高级仪器分析技术-实验一
- 格式:ppt
- 大小:5.20 MB
- 文档页数:7
实验1 水中铁含量的测定【实验目的与要求】1.掌握比色法测定铁的原理及方法2. 测定水中铁的含量【实验原理】用比色法测定无机离子时,通常需要用显色剂生成有色配合物,然后进行比色法测定。
用于铁的显色剂很多,硫氰酸钾是测定微量铁的一种较好的显色剂,它是测定Fe3+一种高灵敏和高选择性试剂,遇三价铁盐生成血红色的硫氰化铁,与亚铁盐不反应,Fe3++3SCN-= Fe(SCN)3因此在进行比色之前,需要将待测液中Fe2+氧化成Fe3+。
一般以总铁量(mg/l)来表示水中铁的含量。
【实验用品】1.仪器:比色计、容量瓶、移液管2.试剂:(1)配制硫酸铁铵标准液称取0.8634g分析纯的NH4Fe(SO4)2·12H2O溶于盛在烧杯中的50ml蒸馏水中,加入20ml98%的浓硫酸,振荡混匀后加热,片刻后逐滴加入0.2mol/L的KMnO4溶液,每加1滴都充分振荡混匀,直至溶液呈微红色为止。
将溶液注入1000ml的容量瓶,加入蒸馏水稀释至1000ml。
此溶液含铁量为0.1mg/ml。
(2)配制硫氰酸钾溶液称取0.5g分析纯的硫氰酸钾晶体,溶于50ml蒸馏水中,过滤后备用。
(3)配制硝酸溶液取密度为1.42g/cm3的化学纯的硝酸191ml慢慢加入200ml蒸馏水中,边加边搅拌,然后用容量瓶稀释至500ml。
【实验内容】1.准备有关试剂2. 配置标准比色液取六支同规格的50ml比色管,分别加入0.1ml、0.2ml、0.5ml、1.0ml、2.0ml、4.0ml 硫酸铁铵标准溶液,加蒸馏水稀释至40ml后再加5ml硝酸溶液和1滴2mol/LKMnO4溶液,稀释至50ml,最后加入1ml硫氰酸钾溶液混匀,放在比色架上作比色用。
3. 测定水样的含铁总量取水样40ml装入洁净的锥形瓶中,加入5ml硝酸溶液并加热煮沸数分钟。
冷却后倾入与标准比色液所用相同规格的比色管中,用蒸馏水稀释至50ml处,最后加入1ml硫氰酸钾溶液,混匀后与上列比色管比色,得出结果后用下式进行计算并得到结论。
实验一红外光谱法的常规实验技术一、目的1.了解红外分光光度计的结构特征和原理2.了解制样方法的差异对红外谱图的影响3.掌握不同样品的制样方法4.了解红外谱图的绘制原理及其特征二、方法原理1、红外光谱的划分近红外:12000~4000cm-1中红外:4000~ 400cm-1远红外:400 ~ 40cm-1其中中红外可用来定性分析测定有机物的结构定量分析测定复杂试样,是最为成熟和简单地测定方法,并积累了大量的数据资料,是红外光谱的主要应用区。
2.红外谱图的绘制原理及其特征以波长即波数为横坐标,以透射率为纵坐标绘制出来的曲线,整个吸收曲线反映了一个化合物在不同波长的光谱区域内吸收能力的分布情况,光被吸收的越多,透射率越低,谱图上反映出来的峰越尖。
红外光谱的谱图区域分为基频区和指纹区基频(官能团)区:4000-1300cm-1,伸缩振动产生,吸收峰分布较希。
基团鉴定最有价值。
指纹区:1300-600cm-1,单键的伸缩振动和变形振动引起。
(1)1300-900cm-1,C—O,C—N,C—F,C—P,C—S等单键和C=S,S=O,P=O等双键的伸缩振动吸收。
(2)900-600cm-1,区别精细结构。
3、红外吸收光谱的特点紫外、可见吸收光谱,用于研究不饱和体系有机化合物,特别是共扼体系;而红外吸收光谱,主要研究在振动中伴随有偶极矩变化的化合物,红外应用面宽,除了单原子分子和同核分子如Ne、He、O2、H2外几乎都有红外吸收。
试样特点:气、液、固都可测定,用量少,不破坏试样,是鉴定化合物和测定分子结构最有用的方法之一。
4.红外光谱仪的类型光栅散射型分光光度计:定性分析傅里叶变换红外光谱仪:定性分析和定量分析非散射型光度计:大气中的有机物上述几种以傅里叶变换红外光谱仪最为常用,傅里叶变换红外光谱仪,其主要特征:以干涉仪替代单色仪。
