台湾海峡叶绿素浓度反演
- 格式:ppt
- 大小:578.50 KB
- 文档页数:15
叶绿素反演流程引言:叶绿素是植物和藻类中存在的一种重要生物色素,它在光合作用中扮演着关键的角色。
叶绿素反演指的是通过遥感技术获取地表叶绿素含量的过程。
叶绿素反演流程包括数据获取、预处理、辐射传输模型建立、参数反演等步骤。
本文将详细介绍叶绿素反演的流程。
一、数据获取叶绿素反演的第一步是获取遥感数据。
常用的遥感数据包括高光谱数据和多光谱数据。
高光谱数据可以提供丰富的光谱信息,而多光谱数据则具有较高的空间分辨率。
通过卫星或无人机获取的遥感数据可以用于叶绿素反演。
二、预处理在进行叶绿素反演之前,需要对遥感数据进行预处理。
预处理的目的是去除噪声、纠正辐射定标系数以及大气校正。
常用的预处理方法包括辐射定标、大气校正以及影像配准等。
三、辐射传输模型建立辐射传输模型是叶绿素反演的关键环节,其目的是建立地表辐射与叶绿素含量之间的关系。
辐射传输模型通常基于物理原理,考虑了光的散射、吸收和透射等过程。
常用的辐射传输模型有PROSAIL、PROSPECT等。
四、参数反演在建立了辐射传输模型之后,可以通过参数反演来获取地表叶绿素含量。
参数反演的目标是找到最佳的模型参数,使模型模拟结果与实测数据尽可能吻合。
参数反演方法包括基于优化算法的全局搜索和基于统计学的回归分析等。
五、结果评估获得叶绿素反演结果后,需要对结果进行评估。
评估的指标包括误差分析、相关系数以及精度评价等。
通过评估可以判断叶绿素反演结果的可靠性和准确性。
六、应用与展望叶绿素反演的结果可以用于植被健康监测、农作物生长状况评估以及水质监测等领域。
未来,随着遥感技术的进一步发展,叶绿素反演的精度和应用范围将进一步扩大。
结论:叶绿素反演是通过遥感技术获取地表叶绿素含量的一种重要方法。
叶绿素反演流程包括数据获取、预处理、辐射传输模型建立、参数反演等步骤。
通过叶绿素反演可以实现对植被健康状态和水质状况的监测与评估,具有重要的应用价值。
未来,叶绿素反演技术将在农业、环境保护等领域发挥更大的作用。
海洋叶绿素a浓度反演及其在赤潮监测中的应用X 张春桂1曾银东2张星3潘卫华1林晶11(福建省气象科学研究所,福州3500012(福建省海洋环境与渔业资源监测中心,福州3500033(福建省气象局,福州350001摘要采用OC2和OC3两种标准经验算法以及Clark和N SM C-CASE2两种半分析算法进行了M O DIS海洋叶绿素a 浓度反演,并根据2004年福建近海赤潮监控区内10个站点的叶绿素a浓度观测数据对反演结果进行了分析。
利用20022005年M O DIS叶绿素a浓度反演结果对同期发生在福建近海的赤潮灾害进行了初步研究,并探讨了250m和500m分辨率的M ODI S可见光数据对赤潮灾害监测的可能性。
结果表明:两种标准经验算法和两种半分析算法对叶绿素a浓度的反演均存在不同程度的偏高,相对而言,OC3标准经验算法比较适合基于M ODIS的福建近海叶绿素a浓度反演;M ODI S红光(250m和绿光(500m通道数据的比值在赤潮灾害发生过程中发生了显著变化,在灾害发生时其值明显较灾前和灾后均偏大。
关键词:遥感;赤潮;叶绿素a;M ODIS资料引言赤潮(也称有害藻华是指由于海洋浮游生物的过度繁殖造成海水变色的现象,一般认为是一种自然灾害。
赤潮除了使渔业经济遭受损失外,有毒赤潮还会导致海洋生物和人畜死亡,已成为全球海洋公害,因此赤潮灾害被列为国际海洋生物研究的重要内容。
随着我国海洋开发和沿海地区经济的快速发展,我国赤潮灾害发生越来越频繁,据统计20世纪70年代我国赤潮灾害发生9次,80年代发生75次,至90年代猛增到262次[1]。
福建沿海是我国赤潮多发区之一,有记录的赤潮事件共计113起,并呈逐年增多的趋势,其中2001年6起,2002年17起, 2003年29起。
在福建沿岸海域已经引发过赤潮灾害的生物达17种,东海原甲藻、米氏凯伦藻、夜光藻和中肋骨条藻是近年来诱发赤潮灾害的主要生物,多数无毒无害,少数甲藻引起的赤潮有毒有害[2]。
基于HJ-1ACCD数据的湖泊叶绿素a浓度反演湖泊叶绿素a浓度是衡量水体藻类生长和水质的重要指标之一,对于湖泊生态环境的监测和保护具有重要意义。
传统的叶绿素a浓度监测方式需要耗费大量人力物力进行野外调查和实验室分析,费时费力。
而基于遥感数据的叶绿素a浓度反演方法可以大大提高监测效率和准确性,成为了当前研究的热点之一。
HJ-1A和HJ-1B,它们分别搭载有多光谱和全色相机,能够获取30米分辨率的多光谱和16米全色影像数据。
这使得HJ-1星系列数据成为了进行叶绿素a浓度反演研究的理想选择。
本文将基于HJ-1ACCD数据进行湖泊叶绿素a浓度反演的研究,以期为湖泊水质监测提供更为高效、精确的方法。
一、HJ-1ACCD数据HJ-1ACCD是由环境卫星应用与服务中心提供的一种遥感产品数据,其数据涵盖了中国大陆及周边地区的陆地环境、植被和农田等多种信息。
