2016-2017学年山东省济南市槐荫区八年级(上)期末数学试卷_0
- 格式:doc
- 大小:134.50 KB
- 文档页数:6
2016~2017学年度第一学期槐荫区八年级数学调研测试题( 2017.1)本试题分试卷和答题卡两部分.第1卷共2页,满分为48分;第1I卷共4页,满分为102分.本试题共6页,满分为150分.考试时间为120分钟.第I卷(选择题共48分)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 25的平方根是A.5 B.-5 C.± 5 D.±52.下列图形中,是中心对称图形的是3.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是A. 7, 7B. 8, 7.5C. 7, 7.5D. 8, 6.54.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为A.4 B.8 C.16 D.645.化简2x 2-1÷1x -1的结果是A .2x -1 B.2x C.2x +1D. 2(x +1) 6.不等式组⎩⎪⎨⎪⎧x -1≤02x +4>0的解集在数轴上表示为7.如果关于x 的不等式(a +1)x >a +1的解集为x <1,则a 的取值范围是 A.a <0 B.a <-1 C.a >1 D.a >-18.实数a 在数轴上的位置如图所示,则(a -4)2+(a -11)2化简后为A . 7B . -7C .2a -15D .无法确定9.若方程A x -3+B x +4=2x +1(x -3)(x +4)那么A 、B 的值A.2,1B.1,2C.1,1D.-1, -110.已知长方形ABCD 中,AB =3,AD =9,将此长方形折叠,使点B 与点D 重合,折痕为EF,则△ABE 的面积为A .6B .8C .10D .1211.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC =2,则图中阴影部分的面积等于A.2- 2 B.1 C. 2 D. 2-l12.如图,△ABC中,∠ACB=90°,AC>BC,分别以△ABC的边AB、BC、CA为一边内△ABC外作正方形ABDE、BCMN、CAFG,连接EF、GM、ND,设△AEF、△BND、△CGM的面积分别为S1、S2、S3,则下列结论正确的是A.Sl =S2=S3B.S1=S2<S3C.Sl=S3<S2D.S2=S3<Sl第II卷(非选择题共102分)二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)13.计算:8一2=______________.14.分解因式:a2-6a+9=______________.15.当x=______时,分式x2-9(x-1)(x-3)的值为0.16.已知a+b=3,a2b+ab2=1,则ab=____________·17.如图,一只蚂蚁沿着边长为2的正方体表面从点4出发,经过3个面爬到点B,如果它运动的路径是最短的,则最短路径的是长为__________________.18.如图,在四边形ABCD中,AD=4,CD=3, ∠ABC=∠ACB=∠ADC=45°,则BD 的长为______________.三、解答题(本大题共9个小厦,共78分,解答应写出文字说明,证明过程或演算步骤.)19.(本小题满分6分)计算:(1)18+22-3 (2)a+2a-2÷1a2—2a20.(本小题满分6分)(1)因式分解:m3n―9mn.(2)求不等式x-22≤7-x3的正整数解21.(本小题满分8分)(1)解方程:1-2xx-2=2+32-x(2)解不等式组⎩⎪⎨⎪⎧4x ―3>xx +4<2x 一1,并把解集在数轴上表示出来22.(本小题满分10分)(1)如图1,△ABC 是边长为2的等边三角形,将△ABC 沿直线BC 向右平移,使点B 与点C 重合,得到△DCE ,连接BD ,交AC 于点F .求线段BD 的长.(2)一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或不答一道题扣1分.在这次竞赛中,小明被评为优秀(85分或85分以上),小明至少答对了几道题? 23.(本小题满分8分)济南与北京两地相距480千米,乘坐高铁列车比乘坐普通快车能提前4小时到达.已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度. 24.(本小题满分6分) 先化简再求值:(x +1一3x -1)×x -1x -2,其中x =-22+225.(本小题满分10分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进笔试面试体能甲83 79 90乙85 80 75丙80 90 73(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分,根据规定,请你说明谁将被录用.26.(本小题满分12分)如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=2,BE=22.(1)求CD的长:(2)求四边形ABCD的面积27.(本小题满分12分)已知,点D是等边△ABC内的任一点,连接OA,OB,OC.(1)如图1,己知∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.①∠DAO的度数是_______________②用等式表示线段OA,OB,OC之间的数量关系,并证明;(2)设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的图形,并说明理由;②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.八年级数学试题参考答案与评分标准一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 D B C D C B B A C A D A二、填空题214. ( a-3) 215. -316. 1317. 21041三.解答题:19.解:+(1)18232+·······················1分322322-·························2分32=1 ····························3分(2) 22122a a a a+÷-- =2(2)21a a a a +-⋅- ······················· 5分 =22a a + ·························· 6分 20.解:(1) m 3n -9mn .=2(9)mn m - ························ 1分 =22(3)mn m - ························ 2分 =(3)(3)mn m m +- ······················ 3分(2)解:3(x -2)≤2(7-x) ················ 4分3x -6≤14-2x 5x ≤20x ≤4 ····················· 5分 ∴这个不等式的正整数解为1、2、3、4. ··········· 6分 21.(1)123222x x x-=+-- 122(2)3x x -=-- ··················· 1分 12243x x -=-- ··················· 2分 48x -=- 2x = ······················3分 经检验2x =是增根,原方程无解 ············· 4分 (2)43421x xx x -⎧⎨+-⎩><,解:解不等式①得:x >1, ················· 5分解不等式②得:x >5, ··················· 6分 ∴不等式组的解集为x >5, ················· 7分 在数轴上表示不等式组的解集为:. ············ 8分22. (1)解:∵正△ABC 沿直线BC 向右平移得到正△DCE∴ BE=2BC=4, BC=CD,DE=AC =2,∠E =∠ACB =∠DCE =∠ABC =60° ··· 2分 ∴∠DBE=12∠DCE =30° ··················· 3分∴∠BDE =90° ······················· 4分 在Rt △BDE 中,由勾股定理得BD ==················ 5分(2)解:设小明答对了x 道题, ················ 6分 4x -(25-x) ≥85 ····················· 8分x ≥22 ······················ 9分所以,小明至少答对了22道题. ·············· 10分 23. 