第8章 马尔柯夫预测法
- 格式:ppt
- 大小:682.00 KB
- 文档页数:17
马尔科夫预测法的原理
马尔科夫预测法是一种基于马尔科夫链的预测方法。
其原理是利用过去的一系列观测值,通过构建一个马尔科夫链模型来预测未来的观测值。
马尔科夫链是一种具有状态转移概率的数学模型,其特点是当前状态的转移只依赖于前一个状态,与其他历史状态无关。
马尔科夫预测法假设未来的观测值只与过去的观测值有关,而与其他因素无关。
具体实施马尔科夫预测法的步骤如下:
1. 收集并整理历史数据,将其分为一系列观测值的序列。
2. 根据历史数据计算每个状态之间的转移概率。
即计算每个观测值之间的转移概率,这可以通过统计历史数据中观测值之间的频率来进行估计。
3. 根据已知的初始状态分布,选择一个初始状态作为预测的起点。
4. 根据转移概率和初始状态,依次生成未来的观测值,直到达到所需的预测长度。
马尔科夫预测法的关键在于确定状态和计算状态之间的转移概率。
这可以通过统计方法、最大似然估计或其他相应的方法来实现。
然后,使用马尔科夫链的转移概率来模拟未来的状态转移,从而得到未来观测值的预测。
决策与预测第八章马尔可夫预测马尔可夫预测(Markov Prediction)是一种基于马尔可夫模型的预测方法。
马尔可夫模型是一种具有状态转移特性的随机过程,即当前状态的发生只与前一个状态有关,与之前的状态无关。
马尔可夫预测依据这一性质,通过对已有的状态序列进行分析,来预测未来可能的状态。
马尔可夫预测在许多领域都有应用,比如天气预测、股市预测、自然语言处理等。
在天气预测中,我们可以将天气分为晴天、阴天、雨天等若干个状态,通过观察历史天气数据,建立马尔可夫模型,从而预测未来几天的天气情况。
在股市预测中,我们可以将股票价格分为涨、跌、平稳等若干个状态,通过分析历史股价数据,建立马尔可夫模型,从而预测未来股票价格的走势。
马尔可夫预测的关键是确定马尔可夫链的阶数。
马尔可夫链的阶数决定了当前状态只与前几个状态有关。
一般情况下,阶数越高,预测的准确性越高,但计算复杂度也越高。
选择合适的阶数需要根据具体问题进行权衡。
马尔可夫预测的关键步骤包括状态定义、状态转移矩阵的估计和预测结果生成。
首先,需要将观测序列转化为状态序列。
状态定义需要根据具体问题确定,通常是将连续的观测值离散化为若干个状态。
然后,需要估计马尔可夫链的状态转移矩阵。
状态转移矩阵描述了从一个状态转移到另一个状态的概率。
可以通过历史数据来估计状态转移矩阵,常用的方法有最大似然估计和贝叶斯估计。
最后,通过状态转移矩阵和当前的状态,可以通过马尔可夫链进行状态的预测。
马尔可夫预测有一些优点和限制。
优点是简单易用,不需要太多的领域知识,只需要一些历史数据。
同时,马尔可夫预测可以处理非线性和非平稳的数据,具有一定的适应性。
然而,马尔可夫预测也有一些限制。
首先,马尔可夫模型假设当前状态只与前一个状态相关,而与之前的状态无关,这个假设在一些情况下可能不成立。
其次,马尔可夫模型对于状态转移矩阵的估计需要大量的历史数据,否则预测的准确性可能较低。
在实际应用中,马尔可夫预测通常与其他方法结合使用,以提高预测的准确性。
马尔可夫预测算法综述马尔可夫预测法以系统状态转移图为分析对象,对服从给定状态转移率、系统的离散稳定状态或连续时间变化状态进行分析马尔可夫预测技术是应用马尔可夫链的基本原理和方法研究分析时间序列的变化规律,并预测其未来变化趋势的一种技术。
方法由来马尔可夫是俄国的一位著名数学家 (1856—1922),20世纪初,他在研究中发现自然界中有一类事物的变化过程仅与事物的近期状况有关,而与事物的过去状态无关。
针对这种情况,他提出了马尔可夫预测方法,该方法具有较高的科学性,准确性和适应性,在现代预测方法中占有重要地位。
基础理论在自然界和人类社会中,事物的变化过程可分为两类:一类是确定性变化过程;另一类是不确定性变化过程。
确定性变化过程是指事物的变化是由时间唯一确定的,或者说,对给定的时间,人们事先能够确切地知道事物变化的结果。
因此,变化过程可用时间的函数来描述。
不确定性变化过程是指对给定的时间,事物变化的结果不止一个,事先人们不能肯定哪个结果一定发生,即事物的变化具有随机性。
这样的变化过程称为随机过程一个随机试验的结果有多种可能性,在数学上用一个随机变量(或随机向量)来描述。
在许多情况下,人们不仅需要对随机现象进行一次观测,而且要进行多次,甚至接连不断地观测它的变化过程。
这就要研究无限多个,即一族随机变量。
随机过程理论就是研究随机现象变化过程的概率规律性的。