HJ-1ACCD数据以HJ-1A/B卫星的CCD传感器为基础,通过对CCD传感器数据的预处理和气象校正,生成了表征地表反射率和植被生长状况的遥感产品,包括植被指数、叶绿素含量等。
二、湖泊叶绿素a浓度反演方法1.建立叶绿素a浓度与遥感数据的定量关系模型我们需要采集湖泊水体的实地采样数据,包括叶绿素a浓度、水体颜色、透明度等指标。
然后,利用HJ-1ACCD数据获取湖泊水体的遥感信息,如反射率、光谱特征等。
接着,利用统计学方法或机器学习算法建立叶绿素a浓度与遥感数据之间的定量关系模型,例如多元线性回归模型、支持向量机模型等。
2.验证模型准确性建立模型后,需要对其进行验证,以验证模型的准确性和可靠性。
可以利用另外采集的实地数据进行验证,或者采用交叉验证等方法进行模型验证。
3.应用模型进行叶绿素a浓度反演一旦模型验证通过,就可以将模型应用于湖泊叶绿素a浓度的遥感反演工作中。
利用HJ-1ACCD数据获取的遥感信息,输入到建立的模型中,就可以得到湖泊叶绿素a浓度的反演结果。
基于带模型的叶绿素a浓度反演精度评估陈军;陆凯;王保军【摘要】为了评估遥感反演叶绿素a浓度的精度,以2004年8月19日太湖38个水质样本数据和同步Hyperion卫星遥感影像数据为基础,借鉴四波段半分析算法,结合空间数据不确定性原理,构建了基于四波段半分析算法的“带模型”.通过研究与探讨可知,当叶绿素a浓度为10~20 μg/L和50~100 μg/L时,叶绿素a浓度的反演误差较小,大约为±20%;当叶绿素a浓度在20~50 μg/L时,叶绿素a浓度的反演误差较大,大约为±40%,局部区段的误差高达±60%左右.与传统的误差表示方法相比较,“带模型”能更详细且能准确地给出太湖水体叶绿素a浓度反演结果的误差信息.%With the spectral experiment and the simultaneous observation results of Hyperion satellite on 19 August, 2004 as the basic dataset, the authors used the uncertainty principle of spatial data to develop a " bands model" for chlorophyll-a concentration retrieval algorithm of the subsection mapping retrieval model. It is thus found that in the ranges of 10 -20 μg/L and 50 - 100 μg/L, the retrieval error of chlorophy ll-a concentration is relatively low, (approximately ±20% ) , whereas in the range of 20 -50 μg/L, the retrieval error of chlorophyll-a concentration is relatively high, ( approximately ± 40% ). A comparison with the traditional methods for error describing shows that the "bands model" could include more detailed and accurate information of data quality for remote sensing products.【期刊名称】《国土资源遥感》【年(卷),期】2011(000)004【总页数】4页(P83-86)【关键词】遥感;带模型;叶绿素a;太湖【作者】陈军;陆凯;王保军【作者单位】国土资源部海洋油气资源与环境地质重点实验室,青岛266071;青岛海洋地质研究所,青岛266071;国土资源部海洋油气资源与环境地质重点实验室,青岛266071;青岛海洋地质研究所,青岛266071;国土资源部海洋油气资源与环境地质重点实验室,青岛266071;青岛海洋地质研究所,青岛266071【正文语种】中文【中图分类】TP79;X832水色遥感产品(主要指叶绿素a浓度、悬浮泥沙浓度和可溶有机物质浓度遥感观测信息)的精度评估及表达是水色遥感研究的难点和热点之一。
基于HJ-1ACCD数据的湖泊叶绿素a浓度反演湖泊叶绿素a浓度反演是一项重要的环境监测工作,可以为湖泊富营养化调查和水质评价提供重要依据。
基于HJ-1ACCD(Huan Jing Yi Hao 1A Charge Coupled Device)数据的湖泊叶绿素a浓度反演是利用HJ-1A卫星上搭载的CCD相机获取的湖泊遥感影像进行的一种遥感技术。
HJ-1A卫星是中国环境卫星二号的第一颗星,主要任务是对环境进行全方位、高频发射观测,为我国环境监测提供数据支撑。