解:设普通快车的速度为xkm/h ,由题意得: ······· 1分48048043x x -=························ 3分 4801604x x-= 320x=4 ·························· 4分 x=80 ··························· 5分 经检验x=80是原分式方程的解 ················ 6分 3x =3×80=240 ······················· 7分 答:高铁列车的平均行驶速度是240km/h . ·········· 8分 24.解:31112x x x x -⎛⎫+-⋅⎪--⎝⎭ =(1)(1)31[]112x x x x x x +---⨯--- ················ 1分 =24112x x x x --⨯-- ····················· 2分 =(2)(2)2x x x +-- ····················· 3分=2x + ························ 4分当x ==2=时 ············ 5分原式22+····················· 6分 25. 解:(1)x 甲 =(83+79+90)÷3=84,x 乙=(85+80+75)÷3=80,x 丙=(80+90+73)÷3=81. ················ 3分从高到低确定三名应聘者的排名顺序为:甲,丙,乙; ····· 4分(2)∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴甲淘汰,······················· 5分乙成绩=85×60%+80×30%+75×10%=82.5,···········7分丙成绩=80×60%+90×30%+73×10%=82.3,·········· 9分∴乙将被录取.····················10分26解: (1)过点D作DH⊥AC,················1分∵∠CED=45°,∴∠EDH=45°,∴∠HED=∠EDH,∴EH=DH,·························3分∵EH2+DH2=DE2,2∴EH2=1,∴EH=DH=1,························5分又∵∠DCE=30°,∠DHC=90°,∴DC=2 ··························6分(2)∵在Rt△DHC中,222DH HC DC+=············7分∴12+HC2=22,∴3························8分∵∠AEB=∠CED=45°,∠BAC=90°,2∴AB=AE=2,························9分∴33··················10分∴S四边形ABCD=S△BAC +S△DAC························11分=1 2×2×(3+12×1×(3339+························12分27. 解:(1)①90°. ···················2分②线段OA,OB,OC之间的数量关系是222OA OB OC+=. ·····3分如图1,连接OD. ······················4分∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴△ADC≌△BOC,∠OCD=60°.∴CD = OC,∠ADC =∠BOC=120°,AD= OB.∴△OCD是等边三角形,··················5分∴OC=OD=CD,∠COD=∠CDO=60°,∵∠AOB=150°,∠BOC=120°,∴∠AOC=90°,∴∠AOD=30°,∠ADO=60°.∴∠DAO=90°.·······················6分在Rt△ADO中,∠DAO=90°,∴222OA AD OD+=.∴222OA OB OC+=. ·····················7分(2)①如图2,当α=β=120°时,OA+OB+OC有最小值. ·····8分作图如图2,·······················9分如图2,将△AOC绕点C按顺时针方向旋转60°得△A’O’C,连接OO’.∴△A′O′C≌△AOC,∠OCO′=∠ACA′=60°.∴O′C= OC, O′A′ = OA,A′C = BC,∠A′O′C =∠AOC.∴△OC O′是等边三角形. ·················10分∴OC= O′C = OO′,∠COO′=∠CO′O=60°.∵∠AOB=∠BOC=120°,∴∠AOC =∠A′O′C=120°.∴∠BOO′=∠OO′A′=180°.∴四点B,O,O′,A′共线.∴OA+OB+OC= O′A′ +OB+OO′ =BA′时值最小. ······· 11分②当等边△ABC的边长为1时,OA+OB+OC的最小值A′·12分DABO图1OO /A/4321AB C图2。
八年级期中检测数学试题(2016年11月)本巻共150分,答题时刻120分钟。
第I 卷(选择题 共48分)注意事项:第Ⅰ卷为选择题,每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如 需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每题4分,共48分.在每题给出的四个选项中,只 有一项为哪一项符合题目要求的.)1.化简4的结果是( )A.2 B.2± C.2 D.2± 2.以下语句中正确的选项是( )A.9-的平方根是3-B. 9的平方根是3C. 9的算术平方根是3±D. 3是9的平方根 3.以下个组数中不能作为直角三角形的三边长的是( )A . 0.3,0.4,0.5B . 32,42,52C . 6,8,10D . 9,40,41 4.以下各式从左到右的变形中,是因式分解的是( )A. ()()x x x x +-=--1222B. x x x x x 242222-+=+-+()() C. 222a b c ab ac ()+=+ D. m n m n m n 22-=+-()() 5.以下计算正确的( )A . 5.00125.03= B. 4364273=-C.2118333=D. 5212583-=-- c bx x ++2分解因式为)2)(3(-+x x ,那么c b ,的值为( )A.6,1-==c bB.1,6=-=c bC.6,1=-=c bD.1,6-==c b7. 本学期的五次数学测试中,甲、乙两同窗的平均成绩一样,方不同离为1.2和0.5,那么下 列说法正确的选项是( )A .乙同窗的成绩更稳固B .甲同窗的成绩更稳固C .甲、乙两位同窗的成绩一样稳固D .不能确信8.李阿姨是一名健步走运动的爱好者,她用电话软件记录了某个月(30天)天天健步走的步数(单位:万步),将记录结果绘制成了如下图的统计图.在天天所走的步数这组数据中,众数和中位数别离是( ) A .1.2,1.3 B .1.4,9.等边三角形的边长为2,那么该三角形的面积为( ) A.43 B.3 C.23a 、b 、c ,知足03222=-+-b c b c a b a ,那个三角形是( )11.如图,点E 是正方形ABCD 内的一点,连接AE 、BE 、CE ,将△ABE 绕点B 顺时针旋转90°到△CBE ′的位置.假设AE=1,BE=2,CE=3,那么∠BE ′C 的度数为( ) A.0135 B. 0120 C.090 D.010512.如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…依照此规律继续下去,那么S 2021的值为( )A. 201222⎪⎪⎭⎫⎝⎛ B. 201322⎪⎪⎭⎫⎝⎛ C. 201221⎪⎭⎫⎝⎛ D. 201321⎪⎭⎫ ⎝⎛第Ⅱ卷(非选择题 共102分)注意事项:1.