既约元.于是存在I k ∈,使得c q q q p p kp n m 2121=.由于a 与b 互素,因此i p (),,2,1m i =与j q (),,2,1n j =不相伴.这样一来,由上式可知,c 可以表示成如下形式:m p p p k c 21'=.所以c a |.(2)显然,当0=a 或0=b 时,0=c ,从而,c ab |;当a 是单位或b 是单位时,c ab |.现在假设a 和b 既不是0,也不是单位.由于I 是主理想环,根据定理4.14,I 是惟一分解整环.不妨设m p p p a 21=,n q q q b 21=,其中m p p p ,,,21 和n q q q ,,,21 都是I 中的既约元.于是,n m q q q p p p ab 2121=,n m q q q k p p kp c 2121'==.如果a 与b 互素,那么,i p (),,2,1m i =与j q (),,2,1n j =不相伴.这样一来,因为I 是唯一分解整环,c 可以表示成如下形式:ab k q q q p p p k c n m ''''2121== .所以c ab |.4.在整数环Z 中,求出包含)6(的所有极大理想.证明 我们知道,整数环Z 是主理想环.设)(a 是包含)6(的一个极大理想.根据定理4.4,a 是6的真因子.因此2±=a 或3±=a .所以)2()2(-=和)3()3(-=就是包含)6(的所有极大理想.5.在有理数域Q 上的一元多项式环][x Q 中,理想)23,1(23+++x x x 等于怎样一个主理想?解 显然,1+x 是13+x 与232++x x 的一个最大公因子.根据定理3.16的推论2和定理4.15, )1()23,1(23+=+++x x x x .6.证明:)3/(][2+x x Q 是一个域.证明 首先, 由于Q 是域,根据§3.7中的例1,][x Q 是主理想环.其次,显然32+x 是][x Q 中的不可约元.这样一来,根据定理4.16和定理3.23,)3/(][2+x x Q 是一个域.§4.4 欧 氏 环1.证明:域F 是欧氏环.证明 定义}0{\F 到到}0{ N 的映射φ如下:1)(=a φ,}0{\F a ∈∀.显然,对于任意的}0{\F a ∈和F b ∈,存在F q ∈,使得0+=aq b .所以F 是欧氏环.2.证明:整环},|2{]2[Z Z ∈-+=-n m n m 关于*-]2[Z 到}0{ N 的映射222)2(n m n m φ+=-+是一个欧氏环.证明 考察任意的*-∈]2[Z α和]2[-∈Z β:设2-+=b a α,,2-+=d c β其中Z ∈d c b a ,,,.于是,222222)(2(22222222-+-+++=+---+=-+-+=ba bc adb a bd ac b a b ad c b a d c αβ. 根据带余除法,存在Z ∈v u q q ,,,21,使得u q b a bd ac ++=+122)2(2,)2(21||022b a u +≤≤; v q b a bcd ad ++=-222)2(,)2(21||022b a v +≤≤. 令221-+=q q q .则222222222222b a v u q b a bc ad b a bd ac αβ+-++=-+-+++=, 从而222)2(ba αv u q αβ+-++=.注意到]2[,,-∈Z q βα,由上式可知,]2[2)2(22-∈+-+Z b a αv u .令222)2(ba αv u r +-+=,则]2[-∈Z r ,并且 r q αβ+=.当0≠r 时,222222||)2(|)2(|||)(αb a v u r r φ⋅+-+== )(2||22||222222αφb a v b a u ⋅⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⋅+⎪⎭⎫ ⎝⎛+= )()(2141αφαφ<⋅⎪⎭⎫ ⎝⎛+≤. 所以整环]2[-Z 关于*-]2[Z 到}0{ N 的映射φ是一个欧氏环.3.证明:整环},|2{]2[Z Z ∈+=n m n m 关于*]2[Z 到}0[ N 的映射|2|)2(22n m n m φ-=+是一个欧氏环.证明 令},|2{]2[Q Q ∈+=b a b a .定义*]2[Q 到Q 的映射ψ如下:|2|)2(22b a b a ψ-=+,*∈+∀]2[2Q b a ,其中Q ∈b a ,.于是,对于任意的*∈++]2[2,2Q d c b a (其中Q ∈d c b a ,,,),我们有)2()2(d c ψb a ψ+⋅+|)2)(2(|2222d c b a --=|)2)(2)(2)(2(|d c d c b a b a -+-+=|)2)(2)(2)(2(|d c b a d c b a --++=|)2)()2)((2)()2((|bc ad bd ac bc ad bd ac +-++++=|)(2)2(|22bc ad bd ac +-+=)2)()2(bc ad bd ac ψ+++=))2)(2((d c b a ψ++=.此外,显然]2[]2[Q Z ⊆,并且ψ在*]2[Z 上的限制就是φ. 任意给定]2[2,]2[2Z Z ∈+=∈+=*d c βb a α,其中Z ∈d c b a ,,,.为了证明]2[Z 是欧氏环,现在只需阐明存在]2[,Z ∈r q ,使得r q αβ+=,其中,0=r 或)()(αφr φ<.事实上,我们有222222)()2(2)2)(2(b a bc ad bd ac b a d c b a αβ--+-=-+-=.。