CCD相机是HJ-1A卫星上的主要探测设备,可以获取高空间分辨率的遥感影像数据。
湖泊叶绿素a是湖泊中生物量浓度的一个重要指标,可以作为湖泊水质的一个关键参考。
利用HJ-1ACCD数据进行湖泊叶绿素a浓度反演的方法主要包括以下几个步骤。
对HJ-1ACCD数据进行预处理。
预处理的主要内容包括大气校正、大气成分估计和大气校正系数计算等。
大气校正是遥感数据处理中的重要一步,可以去除大气的影响,提高数据的准确性。
接下来,对预处理后的HJ-1ACCD数据进行图像解译。
图像解译是根据湖泊中的不同物质的反射特征进行分类,从而确定叶绿素a浓度所对应的分类。
然后,利用已知的湖泊叶绿素a浓度和HJ-1ACCD数据之间的关系进行模型拟合。
可以使用回归分析等方法,建立叶绿素a浓度与HJ-1ACCD数据之间的数学模型。
需要注意的是,湖泊叶绿素a浓度反演是一种间接方法,其精度和准确性还需要进行实地调查和水质采样分析进行验证。
湖泊的特征和环境条件也会对反演结果产生一定的影响,因此在实际应用中需要结合实际情况进行分析和判断。
基于HJ-1ACCD数据的湖泊叶绿素a浓度反演是一种通过对遥感影像数据的处理和分析,利用数学模型对湖泊叶绿素a浓度进行估计的方法。
这种方法可以为湖泊水质评价和富营养化调查提供重要的参考数据,具有广阔的应用前景。
原理1.SeaDAS大气校正公式2.叶绿素浓度计算公式:IDL编程实现:proautumn;443波段autumnfile=filepath('lw443.2002autumn.flat',root_dir='E:',subdir='课件\定量遥感\实验二\20121212-10级学生上机')openr,lun,file,/get_lundata443au=fltarr(700,1100,1)readu,lun,data443audata443au1=1.2386*data443au+0.0008574help,data443au1,/strfree_lun,lun;490 autumnfile=filepath('lw490.2002autumn.flat',root_dir='E:',subdir='课件\定量遥感\实验二\20121212-10级学生上机')openr,lun,file,/get_lundata490au=fltarr(700,1100,1)readu,lun,data490audata490au1=0.92887*data490au+0.0015606help,data490au1,/strfree_lun,lun;510 autumnfile=filepath('lw510.2002autumn.flat',root_dir='E:',subdir='课件\定量遥感\实验二\20121212-10级学生上机')openr,lun,file,/get_lundata510au=fltarr(700,1100,1)readu,lun,data510audata510au1=1.0118*data510au+0.00039303help,data510au1,/strfree_lun,lun;555 autumnfile=filepath('lw555.2002autumn.flat',root_dir='E:',subdir='课件\定量遥感\实验二\20121212-10级学生上机')openr,lun,file,/get_lundata555au=fltarr(700,1100,1)readu,lun,data555audata555au1=1.0674*data555au+1.2241e-5help,data555au1,/strfree_lun,lunr1=data443au1>data490au1>data510au1/data555au1help,r1r=alog10(r1)chla_au=10^(-2.2402*r^4+1.4345*r^3+0.15474*r^2-0.90456*r+0.025477)help,chla_au;window,1,xsize=700/2,ysize=1100/2;new=rebin(chla_au,700/5,1100/5);print,min(new),max(new);tvscl,new,order=1;;;window,2,xsize=500,ysize=700;打开窗口大于图像大小;map_set,/isotropic,/noborder, /cylindrical,limit=[18,114,40,128],xmargin=[4,4],ymargin=[8,8]$ ;,title='autumn East China Sea chlorophyll inversion!c';设置投影,上下左右留白;images=map_image(new,startx,starty,lonmin=114,lonmax=128,latmin=18,latmax=40,/bilinear,co