第Ⅱ卷为非选择题,请考生用黑色钢笔(签字笔)直接在试卷上作答. 2.答卷前,请考生先将考点、姓名、准考证号、座号填写在试卷规定的位置.学校 班级 姓名 考场 考号 座号_______第8题图第11题图第12题图二、填空题(本大题共6个小题.每题4分,共24分.把答案填在题中横线上.13.如图中的三角形为直角三角形,字母A 所在的正方形的面积是 .2-1的相反数是 .15.因式分解: xy -x = .∏2,高为3,假设一只小虫从A 点动身沿着圆柱体的侧面爬行到C 点,那么小虫爬行的最短路程是 .(结果保留根号)17.如图,把一块等腰直角三角形零件ABC(∠ACB =90°)如图放置在一凹槽内,极点A 、B 、C 别离落在凹槽内壁上,∠ADE =∠BED =90°,测得AD =5cm ,BE =7cm ,那么该零件的面积 为 2cm .18.如图,在Rt △ABC 中,AB=AC ,D 、E 是斜边BC 上两点,且∠DAE=45°,将△ADC 绕点A 顺时针旋转90︒后,取得△AFB ,连接EF .以下结论中正确的有 .(请将正确答案的序号填在横线上)①45EAF ∠=︒ ②EA 平分CEF ∠ ③ 222BE DC DE += ④DC BE =三、解答题(本大题共9个小题,共78分.解许诺写出文字说明,证明进程或演算步骤.) 19. (此题分)51-45(1)计算:(3)计算:32218-+(4)因式分解: m 3n -9mn .(5)因式分解:)(4)(22x y b y x a -+- (6)因式分解:()()110252+-+-x y y x20. (本小题总分值8分)如图,一架长为5m 的梯子A B 斜靠在与地面O M 垂直的墙 O N 上,梯子底端距离墙O N 有3m .(1)如图1,求梯子顶端与地面的距离O A 的长.(2)如图2,假设梯子极点A 下滑1m 到C 点,求梯子的底端向右滑到D 的距离B D .21.(本小题总分值8分)某口岸位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开口岸,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开口岸一个半小时后相距30海里.得分 评卷人得分评卷人得分 评卷人第13题图第16题图 第17题图第18题图(2)计算:1245253÷⨯ 20题图_______(1)求 PQ 、PR 的长.(2)若是明白“远航”号沿东北方向航行,能明白“海天” 号沿哪个方向航行?什么缘故? 22.(本小题总分值8分)如图,将一副直角三角板摆放在一路,030=∠ACB ,045=∠BCD ,090=∠=∠BDC ABC 量得CD=20cm ,试求BC 和AC 的长.23.(本小题总分值9分)如图,正方形网格中的每一个小正方形的边长都是1,每一个小格的极点叫做格点. (1)在图1中以格点为极点画一个面积为10的正方形;(2)在图2中以格点为极点画一个三角形,使三角形三边长别离为二、5、13(3)如图3,点A 、B 、C 是小正方形的极点,求∠ABC 的度数.24.(本小题总分值9分)下面的表格是李刚同窗一学期数学成绩的记录,依照表格提供的信息回答下面的问题;(1)李刚同窗6次成绩的极差是 .(2)李刚同窗6次成绩的中位数是 .(3)李刚同窗平常成绩的平均数是 .(4)利用图的权重计算一下李刚本学期的综合成绩(平常成绩用四次成绩的平均数,写出解题进程,每次考试总分值都是100分)得分 评卷人得分 评卷人得分 评卷人21题图DCAB22题图25.(本小题总分值12分)得分评卷人已知,△ABC是边长3cm的等边三角形.动点P以1cm/s的速度从点A动身,沿线段AB 向点B运动.(1)如图1,设点P的运动时刻为t(s),那么t=_____(s)时,△PBC是直角三角形;(2)如图2,假设另一动点Q从点B动身,沿线段BC向点C运动,若是动点P、Q都以1cm/s的速度同时动身.设运动时刻为t(s),那么t为何值时,△PBQ是直角三角形?(3)如图3,假设另一动点Q从点C动身,沿射线BC方向运动.连接PQ交AC于D.若是动点P、Q都以1cm/s 的速度同时动身.设运动时刻为t(s),那么t为何值时,△DCQ是等腰三角形?(4)如图4,假设另一动点Q从点C动身,沿射线BC方向运动.连接PQ交AC于D,连接PC.若是动点P、Q 都以1cm/s的速度同时动身.请你猜想:在点P、Q的运动进程中,△PCD和△QCD的面积有什么关系?并说明理由.八年级期中检测数学试题参考答案一、选择题: ADBDC AABBA AC 二、填空题:13. 16;14.12- 15.)1(-y x 16.13 17.12 18.三、解答题: 四、19.(1)原式=5553- (2分)=5514(4分) (2)原式=38545⨯⨯ (2分)=610 (4分) (3)原式=322218-+ (2分) =319-+ (3分) =1 (4分) (4)原式=)4)(3(3mn )2)(9(2分)(分-+=-m m m mn(5)原式=分))()()((分))()((分42b -a 2b a y -x 24b -a y -x )1)((4)(2222+==---y x b y x a(6)原式=分)()(分41-y 5-x 5)1(1)(10)(2522=+---y x y x20.解:)3(453)1(900分,分中,在=∴===∠∆OA AB OB AOB AOB Rt分)答:(略)(分分,分中,在8)7(1)6(453)4(900=∴=∴===∠∆BD OD CD OC COD COD Rt21解:依照题意,得(1)PQ=16×1.5=24(海里),PR=12×1.5=18(海里)(2分) (2)PQ 2+PR 2=242+182=900 QR 2=900∴PQ 2+PR 2=QR 2, (6分) ∴∠QPR=90°. (7分)由“远航号”沿东北方向航行可知,∠QPS=45°,那么∠SPR=45°,即“海天”号沿西北方向航行. (8分)22.(1)∵△BDC 是等腰直角三角形 ∴BD=DCBC ² =BD ²+DC ² =400+400 ∴BC=√800=20√2 (4分)(2)设AC=x ∵△ABC 是含有30角的直角三角形 ∴AB=x/2 (5分) AC ²=AB ²+BC ²x ²=x ²/4+800 3x ²/4=800 ∴AC=6340(8分) 23.第(1)问2分 第(2)问3分;第(3)问3分,结论1分,合计9分 24.(1)极差是96-86=10分(1分) (2)中位数是:90分,(3分)(3)89分;(5分)(4)89×10%+90×30%+96×60%=93.5分.(8分)答:李刚的总评分应该是93.5分.(9分)25.解:(1)当△PBC是直角三角形时,∠B=60°,∠BPC=90°,因此BP=,因此t=(2分)(2)当∠BPQ=90°时,BP=0.5BQ,3-t=0.5t,因此t=2;当∠BQP=90°时,BP=2BQ,3-t=2t,因此t=1;因此t=1或2(s)(5分)(3)因为∠DCQ=120°,当△DCQ是等腰三角形时,CD=CQ,因此∠PDA=∠CDQ=∠CQD=30°,又因为∠A=60°,因此AD=2AP,2t+t=3,解得t=1(s);(8分)(4)相等,如下图:(9分)作PE垂直AD,QG垂直AD延长线,因为,因此△EAP≌△GCQ(AAS),因此PE=QG,因此,△PCD和△QCD同底等高,因此面积相等.(12分)。
2016-2017学年山东初二上学期期末数学测试题一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内。
