七年级数学上册 第一章 有理数 1.5 有理数的乘方 1.5.1 有理数的乘方(第1课时)教案 新人
- 格式:doc
- 大小:188.50 KB
- 文档页数:6
1.5.1 乘方(二)1.能确定有理数加、减、乘、除、乘方混合运算的顺序; 2.会进行有理数的混合运算;3.培养并提高正确迅速的运算能力.重点:运算顺序的确定和符号的处理; 难点:有理数的混合运算.一、温故知新1.在2+32×(-6)这个式子中,存在着__三__种运算.2.以4人一个小组讨论、交流,上面这个式子应该先算乘方,再算乘除,最后算加减.二、自主学习1.由上可以知道,在有理数的混合运算中,运算顺序是: (1)先乘方,再乘除,最后加减; (2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 2.P43例题3,学生试练,教师指导. 3.师生共同探讨P43例题4.1.P44练习. 2.计算:(1)(-1)10×2+(-2)3÷4; 解:原式=2-8÷4 =2-2 =0;(2)(-5)3-3×(-12)4;解:原式=-125-3×116=-125316;(3)115×(13-12)×311÷45;解:原式=115×(-16)×311×54=-115×16×311×45=-225;(4)(-10)4+[(-4)2-(3+32)×2]. 解:原式=10000+[16-(3+9)×2] =10000+(16-12×2) =10000+(16-24)=10000-8 =9992.有理数的混合运算顺序.1.计算:(1)(-3)2×[-23+(-59)];解:原式=9×(-23-59)=9×(-23)-9×59=-6-5=-11;(2)-23÷49÷(-23)3;解:原式=-8×94×(-278)=2434;(3)(0.25)29×430. 解:原式=0.2529×429×4 =1×4 =4.2.观察下面三行数:①-3,9,-27,81,-243,729,…; ②0,12,-24,84,-240,732,…; ③-1,3,-9,27,-81,243,…. (1)第①行数有什么规律?第①行是(-3)1,(-3)2,(-3)3,(-3)4,…(-3)n. (2)第②行数与第①行数有什么关系? 第②行数是第①行相应的数加3.(3)第③行数与第①行数有什么关系? 第③行数是第①行相应数乘以13.(4)取每行数的第10个数,计算这三个数的和. (-3)10+[(-3)10+3]+(-3)10×13=59049+59049+3+59049×13=59049+59049+19683+3 =137784.3.x ,y 为有理数,且|x -1|+2(y +3)2=0,求x 2-3xy +2y 2的值. 解:由题意知x -1=0,y +3=0. ∴x =1,y =-3. ∴x 2-3xy +2y 2=28.4.一根1米长的绳子,第一次剪去12,第二次剪去剩下的12,如此剪下去,第六次后剩下的绳子还有1厘米长吗?为什么?解:(12)6=164≈0.016(米)∵0.016米>1厘米∴第六次后剩下的绳子还有1厘米长.《由立体图形到视图》一、教材分析1.教材所处的地位与作用《由立体图形到视图》是华师大版七年级数学教材第四章第二节第一课时。
第一章有理数1.5 有理数的乘方1.5.1 乘方第2课时一、教学目标【知识与技能】掌握有理数混合运算的顺序,能正确地进行有理数的加、减、乘、除、乘方的混合运算.【过程与方法】通过例题学习,发展学生观察、归纳、猜想、推理等能力.【情感态度与价值观】体验获得成功的感受、增加学习自信心.二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】运算顺序的确定和性质符号的处理【教学难点】有理数的混合运算五、课前准备教师:课件、直尺、计算器等。
学生:三角尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课我们学过哪些运算?(出示课件2)学生答:有理数的加、减、乘、除、乘方五种运算。
教师:我们一起来思考下面的问题:教师问1:在2+×(-6)这个式子中,存在着哪几种运算?学生回答:乘方、加法、乘法.教师问2:这道题应按什么顺序运算?学生回答:先算乘方,再算乘法,最后算加法.(二)探索新知1.有理数的混合运算出示课件4-5,学生观察图片,思考问题,列出算式。
圆形花坛的半径为3m,中间雕塑的底面是边长为1m 的正方形。