mpress=1);;device,decomposed = 0;loadct,4;tvscl,images,order=1,startx,starty;map_grid,latdel=2,londel=2,/box,/label;先画图后加网格im = IMAGE(chla_au, RGB_TABLE=4, $POSITION=[0.25,0.05,0.95,0.9], $FONT_COLOR='Green', FONT_SIZE=16, $TITLE='autumn East China Sea chlorophyll inversion',/order)c = COLORBAR(TARGET=im, ORIENTATION=1, $POSITION=[0.3,0.05,0.35,0.5], $TITLE='Chla_au (g/ml)')end2.。
叶绿素浓度反演实验报告引言叶绿素是光合作用中的重要参与者,它能够吸收太阳光能并将其转化为化学能以支持植物的生长和发育。
叶绿素浓度是衡量植物健康状况的重要指标,因此反演叶绿素浓度对于环境监测、农作物健康评估等方面具有重要意义。
本实验旨在通过测量叶片反射率和吸收率,利用反射光谱的特征反演叶绿素浓度。
实验材料和方法实验材料1. 叶子样本:选择多种不同浓度的叶绿素样本,例如大豆、小麦、松树等;2. 光谱仪:用于测量叶片反射光谱,常见的光谱仪有多光束分光仪、扫描光谱仪等;3. 分光计:用于测量光源发出的光谱强度;4. 恒温槽:用于控制测量温度的恒定性;5. 叶绿素浓度测量仪:用于测量叶片中叶绿素的浓度。
实验方法1. 准备不同浓度的叶绿素样本,并记录其浓度值;2. 将光谱仪与分光计连接好,并将测量温度放置在恒温槽中;3. 选取一片叶子样本,将其放置在测量平台上,确保叶片表面平整;4. 打开光谱仪和分光计,记录光谱仪所测得的反射光谱数据;5. 分别计算不同波段的反射光谱和吸收光谱;6. 利用反射光谱和吸收光谱的特征,运用数学模型反演叶绿素浓度;7. 重复以上步骤对其他叶子样本进行测量。
实验结果与讨论通过对多个叶子样本的测量,我们得到了它们在不同波段下的反射光谱和吸收光谱数据。
根据经验,我们发现在特定的波段范围内,叶绿素具有较强的吸收能力。
因此,我们选取了这些波段范围内的反射谱线进行分析。
以大豆样本为例,我们在550nm到720nm范围内选取了若干个波段,分别计算了它们的反射光谱。
然后,通过构建数学模型,我们反演出了大豆样本中叶绿素的浓度。
实验结果显示,浓度较高的大豆样本在所选波段内表现出较低的反射率,而浓度较低的大豆样本则表现出较高的反射率。
这与我们的期望相符合,即叶绿素浓度越高,样本所吸收的光就越多,因此反射率就越低。
我们还对其他样本进行了类似的实验,并得到了类似的结果。
这表明,通过测量叶片的反射光谱,结合数学模型,我们能够较为准确地反演出叶绿素的浓度。
基于HJ-1ACCD数据的湖泊叶绿素a浓度反演湖泊叶绿素a浓度是湖泊水体中叶绿素a的含量,是评价湖泊水质和水环境生态状态的重要指标之一。
精确地测量湖泊叶绿素a浓度对于湖泊水质监测和生态环境保护具有重要意义。
传统的测量方法需要大量的时间和人力资源,而遥感技术能够提供高效、快速、经济的叶绿素a浓度反演方法。
HJ-1ACCD是中国自主研发的一颗小卫星,具有高灵敏度和较高空间分辨率的遥感能力。
它搭载的颜色旋转云雾差异器(ACCD)传感器,可获取水域中的多光谱遥感数据。
利用HJ-1ACCD数据进行湖泊叶绿素a浓度反演的关键是建立反演模型。
湖泊叶绿素a浓度与水体的光学特性有关,主要通过测量水体的反射光谱来推测叶绿素a的浓度。
在利用HJ-1ACCD数据进行反演时,首先需要进行大气矫正,去除大气影响。
然后根据湖泊水体的光谱特性建立反演模型,通常采用光谱比值模型、光谱指数模型或统计模型。
光谱比值模型是通过计算不同波段的反射率之间的比值来估算叶绿素a浓度。
常用的光谱比值包括蓝绿波段比值(B/G)、蓝红波段比值(B/R)等。
这种模型简单易用,但对光谱的选择较为敏感,并且对大尺度湖泊的反演效果较差。
光谱指数模型是通过计算不同波段的反射率之间的差异来估算叶绿素a浓度。
常用的光谱指数有NDVI(Normalized Difference Vegetation Index)、RVI(Ratio Vegetation Index)等。
这种模型相对于光谱比值模型来说更加稳定,但需要根据不同湖泊的特性选择合适的光谱指数。
统计模型是利用多变量统计方法建立叶绿素a浓度与多个光谱波段之间的关系。
常用的统计模型包括多元线性回归模型、支持向量回归模型等。
这种模型具有较高的准确性和稳定性,但需要较多的样本数据进行建模和验证。
除了反演模型的建立,还需要进行准确的地面观测和采样,获取湖泊叶绿素a浓度的实际数据,用于反演模型的校正和验证。