的相反数是( ) A .5B .5-C .5±D .252. Rt 90ABC C BAC ∠∠在△中,=,的角平分线AD 交BC 于 点D ,2CD =,则点D 到AB 的距离是( )A .1B .2C .3D .4 3. 下列运算正确的是( ) A .222()a b a b +=+ B .325a a a =C .632a a a ÷=D .235a b ab +=4.下列不等式中,是一元一次不等式的是 ( )A 012>-x ;B 21<-;C 123-≤-y x ;D 532>+y ; 4. 到三角形三条边的距离都相等的点是这个三角形的( ) A.三条中线的交点B.三条高的交点 C.三条边的垂直平分线的交点D.三条角平分线的交点5. 对于数据组2,4,4,5,3,9,4,5,1,8,其众数,中位数与平均数分别为 ( ) A. 4,4,6 B. 4,6,4,5 C. 4,4,4,6 D. 5,6,4,56.不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m ≤2(B)m ≥2(C)m ≤1(D)m ≥17. 下列说法正确的个数有( )⑴等边三角形有三条对称轴 ⑵四边形有四条对称轴 ⑶等腰三角形的一边长为4,另一边长为9,则它的周长为17或22 ⑷一个三角形中至少有两个锐角 A 1个 B 2个 C 3个 D 4个8.下列性质中,等腰三角形具有而直角三角形不一定具有的是()A .两边之和大于第三边B .有一个角的平分线垂直于这个角的对边C .有两个锐角的和等于90°D .内角和等于180°9.已知等腰△ABC 的底边BC=8cm ,且|AC-BC |=2cm ,则腰AC 的长为( ).A. 10cm 或6cmB. 10cmC. 6cmD. 8cm 或6cm10.如图,在△ABC 中,AC AB =,︒=∠36A ,BD 、CE 分别是△ABC、△BCD 的角平分线,则图中的等腰三角形有( ) A .5个 B .4个 C .3个 D .2个C(第10题)(第14题)EDCBA二、填空题(每小题3分,共27分) 11. 计算:234(2)a a = .12. k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.13. 10. 因式分解:2242x x ++= .14. 若2x +kx+9是一个完全平方式,则k= _____________ 15. 已知63x y xy +==-,,则22x y xy +=______________.16 不等式组112620x x ⎧<⎪⎨⎪->⎩的解集为 .17. 如图,△ABC 中,DE 垂直平分AC 交AB 于E,∠A=30°,∠ACB=80°,则∠BCE=18. 若数据10,12,9,-1,4,8,10,12,x 的众数是12,则x=__________.19.下列图形中,轴对称图形有 (填编号)20.已知522=+y x ,2=xy 则22y x +=__________三、解答题(本大题7个小题,共60分)21.(8)3(1)22--.22. (8分) ) 已知:如图,Rt △ABC 中,∠C=90°,沿过点B 的一条直线BE 折叠△ABC ,•使点C 恰好落在AB 边的中点D 处,则∠A=23. (8分) (1) 解不等式223125+<-+x x(2) 先化简,再求值:22(3)(2)(2)2x x x x +++--,其中13x =-.24.(8分) 在△ABC 中,∠B =2∠C ,AD 是∠BAC 的平分线.求证:AC =AB +BD .25.(10分) 已知方程组⎩⎨⎧-=++=+②①my x m y x 12,312的解满足x +y <0,求m 的取值范围.ACDB26. (8分) 某市举行一次少年滑冰比赛,各年龄组的参赛人数如下表所示:年龄组 13岁 14岁 15岁 16岁参赛人数 5 19 12 141)求全体参赛选手年龄的众数、中位数;2)小明说,他所在年龄组的参赛人数占全体参赛人数的28%。
xx学校xx学年xx学期xx试卷姓名:_____________年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:25的平方根是A.5 B.-5 C.± D.±5试题2:下列图形中,是中心对称图形的是试题3:某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是A. 7, 7 B. 8, 7.5 C. 7, 7.5 D. 8, 6.5试题4:评卷人得分如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为 A.4 B.8 C.16 D.64试题5:化简÷的结果是A. B. C. D. 2(x+1)试题6:不等式组的解集在数轴上表示为试题7:如果关于x的不等式(a+1)x>a+1的解集为x<1,则a的取值范围是A.a<0B.a<-1C.a>1D.a>-1试题8:实数a在数轴上的位置如图所示,则+化简后为A. 7 B.-7 C.2a-15 D.无法确定试题9:若方程+=那么A、B的值A.2,1B.1,2C.1,1D.-1, -1试题10:.已知长方形ABCD中,AB=3,AD=9,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为A.6 B.8 C.10 D.12试题11:如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于A.2- B.1 C. D. -l试题12:如图,△ABC中,∠ACB=90°,AC>BC,分别以△ABC的边AB、BC、CA为一边内△ABC外作正方形ABDE、BCMN、CAFG,连接EF、GM、ND,设△AEF、△BND、△CGM的面积分别为S1、S2、S3,则下列结论正确的是A.S l=S2=S3 B.S1=S2<S3 C.S l=S3<S2 D.S2=S3<S l试题13:计算:一=______________.试题14:分解因式:a2-6a+9=______________.试题15:当x=______时,分式的值为0.试题16:已知a+b=3,a2b+ab2=1,则ab=____________·试题17:如图,一只蚂蚁沿着边长为2的正方体表面从点4出发,经过3个面爬到点B,如果它运动的路径是最短的,则最短路径的是长为__________________.试题18:如图,在四边形ABCD中,AD=4,CD=3, ∠ABC=∠ACB=∠ADC=45°,则BD的长为______________.试题19:试题20:试题21:因式分解:m3n―9mn.试题22:求不等式≤的正整数解试题23:解方程:试题24:解不等式组,并把解集在数轴上表示出来试题25:(1)如图1,△ABC是边长为2的等边三角形,将△ABC沿直线BC向右平移,使点B与点C重合,得到△DCE,连接BD,交AC于点F.求线段BD的长.试题26:一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或不答一道题扣1分.在这次竞赛中,小明被评为优秀(85分或85分以上),小明至少答对了几道题?试题27:济南与北京两地相距480千米,乘坐高铁列车比乘坐普通快车能提前4小时到达.已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.试题28:先化简再求值:(x+1一)×,其中x=-试题29:某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分如下表:笔试面试体能甲83 79 90乙85 80 75丙80 90 73(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分,根据规定,请你说明谁将被录用.试题30:如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=,BE=2.(1)求CD的长:(2)求四边形ABCD的面积试题31:已知,点D是等边△ABC内的任一点,连接OA,OB,OC.(1)如图1,己知∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.①∠DAO的度数是_______________②用等式表示线段OA,OB,OC之间的数量关系,并证明;(2)设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的图形,并说明理由;②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.试题1答案:D试题2答案:B试题3答案:CD试题5答案: C试题6答案: B试题7答案: B试题8答案: A试题9答案: C试题10答案: A试题11答案: D试题12答案: A试题13答案:试题14答案: ( a-3) 2试题15答案: -3试题17答案:试题18答案:试题19答案:= (1)分= (2)分=1 (3)分试题20答案:=······························································································· 5分= (6)分试题21答案:m3n-9mn.