优点:多路的优点;取得光谱信息快,改变信噪比;辐射通量大,因为没有狭缝限制;波数准确度高将激光参比干涉仪引入迈克逊干涉仪,用激光干涉条纹准确测量光程差;杂散光低;可研究很宽的光谱范围;具有高的分辨率。
实验一水样pH值的测定一、目的要求1.了解电位法测定水样pH值的原理和方法。
2.学会使用ZD-2型自动电位滴定计。
4.练习使用ZD-2型自动电位滴定计测量溶液的pH值。
二、测定原理将指示电极(玻璃电极)与参比电极插入被测溶液组成原电池Ag|AgC1,HCl(0.1mo1•L-1)|玻璃膜|H+(x mo1•L-1)‖KCl(饱和)|Hg2Cl2,Hg 玻璃电极试液盐桥甘汞电极在一定条件下,测得电池的电动势就是pH的直线函数E=K十0.059pH(25℃)由测得的电动势就能算出被测溶液的pH值。
但因上式中的K值是由内外参比电极电位及难于计算的不对称电位和液接电位所决定的常数,实际不易求得,因此在实际工作中,用酸度计测定溶液的pH值(直接用pH刻度)时,首先必须用已知pH值的标淮溶液来校正酸度计(也叫“定位”)。
校正时应选用与被测溶液的pH值接近的标准缓冲涪液,以减少在测量过程个可能由于液接电位、不对称电位及温度等变化而引起的误差。
一支电极应该用两种不同pH值的缓冲溶液校正。
在用一种pH 值的缓冲溶液定位后,测第二种缓冲溶液的pH佰时,误差应在0.05pH 单位之内。
粗略测量中用一种pH值缓冲溶液校正即可,但必须保证电极斜率在允许误差范围内。
经过校正后的酸度计就可以直接测量水或其它溶液的pH值。
用离子活度计测量溶液的pH值,其原理仍然是依据能斯特方程,测量电池在标准缓冲溶液中的电动势为:E s=K’十s pHs同样,在样品溶液中电池电动势为:E x=K’十s pHx上述两式相减得到:pHx=pHs十E x-E s/s = pHs + ΔE/s在离子计上仪器的示值按照ΔE/s分度,而且仪器有电极斜率s的调节路线。
当用标准缓冲溶液对仪器进行校正后,样品溶液的pHx即可从仪器示值上直接读出。
三、试剂与仪器1.pH=6.86标准缓冲溶液(25℃)2. ZD-2型自动电位滴定仪,23l型玻璃电极,232型甘汞电极.3. 100 m1烧杯四只。
实验一邻二氮菲分光光度法实验条件的研究一、目的要求1.了解分析测定中确定实验条件的基本原理和方法;2.学习722分光光度计和酸度计的使用方法。
二、实验原理在可见光分光光度测定中,通常是将被测物质与显色剂反应,使之生成有色物质,然后测量其吸光度,进而求得被测物质的含量。
因此,显色反应的完全程度和吸光度的物理测量条件都影响到测定结果的准确性。
显色反应的完全程度取决于介质的酸度、显色剂的用量、反应的温度和时间等因素。
在建立分析方法时,需要通过实验确定最佳反应条件。
为此,可改变其中一个因素(例如介质的pH值),暂时固定其它因素,显色后测量相应溶液的吸光度,通过吸光度-pH曲线确定显色反应的适宜酸度范围。
其它几个影响因素的适宜值,也可按这一方式分别确定。
本实验以邻二氮菲为显色剂,找出测定微量铁的适宜显色条件。
三、仪器与试剂1.仪器722型分光光度计、酸度计、容量瓶(50mL)、吸量管(5mL,10mL)等。
2.试剂(1)铁标准溶液准确称取0.176克分析纯硫酸亚铁铵(FeSO4·(NH4)2 SO4·6H2O)于小烧杯中,加水溶解,加入6mol∕L HCl溶液5mL,定量转移至250mL容量瓶中稀释至刻度,摇匀。
所得溶液每毫升含铁0.100 mg(即100ug/mL)。
(2)0.1%邻二氮菲(又称邻菲咯琳)水溶液:称取1g邻二氮菲,先用5~10mL 95%乙醇溶解,再用蒸馏水稀释到1000mL。
(3)10%盐酸羟胺水溶液(新鲜配制);(4)HAc-NaAc缓冲溶液(pH=4.6):称取136g醋酸钠(CH3COONa·3H2O),加60 mL冰醋酸,加水溶解后,稀释到1000mL。
(5)NaOH溶液:0.5 mol∕L(6)HCl溶液:0.5 mol∕L四、实验步骤1.酸度影响于9只50 mL容量瓶中,用刻度吸量管各加入1.0 mL 0.100mg∕mL的铁标准溶液,再加入1 mL盐酸羟胺溶液和2mL邻二氮菲溶液,摇匀。