在利用HJ-1ACCD数据进行湖泊叶绿素a浓度反演时,需要根据特定的湖泊特征选择适合的反演模型,并进行准确的大气矫正和地面观测,以提高反演精度和可靠性。
原理1.SeaDAS大气校正公式2.叶绿素浓度计算公式:IDL编程实现:pro autumn;443波段autumnfile=filepath('lw443.2002autumn.flat',root_dir='E:',subdir='课件\定量遥感\实验二\20121212-10级学生上机')openr,lun,file,/get_lundata443au=fltarr(700,1100,1)readu,lun,data443audata443au1=1.2386*data443au+0.0008574help,data443au1,/strfree_lun,lun;490 autumnfile=filepath('lw490.2002autumn.flat',root_dir='E:',subdir='课件\定量遥感\实验二\20121212-10级学生上机')openr,lun,file,/get_lundata490au=fltarr(700,1100,1)readu,lun,data490audata490au1=0.92887*data490au+0.0015606help,data490au1,/strfree_lun,lun;510 autumnfile=filepath('lw510.2002autumn.flat',root_dir='E:',subdir='课件\定量遥感\实验二\20121212-10级学生上机')openr,lun,file,/get_lundata510au=fltarr(700,1100,1)readu,lun,data510audata510au1=1.0118*data510au+0.00039303help,data510au1,/strfree_lun,lun;555 autumnfile=filepath('lw555.2002autumn.flat',root_dir='E:',subdir='课件\定量遥感\实验二\20121212-10级学生上机')openr,lun,file,/get_lundata555au=fltarr(700,1100,1)readu,lun,data555audata555au1=1.0674*data555au+1.2241e-5help,data555au1,/strfree_lun,lunr1=data443au1>data490au1>data510au1/data555au1help,r1r=alog10(r1)chla_au=10^(-2.2402*r^4+1.4345*r^3+0.15474*r^2-0.90456*r+0.025477) help,chla_au;window,1,xsize=700/2,ysize=1100/2;new=rebin(chla_au,700/5,1100/5);print,min(new),max(new);tvscl,new,order=1;;;window,2,xsize=500,ysize=700;打开窗口大于图像大小;map_set,/isotropic,/noborder,/cylindrical,limit=[18,114,40,128],xmargin=[4,4],ymargin=[8,8]$;,title='autumn East China Sea chlorophyll inversion!c';设置投影,上下左右留白;images=map_image(new,startx,starty,lonmin=114,lonmax=128,latmin=18,l atmax=40,/bilinear,compress=1);;device,decomposed = 0;loadct,4;tvscl,images,order=1,startx,starty;map_grid,latdel=2,londel=2,/box,/label;先画图后加网格im = IMAGE(chla_au, RGB_TABLE=4, $POSITION=[0.25,0.05,0.95,0.9], $FONT_COLOR='Green', FONT_SIZE=16, $TITLE='autumn East China Sea chlorophyll inversion',/order)c = COLORBAR(TARGET=im, ORIENTATION=1, $POSITION=[0.3,0.05,0.35,0.5], $TITLE='Chla_au (g/ml)')end2.。
台湾海峡海水透明度遥感监测及时空变化分析张春桂;曾银东【摘要】台湾海峡水文气象环境条件及水体光学特性较复杂。
本文基于海洋水体固有光学特性和 MODIS 卫星数据建立了台湾海峡海水透明度的遥感反演模型,利用2005—2012年福建省近岸海域同步获取的海水透明度实测数据对模型的反演精度进行验证,并根据多年遥感反演结果初步分析了台湾海峡海水透明度的分布特点和变化规律。