= (1)分= (2)分=···························································································· 3分试题22答案:解:3(x-2)≤2(7-x) (4)分3x-6≤14-2x5x≤20x≤4 (5)分∴这个不等式的正整数解为1、2、3、4 (6)分试题23答案: (1)分 (2)分 (3)分经检验是增根,原方程无解 (4)分试题24答案:,解:解不等式①得:x>1, (5)分解不等式②得:x>5, (6)分∴不等式组的解集为x>5, (7)分在数轴上表示不等式组的解集为:. (8)分试题25答案:解:∵正△ABC沿直线BC向右平移得到正△DCE∴BE=2BC=4, BC=CD,DE=AC=2,∠E=∠ACB=∠DCE=∠ABC=60°·················· 2分∴∠DBE=∠DCE=30° (3)分∴∠BDE=90°·································································································· 4分在Rt△BDE中,由勾股定理得 (5)分试题26答案:解:设小明答对了x道题, (6)分4x-(25-x) ≥85 (8)分x≥22 (9)分所以,小明至少答对了22道题 (10)分试题27答案:解:设普通快车的速度为x km/h,由题意得: (1)分 (3)分=4··················································· (4)分x=80 (5)分经检验x=80是原分式方程的解 (6)分3x=3×80=240 ·································································································· 7分答:高铁列车的平均行驶速度是240km/h. (8)分试题28答案:解:= (1)分= (2)分= (3)分=···································································································· 4分当=时 (5)分原式== (6)分试题29答案:解:(1) =(83+79+90)÷3=84,=(85+80+75)÷3=80,=(80+90+73)÷3=81. (3)分从高到低确定三名应聘者的排名顺序为:甲,丙,乙; (4)分(2)∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴甲淘汰, (5)分乙成绩=85×60%+80×30%+75×10%=82.5, (7)分丙成绩=80×60%+90×30%+73×10%=82.3, (9)分∴乙将被录取. (10)分试题30答案:解: (1)过点D作DH⊥AC, (1)分∵∠CED=45°,∴∠EDH=45°,∴∠HED=∠EDH,∴EH=DH, (3)分∵EH2+DH2=DE2,DE=,∴EH2=1,∴EH=DH=1,································································································· 5分又∵∠DCE=30°,∠DHC=90°,∴DC=2 (6)分(2)∵在Rt△DHC中, (7)分∴12+HC2=22,∴HC=,···································································································· 8分∵∠AEB=∠CED=45°,∠BAC=90°,BE=2,∴AB=AE=2,································································································· 9分∴AC=2+1+=3+, (10)分∴S四边形ABCD=S△BAC+S△DAC (11)分=×2×(3+)+×1×(3+)= (12)分试题31答案:解:(1)①90°. (2)分②线段OA,OB,OC之间的数量关系是. (3)分如图1,连接OD (4)分∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴△ADC≌△BOC,∠OCD=60°.∴CD = OC,∠ADC =∠BOC=120°,AD= OB.∴△OCD是等边三角形, (5)分∴OC=OD=CD,∠COD=∠CDO=60°,∵∠AOB=150°,∠BOC=120°,∴∠AOC=90°,∴∠AOD=30°,∠ADO=60°.∴∠DAO=90°.································································································· 6分在Rt△ADO中,∠DAO=90°,∴.∴.·························································································· 7分(2)①如图2,当α=β=120°时,OA+OB+OC有最小值. (8)分作图如图2, (9)分如图2,将△AOC绕点C按顺时针方向旋转60°得△A’O’C,连接OO’.∴△A′O′C≌△AOC,∠OCO′=∠ACA′=60°.∴O′C= OC, O′A′ = OA,A′C = BC,∠A′O′C =∠AOC.∴△OC O′是等边三角形 (10)分∴OC= O′C = OO′,∠COO′=∠CO′O=60°.∵∠AOB=∠BOC=120°,∴∠AOC =∠A′O′C=120°.∴∠BOO′=∠OO′A′=180°.∴四点B,O,O′,A′共线.∴OA+OB+OC=O′A′ +OB+OO′=BA′时值最小 (11)分②当等边△ABC的边长为1时,OA+OB+OC的最小值A′B=. ··················· 12分。
2017-2018学年山东省济南市八年级(上)期末数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4化简的结果是( )A .3-B .3C .3± D2.(412,0,2-这四个数中,为无理数的是( )A B .12 C .0 D .2-3.(4分)下面四个手机应用图标中,属于中心对称图形的是( )A .B .C .D .4.(4分)下列计算,正确的是( )A B .13|2|22-=- C D .11()22-= 5.(4分)如图,在ABC ∆中,90C ∠=︒,AC BC =,AD 平分CAB ∠交BC 于D ,DE AB⊥于E ,若4AB cm =,则DBE ∆的周长是( )A .4 cmB .C .1+D .46.(4分)方程组43235x y k x y -=⎧⎨+=⎩的解中x 与y 的值相等,则k 等于( ) A .2 B .1 C .3 D .47.(4分)如图,直线//a b ,直线l 与a ,b 分别相交于A ,B 两点,AC AB ⊥交b 于点C ,140∠=︒,则2∠的度数是( )A .40︒B .45︒C .50︒D .60︒8.(4分)一次函数y kx b =+满足0kb >,且y 随x 的增大而减小,则此函数的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限9.(4分)在创建“全国园林城市”期间,郴州市某中学组织共青团员去植树,其中七位同学植树的棵树分别为:3,1,1,3,2,3,2,这组数据的中位数和众数分别是( )A .3,2B .2,3C .2,2D .3,310.(4分)如图, 将AOB ∆绕点O 按逆时针方向旋转45︒后得到COD ∆,若15AOB ∠=︒,则AOD ∠的度数是( )A .45︒B .60︒C .70︒D .65︒11.(4分)如图,AB y ⊥轴,垂足为B ,将ABO ∆绕点A 逆时针旋转到△11AB O 的位置,使点B 的对应点1B 落在直线y =上,再将△11AB O 绕点1B 逆时针旋转到△112A B O的位置,使点1O 的对应点2O 落在直线y =上,依次进行下去若点B 的坐标是(0,1),则点12O 的纵坐标为( )A .9+B .9C .18+D .1812.