仪器分析实验实验1 邻二氮菲分光光度法测定铁一、实验原理邻二氮菲(phen)和Fe2+在pH3~9的溶液中,生成一种稳定的橙红色络合物Fe(phen)32+,其lgK=21.3,κ508=1。
1 × 104L·mol—1·cm—1,铁含量在0.1~6μg·mL—1范围内遵守比尔定律。
其吸收曲线如图1-1所示。
显色前需用盐酸羟胺或抗坏血酸将Fe3+全部还原为Fe2+,然后再加入邻二氮菲,并调节溶液酸度至适宜的显色酸度范围。
有关反应如下:2Fe3++2NH2OH·HC1=2Fe2++N2↑+2H2O+4H++2C1-图1—1 邻二氮菲一铁(Ⅱ)的吸收曲线用分光光度法测定物质的含量,一般采用标准曲线法,即配制一系列浓度的标准溶液,在实验条件下依次测量各标准溶液的吸光度(A),以溶液的浓度为横坐标,相应的吸光度为纵坐标,绘制标准曲线.在同样实验条件下,测定待测溶液的吸光度,根据测得吸光度值从标准曲线上查出相应的浓度值,即可计算试样中被测物质的质量浓度。
二、仪器和试剂1.仪器 721或722型分光光度计。
2.试剂(1)0。
1 mg·L—1铁标准储备液准确称取0.702 0 g NH4Fe(S04)2·6H20置于烧杯中,加少量水和20 mL 1:1H2S04溶液,溶解后,定量转移到1L容量瓶中,用水稀释至刻度,摇匀。
(2)10—3 moL-1铁标准溶液可用铁储备液稀释配制。
(3)100 g·L-1盐酸羟胺水溶液用时现配.(4)1。
5 g·L—1邻二氮菲水溶液避光保存,溶液颜色变暗时即不能使用。
(5)1。
0 mol·L—1叫乙酸钠溶液。
(6)0.1 mol·L—1氢氧化钠溶液。
三、实验步骤1.显色标准溶液的配制在序号为1~6的6只50 mL容量瓶中,用吸量管分别加入0,0。
20,0.40,0.60,0.80,1。
高等仪器分析实验(荧光分光光度计的使用)实验目的1.掌握荧光分光光度计的基本使用方法:扫描激发光谱,发射光谱,荧光强度,同步荧光光谱2.掌握荧光定量分析方法实验原理荧光分光光度计是常用的光学仪器,在定量分析,样品的光谱性质表征时经常用到。
荧光分光光度计的基本功能是完成激发光谱,发射光谱的扫描,进行相对荧光强度的测量。
从激发光谱可以获得样品激发态能级的分布情况,用来选择定量分析的最佳激发波长。
从发射光谱可以知道样品基态能级的分布情况,用来选择定量分析的最佳发射波长。
荧光定量分析法的方法与紫外可见吸收光谱法类似,但需要注意荧光强度值是相对值,同一样品,同一仪器在不同仪器参数时获得的荧光强度是不同的。
只有当测量时仪器参数完全相同时,不同样品荧光强度的相互比较才有意义。
与紫外可见吸收光谱类似,分子荧光光谱也是分子光谱,其谱峰较宽,特征性不是很强,谱峰重叠现象比较普遍。
为了减小谱峰宽度,避免谱峰重叠,提高分析的选择性,在定量分析时常采用同步荧光的方法进行。
同步荧光是同时扫描荧光分光光度计的激发和发射单色仪得到的谱图,通过选择合适的扫描参数,可以使样品谱峰变窄,并避免不同组份的谱峰重叠,得到比较好的分析效果。
同步荧光扫描有固定波长同步荧光法,固定能量同步荧光法,可变角同步荧光法,导数同步荧光法等,其中以固定波长同步荧光法最为常用。
扫描已知样品荧光激发和发射光谱时,可先根据参考波长来进行。
扫描未知样品的荧光光谱,可以将发射波长先每隔一定波长(例如50nm)扫描一个激发光谱。
对比不同位置的激发光谱,从最强的激发光谱中选择最大激发波长,设定该波长为激发波长,扫描发射光谱。
再从新得到的发射光谱中找到最大发射波长,在最大发射波长处重新扫描激发光谱。
扫描样品激发光谱和发射光谱时,需要注意:扫描激发光谱时,激发单色器扫描范围的长波端一般应小于发射波长;扫描发射光谱时,发射单色器扫描范围的短波端应大于激发波长。
否则在发射光谱(激发光谱)中与激发波长(发射波长)波长相同的位置会出现很强的散射谱峰,这不是样品的荧光引起的,应注意区分。