结果表明:台湾海峡遥感反演的海水透明度与实测的海水透明度具有较好的一致性,两者相关系数为0.849,平均相对误差为26.0%,平均均方根误差为0.332 m,在中高透明度海区反演误差更低,因此利用建立的遥感反演模型对台湾海峡海水透明度进行卫星遥感监测是可行的。
从多年平均的遥感监测结果来看,台湾海峡一般沿岸浅海的海水透明度较低,外海的海水透明度较高;海峡南部的海水透明度明显高于北部,澎湖列岛东南海域海水透明度常年较大;春季和夏季台湾海峡透明度高的海域面积明显比秋季和冬季大,海峡东南部的海水高透明度区春夏季比秋冬季更向北伸展。
%The hydrology and meteorology environmental conditions and water optical properties are complex in Taiwan Strait.On the basis of previous studies,a remote sensing retrieval model of seawater transparency in Tai-wan Strait was developed using inherent optical properties of marine water and MODIS satellitedata.Simultane-ously observed seawater transparency near Fujian offshore marine areas from 2005 to 2012 was used to test the re-trieved accuracy of the model.At the same time,the distribution characteristics and changes of seawater transparen-cy in Taiwan Strait were preliminary analyzed based on the historical remote sensing retrieval records.The results show that theobserved and retrieved seawater transparency is consistent in Taiwan Strait,and their correlation coef-ficient,mean relative error and root mean square error are 0.849,26.0% and 0.332 m,respectively.The error is e-ven much lower in the mid-high transparent sea area.So it is feasible to monitor seawater transparency in Taiwan Strait using this model.According to the results from the historical remote sensing monitoring,seawater transparen-cy is generally lower along the shallow area and higher off the coast of Taiwan Strait;it is significantly higher in the southern area than in the northern area,and it is higher in a whole year in the southeast area of Pescadores;the area of high transparency in spring and summer is significantly larger than that in autumn and winter in Taiwan Strait,and the area of high transparency in the south-eastern Taiwan Strait spreads more to the north in spring and summer than in autumn and winter.【期刊名称】《气象与环境学报》【年(卷),期】2015(000)002【总页数】9页(P73-81)【关键词】遥感反演;海水透明度;台湾海峡【作者】张春桂;曾银东【作者单位】福建省气象科学研究所,福建福州 350001;福建省海洋预报台,福建福州 350003【正文语种】中文【中图分类】P731.1海水透明度是指海水的清澈程度,是描述海水光学性质的一个重要参数。