第六章-线代迭代法_数值分析
- 格式:ppt
- 大小:12.07 MB
- 文档页数:67
数值分析--第6章解线性方程组的迭代法第6章 解线性方程组的迭代法直接方法比较适用于中小型方程组。
对高阶方程组,即使系数矩阵是稀疏的,但在运算中很难保持稀疏性,因而有存储量大,程序复杂等不足。
迭代法则能保持矩阵的稀疏性,具有计算简单,编制程序容易的优点,并在许多情况下收敛较快。
故能有效地解一些高阶方程组。
1 迭代法概述迭代法的基本思想是构造一串收敛到解的序列,即建立一种从已有近似解计算新的近似解的规则。
由不同的计算规则得到不同的迭代法。
迭代法的一般格式(1)()(1)()(,,,),0,1,k k k k m kF k +--==x x x x式中(1)k +x 与()(1)(),,,k k k m --x x x 有关,称为多步迭代法。
若(1)k +x 只与()k x 有关,即(1)()(),0,1,k k kF k +==x x称为单步迭代法。
再设kF 是线性的,即(1)(),0,1,k kk kk +=+=x B x f式中n nk ⨯∈B R ,称为单步线性迭代法。
kB 称为迭代矩阵。
若k B 和kf 与k 无关,即(1)(),0,1,k k k +=+=x Bx f称为单步定常线性迭代法。
本章主要讨论具有这种形式的各种迭代方法。
1.1 向量序列和矩阵序列的极限由于nR 中的向量可与nR 的点建立——对应关系,由点列的收敛概念及向量范数的等价性,可得到向量序列的收敛概念。
定义6.1 设(){}k x 为n R 中的向量序列,nx R ∈,如果()lim 0k k x x →∞-=其中为向量范数,则称序列(){}k x 收敛于x ,记为()lim k k x x →∞=。
定理6.1 nR 中的向量序列(){}k x 收敛于nR 中的向量x 当且仅当()lim (1,2,,)k i i k x x i n →∞==其中()()()()1212(,,,),(,,,)k k k k T Tnnx x x x x x x x ==。
计算方法第六章迭代法迭代法是一种重要的数值计算方法,在数学和计算机科学中有广泛的应用。
本章将介绍迭代法的基本概念、原理和应用,以及相关的数学原理和计算技巧。
首先,我们来了解迭代法的基本概念。
迭代法是通过逐步逼近的方式得到一个问题的解。
迭代法的基本思路是从一个初始值开始,通过重复计算和更新,得到更加接近最终解的近似值。
迭代法的优点是简单和灵活,但需要注意选择合适的迭代公式和初始值,以及控制迭代的停止条件。
迭代法的原理可以用以下的一般形式表示:```x_(n+1)=f(x_n)```其中,x_n表示第n次迭代得到的近似值,x_(n+1)表示第(n+1)次迭代的近似值,f是一个函数,表示迭代公式。
迭代法的思想是通过不断迭代更新x的值,直到满足一些停止条件为止。
迭代法的应用非常广泛,特别是在求解非线性方程和优化问题方面有重要的应用。
在求解非线性方程时,我们可以将方程转化为形式为f(x)=0的等式,然后通过迭代法逼近方程的根。
在优化问题中,我们可以通过最小化或最大化一个函数来寻找最优解,也可以使用迭代法逐步逼近最优解。
在迭代法的实际应用中,我们需要注意一些数学原理和计算技巧。
首先,迭代法的收敛性是关键的,即通过迭代公式逐步逼近的值是否趋于问题的解。
在评估迭代法的收敛性时,常用的方法有判断迭代序列的极限是否存在和是否满足一些收敛条件。
其次,选择合适的迭代公式和初始值对于迭代法的成功应用非常重要。
迭代公式应该是简单和有效的,能够在迭代过程中逐步逼近问题的解。
初始值的选择也会直接影响迭代的结果,通常需要根据问题的特点和经验进行选择。
另外,迭代法的计算精度和计算效率也是需要考虑的问题。
在迭代过程中,我们需要根据问题的要求不断调整迭代的次数和迭代的停止条件,以达到较高的计算精度。
同时,我们也需要通过优化迭代公式和使用更加高效的计算技巧来提高计算的效率。
最后,迭代法的应用还可以进一步扩展到其他领域。
例如,在图像处理中,我们可以使用迭代法逐步改进图像的质量;在机器学习中,我们可以使用迭代法来调整模型的参数,以求得更好的拟合效果。
1 / 8数值分析实验六:解线性方程组的迭代法2016113 张威震1 病态线性方程组的求解1.1 问题描述理论的分析表明,求解病态的线性方程组是困难的。