实验一紫外吸收光谱定性分析的应用一、实验目的1、掌握紫外吸收光谱的测绘方法。
2、学会利用吸收光谱进行未知物鉴定的方法。
3、学会杂质检出的方法。
二、基本原理紫外吸收光谱为有机化合物的定性分析提供了有用的信息。
其方法是将未知试样和标准品以相同浓度配制在相同的溶剂中,在分别测绘吸收光谱,比较二者是否一致也可将未知试样的吸收光谱与标准图谱,如萨特勒紫外吸收光谱图相比较,如果吸收光谱完全相同,则一般可以认为两者是同一种化合物。
但是,有机化合物在紫外区的吸收峰较少,有时会出现不同的结构,只要具有相同的生色团,它们的最大吸收波长maxλ相同,然而其摩尔吸光系数ε或比吸光系数E%11cm 值是有差别的。
因此需利用maxλ和maxλ处的ε或E%11cm等数据作进一步比较。
在测绘比较用的紫外吸收光谱图时,应首先对仪器的波长准确性进行检查和校正。
还必须采用相同的溶剂,以排除溶剂的极性对吸收光谱的影响。
同时还应注意PH值、温度等因素的影响。
在实际应用时,应注意溶剂的纯度。
三、仪器与试剂1、仪器T6型(或其他型号)紫外可见分光光度计1㎝石英比色皿2、试剂间苯二酚溶液苯甲酸溶液苯二铵溶液四、实验步骤1、已知芳香族化合物标准光谱的绘制在一定的实验条件下,以相应的溶剂作参比,用1㎝石英比色皿,在一定的波长范围内扫描(或测绘)各已知标准物质的吸收光谱作为标准光谱。
如苯甲酸溶液的和间苯二酚溶液的标准溶液的标准光谱的绘制。
各已知芳香族化合物的标准光谱也可通过查阅有关手册得到,但应注意实验条件的一致。
2、未知芳香族化合物的鉴定(1)称取0.100 g未知芳香族化合物,用去离子水溶解后转让100 ml容量瓶中,稀释至刻度,摇匀。
实验前,稀释100倍使用。
(2)用1㎝石英比色皿,以去离子水作参比,在200-400波长范围内扫描测定未知芳香族化合物吸收光谱(如使用无扫描功能的紫外可见分光光度计测定时应首先每间隔20 nm测量一次吸光度,然后每间隔10 nm 、5 nm 、2 nm、1 nm、0.5 nm 测量一次吸光度。
实验一苯及其衍生物的紫外吸收光谱的测绘及溶剂对紫外吸收光谱的影响一、实验目的(1) 学习苯以及苯的一取代物的紫外吸收光谱的测绘。
(2) 了解不同助色团对苯的紫外吸收光谱的影响。
(3) 观察溶剂极性对丁酮、异亚丙基丙酮的吸收光谱以及pH对苯酚吸收光谱的影响。
(4) 学习并掌握756MC型紫外可见分光光度计的使用方法。
二、实验原理具有不饱和结构的有机化合物,特别是芳香族化合物,在近紫外区(200~400nm)有特征吸收,为鉴定有机化合物提供了有用的信息。
方法是比较未知物与纯的已知化合物在相同条件(溶剂、浓度、pH值、温度等)下绘制的吸收光谱,或将绘制的未知物的吸收光谱与标准谱图(如sadtler紫外光谱图)相比较,如果两者一致,说明至少它们的生色团和分子母核是相同的。
苯在230~270 nm之间出现的有精细结构的B带是其特征吸收峰,中心在254 nm附近,其最大吸收峰常随苯环上取代基不同而发生位移。
三、仪器与试剂1. 仪器756MC型紫外可见分光光度计(上海第三分析仪器厂);带盖石英吸收池(1cm)。
10mL 具塞比色管3支;5 mL具塞比色管10支;1 mL吸量管6支;0.1mL吸量管2支。
2. 试剂苯;乙醇;环己烷;氯仿;丁酮;异亚丙基丙酮;正己烷。
0. 1 mol. L-1 HCl, 0. 1 mol. L-1 NaOH。
苯的环己烷溶液((1+250);甲苯的环己烷溶液((1+250);苯酚的环己烷溶液(0.3 mg.mL-1);苯甲酸的环己烷溶液(0. 8 mg.mL-1);苯胺的环己烷溶液(1+3000);苯酚的水溶液(0. 4 mg.mL-1)。
异亚丙基丙酮,分别用水、氯仿、正己烷配成浓度为0. 4 mg.mL-1的溶液。
四、实验内容1. 苯及其一取代物的吸收光谱的测绘(1) 在石英吸收池中,加入两滴苯,加盖,用手心温热吸收池下方片刻,在紫外分光光度计上,相对石英吸收池,从220~300nm进行波长扫描,得到吸收光谱。
