模式识别第三讲-统计决策理论PPT课件
- 格式:ppt
- 大小:218.00 KB
- 文档页数:12
第3章 正态分布时的统计决策在统计决策理论中,涉及到类条件概率密度函数)|(i w x P 。
对许多实际的数据集,正态分布通常是合理的近似。
如果在特征空间中的某一类样本,较多地分布在这一类均值附近,远离均值点的样本比较少,此时用正态分布作为这一类的概率模型是合理的。
另外,正态分布概率模型有许多好的性质,有利于作数学分析。
概括起来就是: (1) 物理上的合理性 (2) 数学上的简单性下面重点讨论正态分布分布及其性质,以及正态分布下的Bayes 决策理论。
3.1 正态分布概率密度函数的定义及性质 1.单变量正态分布 定义:])(21ex p[21)(2σμσπρ--=x x(3.1-1)其中:μ为随机变量x 的期望,也就是平均值;2σ为x 的方差,σ为均方差,又称为标准差。
⎰∞∞-⋅==dx x x x E )()(ρμ (3.1-2)⎰∞∞-⋅-=dx x x )()(22ρμσ(3.1-3)概率密度函数的一般图形如下:)(x ρ具有一下性质:)(,0)(∞<<-∞≥x x ρ1)(=⎰∞∞-dx x ρ (3.1-4)从)(x ρ的图形上可以看出,只要有两个参数2σμ和就可以完全确定其曲线。
为了简单,常记)(x ρ为),(2σμN 。
若从服从正态分布的总体中随机抽取样本x ,约有95%的样本落在)2,2(σμσμ+-中。
样本的分散程度可以用σ来表示,σ越大分散程度越大。
2.多元正态分布 定义:∑---∑=-)]()(21ex p[||)2(1)(1212μμπρx x x T d(3.1-5)其中: T d x x x x ],,,[21 =为d 维随机向量,对于d 维随机向量x ,它的均值向量μ是d 维的。
也就是:T d ],,,[21μμμμ =为d 维均值向量。
∑是d d ⨯维协方差矩阵,1-∑是∑的逆矩阵,||∑为∑的行列式。
协方差矩阵∑是对称的,其中有2/)1(+⨯d d 个独立元素。