请同学们估计一下若每平方米种9株花,我要买几株花呀?学生列出算式:(π×32-12)×9教师问3:上式含有哪几种运算?先算什么?后算什么?(出示课件6) 学生回答:下式含有乘方、乘法、减法三种运算,先算乘方,再算括号内的乘法,然后算减法,最后算括号外的乘法.23教师问4:前面我们已经学习加减乘除四则运算,知道要先算乘除,再算加减,现在又多一种乘方运算,你们认为在做有理数混合运算时,应注意哪些运算顺序?师生共同解答如下:(出示课件7)(1)先算乘方,再算乘除,最后算加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.例1:计算:(出示课件8)(1)2×(-3)3-4×(-3)+15;(2)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2).师生共同解答如下:解:(1)原式=2×(-27)-(-12)+15=-54+12+15=-27(2)原式=-8+(-3)×(16+2)-9÷(-2)=-8+(-3)×18-(-4.5)=-8-54+4.5=-57.5总结点拨:分清运算顺序,先乘方,再做中括号内的运算,接着做乘除,最后做加减.计算时,特别注意符号问题.例2:计算:(出示课件10)师生共同解答如下:解法一、原式= 解法二、原式= =-6+(-5)=-11总结点拨:在运算过程中,巧用运算律,可简化计算.2.探究数字规律例:观察下面三行数:(出示课件12-14)–2, 4, –8, 16, –32, 64,…; ①0, 6, –6, 18, –30, 66,…; ②–1, 2, –4, 8, –16, 32,…. ③(1)第①行数按什么规律排列?师生共同解答如下:分析:观察①,发现各数均为2的倍数.联系数的乘方,从符号和绝对值两方面考虑,可发现排列的规律.解:(1)第①行数是-2,(-2)2,(-2)3,(-2)4,(-2)5,(-2)6,…(2)对比①②两行中位置对应的数,你有什么发现?()2253[]39⎛⎫-⨯-+- ⎪⎝⎭119119⎛⎫⨯-=- ⎪⎝⎭259939⎛⎫⎛⎫⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭222220,46,86,1618,..++++-−−→−−→-−−→-−−→第②行数是第①行相应的数加2.即 -2+2,(-2)2+2,(-2)3+2,(-2)4+2,…对比①③两行中位置对应的数,你有什么发现?第③行数是第①行相应的数的一半,即-2×0.5,(-2)2×0.5,(-2)3×0.5,(-2)4×0.5,…(3)根据第①行数的规律,得第10个数为(-2)10,那么第②行的第10个数为(-2)10+2,第③行中的第10个数是(-2)10×0.5.所以每行数中的第10个数的和是:(-2)10+[(-2)10+2]+[(-2)10×0.5]=1024+(1024+2)+1024×0.5=1024+1026+512=2562(三)课堂练习(出示课件16-20)1.计算4+(–2)2×5=( )A .–16B .16C .20D .242.计算式子(–1)3 +(–1)6的结果是( )A.1B.–1C.0D.1或–13.设a=–2×32, b=(–2×3)2, c=–(2×3)2,那么a 、b 、c 的大小关系是( )A.a<c<bB.c<a<bC.c<b<aD.a<b<c4.计算:(-12)2×(91-41) 5.计算:(-2)2022+(-2)20236.计算:(1)2×(-3)2-4×(-3)+15 ;(2)16122472;⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭(3)()27274;⎛⎫-+-÷- ⎪⎝⎭ (4)-8-3×(-1)3-(-1)4 7.一个长方体的长、宽都是a,高是b,它的体积和表面积怎样计算?当a=2 cm,b=5 cm 时,它的体积和表面积是多少?参考答案:1.D 解析:4+(–2)2×5=4+4×5=4+20=24.2.C3.B4.解:(-12)2×(91-41) =144×41-144×91 =36-16=205.解:原式=22022 – 22023= 22022 – 22022×2= 22022 –22022 –22022= –220226.(1)45;(2)79;(3)0;(4)-6 7.解:体积V=a 2b=22×5=20 cm 3.表面积S=2a 2+4ab=2×22+4×2×5=48 cm 2.(四)课堂小结今天我们学了哪些内容:有理数混合运算的顺序:1.先乘方,再乘除,最后加减;2.同级运算,从左往右进行;3.如果有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.(五)课前预习预习下节课(1.5.2)的相关内容。
人教版新课标七年级上册数学教材目录第一章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减法1.4 有理数的乘除法1.5 有理数的乘方第二章整式的加减2.1 整式2.2 整式的加减第三章一元一次方程3.1 从算式到方程3.2 解一元一次方程(一)——合并同类项与移项3.3 解一元一次方程(二)——去括号与去分母3.4 实际问题与一元一次方程第四章几何图形初步4.1 几何图形4.2 直线、射线、线段4.3 角4.4 课题学习设计制作长方体形状的包装纸盒第一章有理数1.1 正数与负数①正数:大于0的数叫正数。