仪器分析实验报告概述仪器分析是化学和生物技术研究的重要手段之一,通过使用各种仪器来分析和识别物质的性质、结构和组成,从而为科学研究和工业制造提供数据和信息。
本实验旨在通过对三种常用分析仪器的使用与操作,掌握仪器分析的基本方法和技能。
实验一:紫外可见分光光度计紫外可见分光光度计是一种常用的分析仪器,可以用于测定分子的吸光度,从而确定其浓度。
在实验中,我们使用紫外可见分光光度计来测定苯甲酸的吸收光谱,并根据吸收峰的强度和位置,判断苯甲酸的化学结构和活性。
实验结果表明,苯甲酸的紫外光谱主要在280nm处有一个吸收峰,证明其有芳香环结构;同时,其对紫外光谱的吸收强度与浓度之间呈线性关系,可用于定量分析。
实验二:原子吸收光谱仪原子吸收光谱仪是一种常用的分析仪器,可以用于分析痕量金属元素的含量。
在实验中,我们使用原子吸收光谱仪来测定硬度水样品中钙和镁的含量。
实验结果表明,硬度水样品中钙和镁的含量分别为0.4mg/L和0.5mg/L,与标准值相接近,说明该方法可靠。
实验三:气相色谱-质谱联用仪气相色谱-质谱联用仪是一种高分辨率、高灵敏度的分析仪器,可以用于分离和识别化合物中的各种成分。
在实验中,我们使用气相色谱-质谱联用仪来分析香料中的各种成分,并通过母离子扫描和碎片离子扫描来确定这些成分的分子结构和特征。
实验结果表明,香料中含有多种成分,其中醛类、酮类和酯类物质含量较高,可以作为该香料的主要特征。
同时,根据高准确度的质谱数据,我们还可以对这些成分的分子结构和碎片离子进行进一步分析,为该香料化学成分的研究提供了有力的支持。
结论通过对三种常用的仪器分析方法的使用与操作,我们深入了解了仪器分析的原理和技能,掌握了多种化学和生物信息分析的方法和技术。
同时,我们还进一步加深了对化学和生物学的认知和理解,为今后的科学研究和实践奠定了坚实的基础。
实验一 AAS 标准加入法测水中Mg一、实验目的1.学习原子吸收光谱分析法的基本原理2.熟悉原子吸收仪器的基本操作3.学习标准加入法 二、基本原理原子吸收光谱法是基于以下工作原理:由待测元素空心阴极灯发射出一定强度和波长的特征谱线的光,当它通过含有待测元素的基态原子蒸汽时,原子蒸汽对这一波长的光产生吸收,未被吸收的特征谱线的光经单色器分光后, 照射到光电检测器上被检测,根据该特征谱线光强度被吸收的程度,即可测得试样中待测元素的含量。
试样中待测元素转化为基态原子的方法,若是利用火焰的热能,称为火焰原子吸收法,是最常用的原子化方法,其中空气-乙炔火焰可用于常见的30多种元素的分析。
其过程是:待测元素溶液经过雾化器形成喷雾,其中少部分细小均匀的气雾溶胶,进入燃烧器的火焰,经过蒸发、干燥、熔化、解离、激化、化合等复杂的步骤,该过程中存在的一定比例的原子蒸汽也就是基态原子,其对该待测元素空心阴极灯发射出特征谱线的光产生共振吸收,测量吸收前和吸收后的光,经对数转换得到吸光度A ,A 与溶液中待测离子的浓度ρ成正比,据此可得到定量分析结果。
标准曲线法是原子吸收光谱分哲中最常用的方法之一该法是配制已知浓度的标准溶液系列,在一定的仪器条件下,依次测出它们的吸光度,以标准溶液的浓度为横坐标,相应的吸光度为纵坐标,绘制标准曲线。
试样经适当处理后,在测量标准曲线吸光度相同的实验条件下测量其吸光度,根据样品溶液的吸光度,在标准曲线上即可查出样品溶液中被测元素的含量,再换算成原始样品中被测元素的含量。
试样基体成分一般不能准备知道,当它对原子化效率的影响较大时,采用标准曲线法就会产生较大误差,这是可采用另一种定量方法——标准加入法。
过程和原理如下:取等体积的试液两份,分别置于相同容积的两只容量瓶中,其中一只加入一定量的待测元素标准溶液,分别用水稀释至刻度,摇匀,分别测定其吸光度,则x k A ρ=x (1) ()x k A ρρ+=00 (2)式中ρx 为待测元素的浓度;ρ0为加入标准溶液后溶液浓度的增量;A x 、A 0分别为两次测量的吸光度。