客观事物的状态不是固定不变的,它可能处于这种状态,也可能处于那种状态,往往条件变化,状态也会发生变化状态即为客观事物可能出现或存在的状况,用状态变量表示状态:⎪⎪⎭⎫⎝⎛⋅⋅⋅=⋅⋅⋅==,2,1,,2,1t N i i X t 它表示随机运动系统,在时刻),2,1( =t t 所处的状态为),2,1(N i i =。
状态转移:客观事物由一种状态到另一种状态的变化。
设客观事物有 N E E E E ...,,321共 N 种状态,其中每次只能处于一种状态,则每一状态都具有N 个转向(包括转向自身),即由于状态转移是随机的,因此,必须用概率来描述状态转移可能性的大小,将这种转移的可能性用概率描述,就是状态转移概率。
马尔可夫预测算法马尔可夫预测算法综述马尔可夫预测法以系统状态转移图为分析对象,对服从给定状态转移率、系统的离散稳定状态或连续时间变化状态进⾏分析马尔可夫预测技术是应⽤马尔可夫链的基本原理和⽅法研究分析时间序列的变化规律,并预测其未来变化趋势的⼀种技术。
⽅法由来马尔可夫是俄国的⼀位著名数学家 (1856—1922),20世纪初,他在研究中发现⾃然界中有⼀类事物的变化过程仅与事物的近期状况有关,⽽与事物的过去状态⽆关。
针对这种情况,他提出了马尔可夫预测⽅法,该⽅法具有较⾼的科学性,准确性和适应性,在现代预测⽅法中占有重要地位。
基础理论在⾃然界和⼈类社会中,事物的变化过程可分为两类:⼀类是确定性变化过程;另⼀类是不确定性变化过程。
确定性变化过程是指事物的变化是由时间唯⼀确定的,或者说,对给定的时间,⼈们事先能够确切地知道事物变化的结果。
因此,变化过程可⽤时间的函数来描述。
不确定性变化过程是指对给定的时间,事物变化的结果不⽌⼀个,事先⼈们不能肯定哪个结果⼀定发⽣,即事物的变化具有随机性。
这样的变化过程称为随机过程⼀个随机试验的结果有多种可能性,在数学上⽤⼀个随机变量(或随机向量)来描述。
在许多情况下,⼈们不仅需要对随机现象进⾏⼀次观测,⽽且要进⾏多次,甚⾄接连不断地观测它的变化过程。
这就要研究⽆限多个,即⼀族随机变量。
随机过程理论就是研究随机现象变化过程的概率规律性的。
客观事物的状态不是固定不变的,它可能处于这种状态,也可能处于那种状态,往往条件变化,状态也会发⽣变化状态即为客观事物可能出现或存在的状况,⽤状态变量表⽰状态:=???==,2,1,,2,1t N i i X t 它表⽰随机运动系统,在时刻),2,1( =t t 所处的状态为),2,1(N i i =。
状态转移:客观事物由⼀种状态到另⼀种状态的变化。
设客观事物有 N E E E E ...,,321共 N 种状态,其中每次只能处于⼀种状态,则每⼀状态都具有N 个转向(包括转向⾃⾝),即由于状态转移是随机的,因此,必须⽤概率来描述状态转移可能性的⼤⼩,将这种转移的可能性⽤概率描述,就是状态转移概率。
马尔可夫预测方法1马尔可夫预测的性质及运用对事件的全面预测,不仅要能够指出事件发生的各种可能结果,而且还必须给出每一种结果出现的概率,说明被预测的事件在预测期内出现每一种结果的可能性程度。
这就是关于事件发生的概率预测。
马尔可夫(Markov)预测法,就是一种关于事件发生的概率预测方法。
它是根据事件的目前状况来预测其将来各个时刻(或时期)变动状况的一种预测方法。
马尔可夫预测法是地理预测研究中重要的预测方法之一。
2基本概念(一)状态、状态转移过程与马尔可夫过程1.状态 在马尔可夫预测中,“状态”是一个重要的术语。
所谓状态,就是指某一事件在某个时刻(或时期)出现的某种结果。
一般而言,随着所研究的事件及其预测的目标不同,状态可以有不同的划分方式。
譬如,在商品销售预测中,有“畅销”、“一般”、“滞销”等状态;在农业收成预测中,有“丰收”、“平收”、“欠收”等状态;在人口构成预测中,有“婴儿”、“儿童”、“少年”、“青年”、“中年”、“老年”等状态;等等。
2.状态转移过程 在事件的发展过程中,从一种状态转变为另一种状态,就称为状态转移。
事件的发展,随着时间的变化而变化所作的状态转移,或者说状态转移与时间的关系,就称为状态转移过程,简称过程。
3.马尔可夫过程 若每次状态的转移都只仅与前一时刻的状态有关、而与过去的状态无关,或者说状态转移过程是无后效性的,则这样的状态转移过程就称为马尔可夫过程。
在区域开发活动中,许多事件发展过程中的状态转移都是具有无后效性的,对于这些事件的发展过程,都可以用马尔可夫过程来描述。
(二)状态转移概率与状态转移概率矩阵1.状态转移概率 在事件的发展变化过程中,从某一种状态出发,下一时刻转移到其它状态的可能性,称为状态转移概率。
根据条件概率的定义,由状态E i 转为状态E j 的状态转移概率P (E i →E j )就是条件概率P (E j /E i ),即 P(Ei Ej)=P(Ej/Ei)=Pij → (1)2.状态转移概率矩阵 假定某一种被预测的事件有E 1,E 2,…,E n ,共n 个可能的状态。