实际情况是否如此,会出现怎样的现象呢?实验内容:考虑方程组Hx=b 的求解,其中系数矩阵H 为Hilbert 矩阵,,,1(),,,1,2,,1i j n n i j H h h i j n i j ⨯===+-这是一个著名的病态问题。
通过首先给定解(例如取为各个分量均为1)再计算出右端b 的办法给出确定的问题。
实验要求:(1)选择问题的维数为6,分别用Gauss 消去法、列主元Gauss 消去法、J 迭代法、GS 迭代法和SOR 迭代法求解方程组,其各自的结果如何?将计算结果与问题的解比较,结论如何?(2)逐步增大问题的维数(至少到100),仍然用上述的方法来解它们,计算的结果如何?计算的结果说明了什么?(3)讨论病态问题求解的算法1.2 算法设计首先编写各种求解方法的函数,Gauss 消去法和列主元高斯消去法使用实验5中编写的函数myGauss.m 即可,Jacobi 迭代法函数文件为myJacobi.m ,GS 迭代法函数文件为myGS.m ,SOR 方法的函数文件为mySOR.m 。
1.3 实验结果1.3.1 不同迭代法球求解方程组的结果比较选择H 为6*6方阵,方程组的精确解为x* = (1, 1, 1, 1, 1, 1)T ,然后用矩阵乘法计算得到b ,再使用Gauss 顺序消去法、Gauss 列主元消去法、Jacobi 迭代法、G-S 迭代法和SOR 方法分别计算得到数值解x1、x2、x3、x4,并计算出各数值解与精确解之间的无穷范数。
Matlab 脚本文件为Experiment6_1.m 。
迭代法的初始解x 0 = (0, 0, 0, 0, 0, 0)T ,收敛准则为||x(k+1)-x(k)||∞<eps=1e-6,SOR方法的松弛因子选择为w=1.3,计算结果如表1。
数值分析第六章线性方程组迭代解法线性方程组是数值分析中的重要内容之一,其求解方法有很多种。
其中一种常用的方法是迭代解法,即通过不断迭代逼近方程组的解。
本文将介绍线性方程组迭代解法的基本思想和常用方法。
线性方程组可以用矩阵形式表示为Ax=b,其中A是系数矩阵,b是常数向量,x是未知向量。
线性方程组的解可以是唯一解,也可以是无穷多个解。
迭代解法的基本思想是通过不断迭代,并利用迭代序列的极限,逼近线性方程组的解。
迭代解法适用于大型的线性方程组,而直接求解法则适用于小型的线性方程组。
常用的迭代解法有雅可比迭代法、高斯-赛德尔迭代法和逐次超松弛迭代法。
雅可比迭代法是最简单的线性方程组迭代解法之一、它的基本思想是将线性方程组的每个方程都单独表示为未知数x的显式函数,然后通过不断迭代求解。
雅可比迭代法的迭代公式为:x(k+1)=D^(-1)(b-(L+U)x(k))其中,D是A的对角元素构成的对角矩阵,L是A的下三角矩阵,U 是A的上三角矩阵,x(k)是第k次迭代的解。
高斯-赛德尔迭代法是雅可比迭代法的改进版。
它的基本思想是将每个方程的解带入到下一个方程中,而不是等到所有方程都迭代完毕后再计算下一组解。
高斯-赛德尔迭代法的迭代公式为:x(k+1)=(D-L)^(-1)(b-Ux(k))其中,D是A的对角矩阵,L是A的下三角矩阵(除去对角线),U是A的上三角矩阵(除去对角线),x(k)是第k次迭代的解。
逐次超松弛迭代法是对高斯-赛德尔迭代法的改进。
它引入了松弛因子w,通过调节松弛因子可以加快收敛速度。
逐次超松弛迭代法的迭代公式为:x(k+1)=(D-wL)^(-1)[(1-w)D+wU]x(k)+w(D-wL)^(-1)b其中,D是A的对角矩阵,L是A的下三角矩阵(除去对角线),U是A的上三角矩阵(除去对角线),w是松弛因子,x(k)是第k次迭代的解。
线性方程组迭代解法需要设置迭代停止准则,通常可以设置迭代次数上限或者设置一个精度要求。
第六章 线性方程组迭代解法要点:(1)线性方程组迭代格式:Jacobi 迭代,G-S 迭代 (2)矩阵范数计算,矩阵谱半径计算(3)线性方程组迭代格式(1)()k k x Bx f +=+的收敛性判断(4)Jacobi 迭代,G-S 迭代收敛的判断 (5)线性方程组的性态 复习题:1、已知线性方程组为123211*********x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦(1)写出Jacobi 迭代格式和Seidel 迭代格式; (2)写出Jacobi 迭代矩阵和Seidel 迭代矩阵; (3)判别这两种迭代法的收敛性。