仪器分析实验报告仪器分析实验报告正己烷,乙酸乙酯,环己烷,石油醚,丙酮,无水硫酸钠,16种邻苯二甲酸酯标准品,标准储备液,标准使用液。
3步骤:(1) 试样制备:取同一批次3个完整独立包装样品(固体样品不少于0g、液体样品不少于0L),置于硬质玻璃器皿中,固体或半固体样品粉碎混匀,液体样品混合均匀,待用。
(2) 试样处理(不含油脂液体试样):量取混合均匀液体试样5.0L,加入正己烷2.0L,振荡1in,静置分层,取上层清液进行G-S分析。
(3) 空白试验:实验使用的试剂都按试样处理的方法进行处理后,进行G-S分析。
(4) 色谱条件:色谱柱:HP-5S石英毛细管柱30×0.(内径)×0.μ]; 进样口温度:2℃;升温程序:初始柱温60℃,保持1in,以℃/in升温至2℃,保持1in,再以5℃/in升温至280℃,保持4in; 载气:氦气,流速1L/in; 进样方式:不分流进样; 进样量:1μL。
(5) 质谱条件:色谱与质谱接口温度:280℃; 电离方式:电子轰击源;检测方式:选择离子扫描模式; 电离能量:70eV; 溶剂延迟:5in。
(6) 分析。
(二)结果邻苯二甲酸二(2-乙基)己酯质谱图丰度/z-->(三)分析查阅资料得邻苯二甲酸二(2-乙基)己酯结构为推论:质荷比为113的结构为质荷比为149的结构为质荷比为167的结构为质荷比为279的结构为二. 高效液相色谱仪检测食品中防腐剂的实验(一)方法 1仪器:aters超高压液相色谱仪(AQUITY UPL)、超声波清洗仪、超纯水制备仪、万分之一天平。
2试剂:对羟基苯甲酸甲酯、对羟基苯甲酸丙酯、对羟基苯甲酸丁酯、乙腈、甲醇(均为分析纯)、超纯水。
3步骤:(1) 标准液的制备:标准混合使用液:精密称取对羟基苯甲酸甲酯、对羟基苯甲酸丙酯和对羟基苯甲酸丁酯各0.01g,用一只100L容量瓶以乙腈:水=1:1中定容,吸取1L,于L容量瓶中水定容,配制浓度均含4μg/L的酯类混合物的标准溶液,混匀备用。
目 录实验一 取代基电效应对芳烃吸收带的影响及导数光谱的测绘实验二 紫外分光光度法测定苯甲酸钠的含量(标准曲线法)实验三 柱色谱法测定氧化铝的活度实验四 纸色谱法分离分析有机酸实验五 薄层色谱法分离分析混合染料实验六 高效液相色谱定性分析实验七 气相色谱法定性分析实验八 高效液相色谱法定量分析(外标法一点法)实验九 固体样品红外透射光谱的测定实验十 气相色谱法测定乙酸乙酯中苯的含量(内标两点法)实验一 取代基电效应对芳烃吸收带的影响一、目的要求通过测定几种典型的发色基团取代苯和助色基团取代苯的E 2吸收带及B 吸收带,掌握取代基的共轭效应和诱导效应对吸收带波长影响的规律,及它们在结构分析中的应用。
二、原理取代基对芳烃吸收带的影响与取代基结构、取代基个数、位置有关。
研究取代基对芳烃吸收带的影响规律,对确定有机化合物结构具有重要的作用。
对于发色团取代的苯,由于含有π键的发色团(C C 、C O 、N O 等)与苯相连时,ππ-共轭,产生更大的共轭体系,E2带(ε>104)红移,在200~250nm 范围出现;同时B 吸收带也产生较大红移。
若取代基是含有n 电子的发色团,分子除了可以发生*ππ→跃迁之外,还可能发生*π→n 跃迁,谱图中还会出现低强度的R 吸收带。
对于助色团取代苯,由于含有未成键电子对的助色团(-OH,-OR,-NH 2,-NR 2,-X 等)与苯相连时,产生π-p 共轭,使E 2带、B 带max λ均红移;B 带吸收强度增大,精细结构消失。
三、仪器与试剂(1)仪器:紫外分光光度计。
(2)试剂:浓度为5.0×10-3 mol/L 的苯/乙醇溶液;6.0×10-5 mol/L 的苯甲酸/乙醇溶液;5.0×10-4 mol/L 的苯胺/乙醇溶液;1mol/L 的HCl/乙醇溶液;无水乙醇。
四、实验步骤1.用1cm 吸收池,以无水乙醇为参比,分别测定苯、苯甲酸、苯胺的乙醇溶液在波长200~340nm 区域内的紫外吸收光谱。