(4分)如图,点P 为定角AOB ∠的平分线上的一个定点,且MPN ∠与AOB ∠互补,若MPN ∠在绕点P 旋转的过程中,其两边分别与OA 、OB 相交于M 、N 两点,则以下结论:(1)PM PN =恒成立;(2)OM ON +的值不变;(3)四边形PMON 的面积不变;(4)MN 的长不变,其中正确的个数为( )A .4B .3C .2D .1二、填空题(本大题共6个小题,每小题4分,共24分)13.(4x 的取值范围是 .14.(4分)若数据10,9,a ,12,9的平均数是10,则这组数据的方差是 .15.(4分)如图,函数2y x =和4y ax =+的图象交于点(,3)A m ,则方程24x ax =+的解为x = .16.(4分)如图①,在边长为4cm 的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止.过点P 作//PQ BD ,PQ 与边AD (或边)CD 交于点Q ,PQ 的长度()y cm 与点P 的运动时间x (秒)的函数图象如图②所示.当点P 运动2.5秒时,PQ 的长度是 cm .17.(4分)如图,在ABC ∆中,BC 边上的垂直平分线DE 交边BC 于点D ,交边AB 于点E .若E D C∆的周长为24,ABC ∆与四边形AEDC 的周长之差为12,则线段DE 的长为 .18.(4分)如图,ABC∆是边长为5的等边三角形,点E在CA的延长线上,EP BC⊥,垂足为P,若2AE=,则BP的长度等于.三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(16分)计算:(1)23)(22-(3(4)2(|1.20.(8分)解方程组(1)257 231x yx y-=⎧⎨+=-⎩(2)3(1)5 563(4)x yy x-=+⎧⎨-=+⎩.21.(10分)(1)如图,在ABC∆和DCE∆中,//AB DC,AB DC=,BC CE=,且点B,C,E在一条直线上.求证:A D∠=∠.(2)如图,在ABC∆中,AB AC=,40A∠=︒,BD是ABC∠的平分线.求BDC∠的度数.22.(6分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,ABC ∆的三个顶点的坐标分别为(3,4)A -,(5,2)B -,(2,1)C -.(1)画出ABC ∆关于y 轴的对称图形△111A B C ;(2)画出将ABC ∆绕原点O 逆时针方向旋转90︒得到的△222A B C .23.(8分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.甲种商品与乙种商品的销售单价各多少元?24.(10分)A 、B 两地相距90km ,甲、乙两人从两地出发相向而行,甲先出发.图中1l ,2l 表示两人离A 地的距离()S km 与时间()t h 的关系,结合图象回答下列问题:(1)表示甲离A 地的距离与时间关系的图象是 (填1l 或2)l ;甲的速度是 /k m h ;乙的速度是 /k m h .(2)甲出发后多少时间两人恰好相距15km ?25.(10分)【操作发现】(1) 如图 1 ,ABC ∆为等腰直角三角形,90ACB ∠=︒,先将三角板的90︒角与ACB ∠重合, 再将三角板绕点C 按顺时针方向旋转 (旋 转角大于0︒且小于45)︒. 旋转后三角板的一直角边与AB 交于点D . 在三角板另一直角边上取一点F ,使CF C D =,线段AB 上取点E ,使45DCE ∠=︒,连接AF ,EF . 请探究结果: ①直接写出EAF ∠的度数= 度;若旋转角BCD α∠=︒,则AEF ∠= 度(可 以用含α的代数式表示) ;②DE 与EF 相等吗?请说明理由;【类比探究】(2) 如图 2 ,ABC ∆为等边三角形, 先将三角板中的60︒角与ACB ∠重合, 再将三角板绕点C 按顺时针方向旋转 (旋 转角大于0︒且小于30)︒. 旋转后三角板的一直角边与AB 交于点D . 在三角板斜边上取一点F ,使CF CD =,线段AB 上取点E ,使30DCE ∠=︒,连接AF ,EF .①直接写出EAF ∠的度数= 度;②若1AE =,2BD =,求线段DE 的长度 .26.(10分)如图,将边长为8的正三角形纸片ABC 按如下顺序进行两次折叠,展开后,得折痕AD ,BE (如图①),点O 为其交点.(1)探求AO 与OD 的数量关系,并说明理由;(2)如图②,若P ,N 分别为BE ,BC 上的动点.①当PN PD +的长度取得最小值时,求BP 的长度;②如图③,若点Q 在线段BO 上,1BQ =,则三线段QN ,NP ,PD 的和(即)QN NP PD ++是否存在最小值?若存在,请直接写出最小值,若不存在,请说明理由.。
2017-2018学年山东省济南市槐荫区八年级(上)期末数学试卷一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)在实数π,﹣,,中,是无理数的是()A.πB.C.﹣D.2.(4分)若代数式有意义,则实数x的取值范围是()A.x=0B.x=4C.x≠0D.x≠43.(4分)在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数B.方差C.平均数D.中位数4.(4分)下列各式由左到右的变形中,属于分解因式的是()A.a(m+n)=am+an B.a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+6x=(x+4)(x﹣4)+6x 5.(4分)不等式组的解集表示在数轴上正确的是()A.B.C.D.6.(4分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.7.(4分)袋内装有标号分别为1、2、3、4的4个小球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为()A.B.C.D.8.(4分)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人9.(4分)不等式(a+2)x>a+2的解集是x<1,则a的取值范围是()A.a<﹣2B.a>﹣2C.a>2D.a<2 10.(4分)如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CF、EF D.GH、AB、CD11.(4分)某次知识竞赛共20道题,每答对一道题得10分,答错或不答都扣5分,娜娜得分超过了90分.设她答对了x道题,则根据题意可列不等式为()A.10x﹣5(20﹣x)≥90B.10x﹣5(20﹣x)>90C.20×10﹣5x>90D.20×10﹣5x≥9012.(4分)如图,将边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AEFG 的位置,则图中阴影部分的面积为()A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分,把答案填在答题卡的横线上.)13.(4分)比较大小:﹣30.(填“>”、“﹦”或“<”号)14.(4分)“a是实数,|a|≥0”这一事件是事件.15.(4分)因式分解:ax2﹣a的结果是.16.(4分)已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是℃.17.(4分)已知关于x的分式方程=1有增根,则a=.18.(4分)如图,在△ABC中,∠A=30°,∠B=90°,BC=6,一个边长为2的正方形DEFH沿边CA方向向下平移,平移开始时点F与点C重合,当正方形DEFH 的平移距离为时,有DC2=AE2+BC2成立.三、解答题(本大题共9小题,共78分,解答应写出文字说明,证明过程或演算步骤)19.(6分)解不等式组,并求它的整数解.20.(6分)先化简,再求值:(﹣)÷,其中a=﹣1.21.(6分)解方程:﹣=022.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC和△DEF的顶点都在格点上,根据下列要求画出图形.