(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。
2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。
(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离。
(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
1.3 有理数的加减法①有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
有理数的乘方
课题: 1.5.1 有理数的乘方课时第1课时
教学设计
课标
要求
理解乘方的意义,掌握有理数的乘方运算
教材及学情分析
本节的主要内容是有理数的乘方运算。
教科书采用从具体到抽象的方法,引导学生理解有理数乘方的意义,通过例题和练习使学生熟练乘方运算,然后安排了有理数的混合运算,在进一步熟练各种运算的同时,对前面所学的运算作一小结。
教科书在给出乘方定义的同时,还明确了幂、底数、指数这几个概念的意义,教学时应讲清这几个概念的意义及相互关系。
值得注意的是,乘方是一种运算,幂是乘方运算的结果。
学生在学习力有理数的乘法的基础上学习乘方运算不难,只是对乘方意义的理解可能会存在困难,通过做练习的方法,帮助学生体会乘方的意义。
课时
教学目标1、理解乘方的意义,探究有理数乘方的符号法则,会进行乘方的运算。
2、通过合作交流及独立思考,培养运算及探究新知识的能力。
3、通过对乘方意义的探究,让学生体会由特殊到一般的数学思想。
重点正确理解乘方的意义,能利用乘方的运算法则进行有理数的乘方运算难点有理数乘方的符号的确定
提炼课
题
乘方的意义及运算
教法学
法
指导
合作探究法、独立思考法、讲练结合法
教具多媒体课件
准备
教学过程提要
环节
学生要解决的问
题或完成的任务
师生活动设计意图
引入新课思考、回顾
一、知识回顾:
有理数连乘,怎样确定积的符号?
二、问题导入:
1、一正方形的边长为5cm,则它的面积为
____________平方厘米;
2、一正方体的棱长为5cm,则它的体积为
___________立方厘米。
复习为确定幂的
符号作铺垫
利用面积和体积
的计算引出多个
相同因数相乘的
计算
教学过程知道乘方的意义,
知道幂、底数、指
数的意义及其之间
的关系
三、新知探究:
(一)乘方的意义:
对于多个相同的因数相加,可以简化为:
5+5+5=5×3
5+5+5+5+5+5=5×6
对于多个相同的因数相乘,如何简化?
5×5记作:52
5×5×5 记作: 53
5×5×5×5×5×5记作: 56
(-2)×(-2×)(-2×)(-2×)(-2)记作:(-2)5
5×5×5×5×5×∙∙∙×5,n个5连乘,记
作a5
a×a×a×a×a×…×a,n个a连乘,记作
a n
1、这种求n个相同因数a的积的运算叫做乘
方,乘方的结果叫做幂,记作an,读作a的n次
方(或a的n次幂)a叫做底数n叫,做指数。
注意:1次方可省略不写,2次方又叫平方,
3次方又叫立方。
2、练习:填一填
(1)(-5)2的底数是___,指数是__,(-5)2表示
2个___相乘,读作___的2次方,也读作-5的
___________.
(2) 表示个相乘,读作次方,
也读作次幂,其中叫做底数,6叫
做 .
利用多个相同有
理数相加的运算
引出多个相同有
理数相乘的运
算,从而引出乘
方的概念,继而
引出幂、底数、
指数的相关意
义,讲授新知
学以致用
教学过程知道有理数乘方的
符号法则
会用计算器进行乘
方运算
完成练习
(二)幂的符号的判断:
通过以上计算,我们可以发现:
(1)负数的奇次幂是负数,负数的偶次幂是
正数;
(2)正数的任何次幂都是正数;
(3)0的任何正整数次幂都是 0 。
四、巩固练习:
1、计算:
2、填空:
通过三组计算
题,对乘方运算
有一定的了解,
同时通过计算
发现有理数乘方
的符号法则,进
而归纳整理
学以致用,巩固
新知
小
结
谈谈本节课你的收获?板
书设计
1.5.1 有理数的乘方(1)
1、乘方的意义:这种求n个相同因数a的积的运算叫做乘方,乘方的结果叫做幂,记作an,读作a的n次方(或a的n次幂)a叫做底数n叫,做指数。
2、符号的确定:
(1)负数的奇次幂是负数,负数的偶次幂是正数;
(2)正数的任何次幂都是正数;
(3)0的任何正整数次幂都是 0 。
作
业设计必做题:
绩优学案P44页基础关 1--10选做题:
绩优学案P45页能力关 11--12
欢迎您的下载,资料仅供参考!。