实验一气相色谱法测定烷烃混合物中正己烷、正庚烷和正辛烷的含量—归一化法定量一、实验目的:1、掌握归一化法的定量的基本原理以及测定方法;2、了解气相色谱仪器的结构,掌握基本使用方法;二、实验原理色谱定性分析的任务是确定色谱图上各色谱峰代表何组分,根据各色谱峰的保留值进行色谱定性分析。
在一定的色谱操作条件下,每种物质都有一确定不变的保留值(如保留时间),故可作为定性的依据,只要在相同色谱条件下,对已知纯样和待测试样进行色谱分析,分别测量各组分峰的保留值,若某组分峰的保留值与已知纯样相同,则可认为二者是同一物质。
这种色谱定性分析方法要求色谱条件稳定,保留值测定准确。
确定了各个色谱峰代表的组分后,即可对其进行定量分析。
色谱定量分析的依据是第i 个待测组分的质量与检测器的响应信号(峰面积A)呈正比:m i=f i×A i为其峰面积(cm2), f i为相对校正因子。
式中Ai经色谱分离后,混合物中各组分均产生可测量的色谱峰;则可按归一化公式计算各组分的质量分数,设为f i相对校正因子,则归一化法的优点是计算简便,定量结果与进样量无关,且操作条件不需严格控制。
缺点所有组分必须全部分离出峰。
三、仪器和试剂1.仪器:GC-14C 型气相色谱仪;氢火焰离子化检测器(FID);N2000色谱工作站;毛细管色谱柱(非极性);微量进样器(1uL),高纯度(99.999%)的氢气、氮气、压缩空气等高压钢瓶。
2.试剂:正己烷、正庚烷、正辛烷均为AR;混合物试液。
四、色谱条件毛细管色谱柱:Φ0.22mm×25m;柱温:80℃;气化室温度:180℃;检测器温度(FID):180℃;衰减为2;氢气:空气=1:10(流量);载气为N(99.999%),柱前压力为: 0.08MPa:2五、实验步骤1. 开机,先打开载气氮气高压钢瓶,调节减压阀使钢瓶输出压力为0.4~0.3MPa,检查色谱柱安装及气路是否正确,有没有漏气;然后调节柱前压到0.08MPa。
实验一自动电位滴定法-氢氧化钠滴定磷酸专业班级姓名学号一、实验目的:1、掌握酸度计,磁力搅拌器或电位滴定仪的使用方法。
2、掌握电位法确定滴定终点的方法。
3、掌握自动电位滴定的方法。
二、实验原理:NaOH +H3PO4→NaH2PO4 + H2ONaOH +NaH2PO4→Na2HPO4 + H2O三、实验内容:四、数据记录:C(NaOH)= mol.l-1V(H3PO4)= ml1、滴定终点的电动势PH sp1= ,PH sp2= 。
六、问题及讨论:实验二荧光分析法——核黄素(V B2)含量的测定专业班级姓名同组人学号一、实验目的:1、掌握荧光分析仪(分光光度计)的使用方法。
2、掌握荧光物质定量分析的方法。
二、实验原理:三、实验内容:、四、数据记录:最大激发波长nm ,滤光片波长。
最大发射波长nm ,滤光片波长。
核黄素(V B2)标准液10ug/ml,空白蒸馏水。
五、数据处理:1、标准曲线;2、样品中核黄素的含量= (ug/l)。
六、问题及讨论:实验三库仑分析法—库仑滴定维生素C片中V c的含量测定专业班级姓名同组人学号一、实验目的:1、掌握库仑分析仪的使用方法。
2、掌握库仑滴定的方法。
二、实验原理:三、实验内容:、四、数据记录及数据处理:五、问题及讨论:实验四离子选择电极分析法——氟离子含量的测定专业班级姓名同组人学号一、实验目的:1、掌握氟离子选择电极的使用方法。
2、掌握离子选择电极分析法的方法。
二、实验原理:三、实验内容:、四、数据记录:未知样体积:10.00 毫升,TISAB 10 毫升,配制总体积毫升。
自来水体积:50.00 毫升,TISAB 10 毫升,配制总体积毫升。
五、及数据处理:1、标准曲线;2、样品中氟的含量= mg/l ,自来水中氟的含量= mg/l 。
六、问题及讨论:实验五气相色谱分析法专业班级姓名同组人学号一、实验目的:1、掌握气相色谱仪的使用方法。
2、掌握气相色谱的分离、定性、定量方法。
实验一气相色谱仪一、技术参数:1、温度范围:室温+4℃~450℃2、检测器:FID、TCD、ECD3、载气流量控制部最小检测量P:0.2pgP/s二、主要特点:1、采用新一代AFC(先进的流量控制器)设计,使载气控制方面有更高精度,实现了保留时间、峰面积、峰高的优良重现性。