(1)将△ABC向左平移4个单位长度,再向下平移2个单位长度,画出平移后的△MON;(2)将△DEF绕D点逆时针旋转90°,画出旋转后的△DGH.23.(8分)八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):(1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是队.24.(10分)如图所示的方格地面上,标有编号A、B、C的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.(1)一只自由飞行的鸟,将随意地落在图中的方格地面上,问小鸟落在草坪上的概率是多少?(2)现从3个小方格空地中任意选取2个种植草坪,则刚好选取A和B的2个小方格空地种植草坪的概率是多少(用树形图或列表法求解)?25.(10分)兴发服装店经理用4500元购进一批某款式衬衫,由于受顾客喜爱,很快售完,经理又用4950元购进第二批该款式衬衫,所购数量与第一批相同,但每件进价比第一批多了9元.(1)求第一批该款式衬衫每件进价是多少元?(2)经理以每件120元的价格销售该款式衬衫,当第二批衬衫售出80%时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于900元,剩余的衬衫每件售价至少要多少元?26.(12分)将两个全等的△ABC和△DBE按图1方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)若将图1中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,如图2,请你直接写出线段AF,EF,DE的数量关系;(2)若将图1中的△DBE绕点B按顺时针方向旋转角β,且60°≤β≤180°,其它条件不变.①如图3.(1)中线段AF,EF,DE的数量关系是否仍然成立,若成立,请证明该结论;若不成立,请写出新的结论并证明.②如图4,AB中点为M,BE中点为N,若BC=2,连接MN,当β=度时,MN长度最大,最大值为(直接写出答案即可)27.(12分)在方程x2﹣3x=0中,像这样只含有一个未知数且未知数的最高次数为2的方程叫做一元二次方程,把方程左边因式分解得到x(x﹣3)=0,根据“任何数与0相乘都得0”,我们可知“两个因式中只要有一个因式的值为0,乘积就为0,”即方程可以转化为:x=0或x﹣3=0,解这两个一次方程得:x=0或x=3.所以原方程的解有两个,分别为:x=0或x=3.上述将方程x2﹣3x=0转化为x=0或x﹣3=0的过程,是将来学习的一元二次方程的解法中,通过因式分解将一元二次方程转化为一元一次方程求解的过程.规范书写如下:解:x2﹣3x=0x(x﹣3)=0x=0或x﹣3=0∴x=0或x=3仿照上面的方法和规范,解决下列问题:(1)解方程9x2﹣4=0(2)解方程a2﹣2a﹣3=0;类比上面的思路,解决下列问题.(3)根据“两数相乘,同号得正,异号得负”,请你直接写出一元二次不等式a2﹣2a﹣3>0的解集.2017-2018学年山东省济南市槐荫区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)在实数π,﹣,,中,是无理数的是()A.πB.C.﹣D.【解答】解:π是无理数,﹣,,是有理数,故选:A.2.(4分)若代数式有意义,则实数x的取值范围是()A.x=0B.x=4C.x≠0D.x≠4【解答】解:由代数式有意义可知:x﹣4≠0,∴x≠4,故选:D.3.(4分)在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数B.方差C.平均数D.中位数【解答】解:因为7名学生进入前3名肯定是7名学生中最高成绩的3名,而且7个不同的分数按从小到大排序后,中位数之后的共有3个数,故只要知道自己的成绩和中位数就可以知道是否进入前3名.故选:D.4.(4分)下列各式由左到右的变形中,属于分解因式的是()A.a(m+n)=am+an B.a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+6x=(x+4)(x﹣4)+6x【解答】解:(A)该变形为去括号,故A不是因式分解;(B)该等式右边没有化为几个整式的乘积形式,故B不是因式分解;(D)该等式右边没有化为几个整式的乘积形式,故D不是因式分解;故选:C.5.(4分)不等式组的解集表示在数轴上正确的是()A.B.C.D.【解答】解:,解①得:x>1,解②得:x≤2,不等式组的解集为:1<x≤2,在数轴上表示为,故选:C.6.(4分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、只是中心对称图形,故本选项错误;B、只是中心对称,故本选项错误;C、只是轴对称图形不是中心对称图形,故本选项错误;D、即是轴对称图形也是中心对称图形,故本选项正确;故选:D.7.(4分)袋内装有标号分别为1、2、3、4的4个小球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为()A.B.C.D.【解答】解:画树状图为:共有16种等可能的结果数,其中所成的两位数是3的倍数的结果数为5,所以成的两位数是3的倍数的概率=.故选:B.8.(4分)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人【解答】解:所有学生人数为100÷20%=500(人);所以乘公共汽车的学生人数为500×40%=200(人).故选:D.9.(4分)不等式(a+2)x>a+2的解集是x<1,则a的取值范围是()A.a<﹣2B.a>﹣2C.a>2D.a<2【解答】解:∵(a+2)x>a+2两边都除以(a+2)得x<1,∴a+2<0,∴a<﹣2.故选:A.10.(4分)如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CF、EF D.GH、AB、CD【解答】解:AB2=22+22=8,CD2=42+22=20,EF2=12+22=5,GH2=32+22=13,所以AB2+EF2=GH2.故选:B.11.(4分)某次知识竞赛共20道题,每答对一道题得10分,答错或不答都扣5分,娜娜得分超过了90分.设她答对了x道题,则根据题意可列不等式为()A.10x﹣5(20﹣x)≥90B.10x﹣5(20﹣x)>90C.20×10﹣5x>90D.20×10﹣5x≥90【解答】解:根据题意,得10x﹣5(20﹣x)>90.故选:B.12.(4分)如图,将边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AEFG 的位置,则图中阴影部分的面积为()A.B.C.D.【解答】解:作MH⊥DE于H,如图,∵四边形ABCD为正方形,∴AB=AD=1,∠B=∠BAD=∠ADC=90°,∵正方形ABCD绕点A逆时针旋转30°到正方形AEFG的位置,∴AE=AB=1,∠1=30°,∠AEF=∠B=90°,∴∠2=60°,∴△AED为等边三角形,∴∠3=∠4=60°,DE=AD=1,∴∠5=∠6=30°,∴△MDE为等边三角形,∴DH=EH=,在Rt△MDH中,MH=DH=×=,=×1×=.∴S△MDE故选:D.二、填空题(本大题共6小题,每小题4分,共24分,把答案填在答题卡的横线上.)13.(4分)比较大小:﹣3<0.(填“>”、“﹦”或“<”号)【解答】解:=5,32=9,∵5<9,∴<3,∴﹣3<0.故答案为:<.14.(4分)“a是实数,|a|≥0”这一事件是必然事件.【解答】解:“a是实数,|a|≥0”这一事件是必然事件.故答案是:必然.15.(4分)因式分解:ax2﹣a的结果是a(x+1)(x﹣1).【解答】解:原式=a(x2﹣1)=a(x+1)(x﹣1),故答案为:a(x+1)(x﹣1)16.(4分)已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是15.6℃.【解答】解:把这些数从小到大排列为:4.5,10.5,15.3,15.9,19.6,20.1,最中间的两个数的平均数是(15.3+15.9)÷2=15.6(℃),则这六个整点时气温的中位数是15.6℃.故答案为:15.6.17.(4分)已知关于x的分式方程=1有增根,则a=1.【解答】解:方程两边都乘以(x+2)得,a﹣1=x+2,∵分式方程有增根,∴x+2=0,解得x=﹣2,∴a﹣1=﹣2+2,解得a=1.