解:(1) Jacobi 迭代格式: (1)()()123(1)()()213(1)()()312111222311122k k k k k k k k k x x x x x x x x x +++⎧=-+⎪⎪⎪=--+⎨⎪⎪=+-⎪⎩Gauss-Seidel 迭代格式:(1)()()123(1)(1)()213(1)(1)(1)312111222311122k k k k k k k k k x x x x x x x x x ++++++⎧=-+⎪⎪⎪=--+⎨⎪⎪=+-⎪⎩(2)Jacobi 迭代矩阵:111022()10111022J B D L U -⎛⎫- ⎪ ⎪=+=-- ⎪ ⎪⎪⎝⎭Gauss-Seidel 迭代矩阵:11102211()0221002GS B D L U -⎛⎫- ⎪ ⎪⎪=-=-- ⎪ ⎪⎪- ⎪⎝⎭ (3) 35||4J I B λλλ-=+,得J B的特征值为12,30, 2λλ==±()12J B ρ=>, 可见Jacobi 迭代格式不收敛另外, 21||()2GS I B λλλ-=+,得GS B 的特征值为12,310, 2λλ==-1()12GS B ρ=<, 可见Gauss-Seidel 迭代格式收敛2、设方程组1312123879897x x x x x x x -+=⎧⎪-+=⎨⎪--=⎩试问,是否可以适当调整方程的排列顺序,使得用Gauss-Seidel 迭代法求解时收敛?说明收敛原因解:可通过方程顺序交换,等价为以下方程组1231213979887x x x x x x x --=⎧⎪-+=⎨⎪-+=⎩这样,系数矩阵911190108--⎛⎫⎪- ⎪ ⎪-⎝⎭为严格对角占优矩阵,对该方程组使用Jacobi 迭代和Gauss-Seidel 迭代均收敛3、对方程组⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡43132121x x ,验证Jacobi 迭代法的收敛性,若发散,则说明理由, 并调整方程顺序使得Jacobi 迭代收敛。
数值分析--第6章解线性方程组的迭代法第6章 解线性方程组的迭代法直接方法比较适用于中小型方程组。
对高阶方程组,即使系数矩阵是稀疏的,但在运算中很难保持稀疏性,因而有存储量大,程序复杂等不足。
迭代法则能保持矩阵的稀疏性,具有计算简单,编制程序容易的优点,并在许多情况下收敛较快。
故能有效地解一些高阶方程组。
1 迭代法概述迭代法的基本思想是构造一串收敛到解的序列,即建立一种从已有近似解计算新的近似解的规则。
由不同的计算规则得到不同的迭代法。
迭代法的一般格式(1)()(1)()(,,,),0,1,k k k k m kF k +--==x x x x式中(1)k +x 与()(1)(),,,k k k m --x x x 有关,称为多步迭代法。
若(1)k +x 只与()k x 有关,即(1)()(),0,1,k k kF k +==x x称为单步迭代法。
再设kF 是线性的,即(1)(),0,1,k kk kk +=+=x B x f式中n nk ⨯∈B R ,称为单步线性迭代法。
kB 称为迭代矩阵。
若k B 和kf 与k 无关,即(1)(),0,1,k k k +=+=x Bx f称为单步定常线性迭代法。
本章主要讨论具有这种形式的各种迭代方法。
1.1 向量序列和矩阵序列的极限由于nR 中的向量可与nR 的点建立——对应关系,由点列的收敛概念及向量范数的等价性,可得到向量序列的收敛概念。
定义6.1 设(){}k x 为n R 中的向量序列,nx R ∈,如果()lim 0k k x x →∞-=其中为向量范数,则称序列(){}k x 收敛于x ,记为()lim k k x x →∞=。
定理6.1 nR 中的向量序列(){}k x 收敛于nR 中的向量x 当且仅当()lim (1,2,,)k i i k x x i n →∞==其中()()()()1212(,,,),(,,,)k k k k T Tnnx x x x x x x x ==。