2、为满足复杂样品分析,主机可安装3个进样口和4个检测器,从而省去了拆换检测器的麻烦。
使用GCsolution 可进行4种检测器同时检测。
3、柱温箱可达到最快的升温速率250℃/min,加快分析物流出,满足了快速分析所需要的升温要求,并方便用户对色谱柱进行老化。
4、岛津专利的“载气恒线速度控制方式”,可以在最短时间内得到最优化分离条件。
5、工作站GCsolution的检测器数据采集速率高达250Hz(4msec),保证快速分析时数据的准确性和完整性。
三、主要用途:除用于定量和定性分析外,还能测定样品在固定相上的分配系数、活度系数、分子量和比表面积等物理化学常数。
在石油化学工业中大部分的原料和产品都可采用气相色谱法来分析;在电力部门中可用来检查变压器的潜伏性故障;在环境保护工作中可用来监测城市大气和水的质量;在农业上可用来监测农作物中残留的农药;在商业部门可和来检验及鉴定食品质量的好坏;在医学上可用来研究人体新陈代谢、生理机能;在临床上用于鉴别药物中毒或疾病类型;在宇宙飞船中可用来自动监测飞船密封仓内的气体等等。
四.仪器构造载气系统气相色谱仪中的气路是一个载气连续运行的密闭管路系统。
整个载气系统要求载气纯净、密闭性好、流速稳定及流速测量准确。
进样系统进样就是把气体或液体样品匀速而定量地加到色谱柱上端。
(3)分离系统分离系统的核心是色谱柱,它的作用是将多组分样品分离为单个组分。
色谱柱分为填充柱和毛细管柱两类。
(4)检测系统检测器的作用是把被色谱柱分离的样品组分根据其特性和含量转化成电信号,经放大后,由记录仪记录成色谱图。
(5)信号记录或微机数据处理系统近年来气相色谱仪主要采用色谱数据处理机。
溶液PH 的测定一、实验目的(1)掌握测定PH 值的原理及方法;(2)学会正确使用PH 复合电极和酸度计;(3)掌握用酸度计测量PH 的技术; 二、实验原理PH 值的使用操作(定义):RT FE E PH RTE E PH 303.2)]()([ 303.2-PH )(标准试液(标准)(标准)(试液)(标准)试液-+=+=三、仪器和试剂仪器:PHS-9V 型酸度计,电磁搅拌器,PH 复合电极,100ml 聚乙烯杯。
试剂:PH 分别为4.00、6.86和9.18的三种标准缓冲溶液(25℃),三种未知PH 的溶液,广泛PH 试纸。
四、实验步骤(1)将酸度计的PH 键按下,温度补偿器调至溶液的温度;(2)用PH 试纸分别判断三种未知溶液的大致PH ,再选择相应的PH 标准缓冲溶液; (3)取两个100ml 烧杯,分别倒入PH 最大的未知溶液及相对应的标准缓冲溶液,溶液的体积应超过烧杯的一半;(4)将复合电极慢慢插入盛有标准缓冲溶液的烧杯中,待读数稳定后将仪器读数定位到标准缓冲溶液的PH 上;(5)将电极从PH 标准缓冲溶液取出,蒸馏水冲洗干净,用滤纸吸干电极下部的水,然后将电极放入未知试液中,待读数稳定,可直接读取未知液的PH ;(6)按上述步骤,依PH 从大到小的顺序,测定另外一个未知液的PH ;a 、(雷磁)OFF/ON=>PH/mv=>温度=>确认=>标定=>(6.86定位)=>确认=>(9.18调斜率)=>确认=>测量(数据1,数据2)=>标定=>(6.86定位)=>确认=>(4.00调斜率)=>确认=>测量(数据1,数据2)b 、(LIDA )OFF/ON=>PH/mv=>温度=>标定=>(6.86定位,斜率最大,定位最小)=>(9.18调斜率)=>测量(数据1,数据2)=>(4.00调斜率)=>测量(数据1,数据2) 五、数据记录 待测样品编号 12测得值平均值 极差极差与平均值之比(%)实验二 标准缓冲溶液的配制和标定一、实验目的(1)熟练使用PH 计的方法;(2)掌握控制反应介质酸碱的缓冲溶液的配制方法;(3)掌握标准缓冲溶液的标定方法;二、实验原理缓冲液是一种能在加入少量酸或碱时抵抗PH 改变的溶液。