故答案为:1.18.(4分)如图,在△ABC中,∠A=30°,∠B=90°,BC=6,一个边长为2的正方形DEFH沿边CA方向向下平移,平移开始时点F与点C重合,当正方形DEFH的平移距离为时,有DC2=AE2+BC2成立.【解答】解:设正方形DEFH的平移距离为x,则FC=x,EC=2+x∵△ABC中,∠A=30°,∠B=90°,BC=6∴AC=12∴AE=10﹣x在Rt△DEC中,DC2=DE2+EC2∵DC2=AE2+BC2∴AE2+BC2=DE2+EC2∴(10﹣x)2+62=22+(x+2)2解得x=故答案为:三、解答题(本大题共9小题,共78分,解答应写出文字说明,证明过程或演算步骤)19.(6分)解不等式组,并求它的整数解.【解答】解:解不等式3(x﹣1)<5x+1,得:x>﹣2,解不等式≥2x﹣4,得:x≤,则不等式组的解集为﹣2<x≤,所以不等式组的整数解为﹣1、0、1、2.20.(6分)先化简,再求值:(﹣)÷,其中a=﹣1.【解答】解:原式=[•=•=,当a=﹣1时,原式==+1.21.(6分)解方程:﹣=0【解答】解:两边同时乘以(x+1)(x﹣1)得:(x+1)﹣2=0x+1﹣2=0,x=1,经检验x=1是原方程的增根,所以,原方程无解.22.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC和△DEF的顶点都在格点上,根据下列要求画出图形.(1)将△ABC向左平移4个单位长度,再向下平移2个单位长度,画出平移后的△MON;(2)将△DEF绕D点逆时针旋转90°,画出旋转后的△DGH.【解答】解:(1)如图所示,△MON即为所求;(2)如图所示,△DGH即为所求:23.(8分)八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):(1)甲队成绩的中位数是9.5分,乙队成绩的众数是10分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是乙队.【解答】解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:×(10×4+8×2+7+9×3)=9,则方差是:×[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.24.(10分)如图所示的方格地面上,标有编号A、B、C的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.(1)一只自由飞行的鸟,将随意地落在图中的方格地面上,问小鸟落在草坪上的概率是多少?(2)现从3个小方格空地中任意选取2个种植草坪,则刚好选取A和B的2个小方格空地种植草坪的概率是多少(用树形图或列表法求解)?【解答】解:(1)P(小鸟落在草坪上)==;(2)用树状图或列表格列出所有问题的可能的结果:由树状图(列表)可知,共有6种等可能结果,编号为A、B的2个小方格空地种植草坪有2种,所以P(编号为A、B的2个小方格空地种植草坪)==.25.(10分)兴发服装店经理用4500元购进一批某款式衬衫,由于受顾客喜爱,很快售完,经理又用4950元购进第二批该款式衬衫,所购数量与第一批相同,但每件进价比第一批多了9元.(1)求第一批该款式衬衫每件进价是多少元?(2)经理以每件120元的价格销售该款式衬衫,当第二批衬衫售出80%时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于900元,剩余的衬衫每件售价至少要多少元?【解答】解:(1)设第一批该款式衬衫每件进价是x元,则第一批该款式衬衫每件进价是(x+9)元,根据题意得:=,解得:x=90,经检验,x=90是原方程的解,且符合题意.答:第一批该款式衬衫每件进价是90元.(2)第二批购进衬衫数为4950÷(90+9)=50(件).设剩余的衬衫每件售价为y元,根据题意得:120×50×80%+50×(1﹣80%)y﹣4950≥900,解得:y≥105.答:剩余的衬衫每件售价至少要105元.26.(12分)将两个全等的△ABC和△DBE按图1方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)若将图1中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,如图2,请你直接写出线段AF,EF,DE的数量关系;(2)若将图1中的△DBE绕点B按顺时针方向旋转角β,且60°≤β≤180°,其它条件不变.①如图3.(1)中线段AF,EF,DE的数量关系是否仍然成立,若成立,请证明该结论;若不成立,请写出新的结论并证明.②如图4,AB中点为M,BE中点为N,若BC=2,连接MN,当β=180度时,MN长度最大,最大值为3(直接写出答案即可)【解答】(1)证明:如图2,连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,在Rt△BCF和Rt△BEF中,,∴Rt△BCF≌Rt△BEF(HL),∴EF=CF,∴AF+EF=AF+CF=AC=DE;(2)解:①(1)中结论不成立,结论为:AF=DE+EF,理由:如图3,连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,∴△BCF和△BEF是直角三角形,在Rt△BCF和Rt△BEF中,,∴Rt△BCF≌Rt△BEF(HL),∴CF=EF,∵AC=DE,∴AF=AC+FC=DE+EF.②在△BMN中,BN+BM>MN,=BN+BM,∴点M,B,N在同一条直线上时,MN最大即:β=180°,由(1)知,BE=BC=2,∵点N是BE的中点,∴BN=BE=1,在Rt△ABC中,∠A=30°,BC=2,∴AB=2BC=4,∵点M是AB的中点,∴BM=AB=2,=BN+BM=1+2=3.∴MN最大故答案为:180,3.27.(12分)在方程x2﹣3x=0中,像这样只含有一个未知数且未知数的最高次数为2的方程叫做一元二次方程,把方程左边因式分解得到x(x﹣3)=0,根据“任何数与0相乘都得0”,我们可知“两个因式中只要有一个因式的值为0,乘积就为0,”即方程可以转化为:x=0或x﹣3=0,解这两个一次方程得:x=0或x=3.所以原方程的解有两个,分别为:x=0或x=3.上述将方程x2﹣3x=0转化为x=0或x﹣3=0的过程,是将来学习的一元二次方程的解法中,通过因式分解将一元二次方程转化为一元一次方程求解的过程.规范书写如下:解:x2﹣3x=0x(x﹣3)=0x=0或x﹣3=0∴x=0或x=3仿照上面的方法和规范,解决下列问题:(1)解方程9x2﹣4=0(2)解方程a2﹣2a﹣3=0;类比上面的思路,解决下列问题.(3)根据“两数相乘,同号得正,异号得负”,请你直接写出一元二次不等式a2﹣2a﹣3>0的解集.【解答】解:(1)9x2﹣4=0,(3x+2)(3x﹣2)=0,3x+2=0,3x﹣2=0,x1=﹣,x2=;(2)a2﹣2a﹣3=0,(a﹣3)(a+1)=0,a﹣3=0,a+1=0,a1=3,a2=﹣1;(3)a 2﹣2a ﹣3>0,(a ﹣3)(a +1)>0, 即或,解得:a >3或a <﹣1,即原不等式的解集为a >3或a <﹣1.附赠数学基本知识点1知识点1:一元二次方程的基本概念1.一元二次方程3x 2+5x-2=0的常数项是-2.2.一元二次方程3x 2+4x-2=0的一次项系数为4,常数项是-2.3.一元二次方程3x 2-5x-7=0的二次项系数为3,常数项是-7.4.把方程3x(x-1)-2=-4x 化为一般式为3x 2-x-2=0.知识点2:直角坐标系与点的位置1.直角坐标系中,点A (3,0)在y 轴上。
2016-2017学年山东省济南市高新区八年级(上)期末数学试卷一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)在数字,3.33,,,0,,,2.121121112…(相邻两个2之间1的个数逐次多1)中,无理数的个数是()A.2个B.3个C.4个D.5个2.(3分)下列几组数据能作为直角三角形的三边长的是()A.2,3,4B.5,3,4C.4,6,9D.5,11,13 3.(3分)下列各式中,正确的是()A.B.=1C.D.=±0.54.(3分)估计的值在()之间.A.1与2之间B.2与3之间C.3与4之间D.4与5之间5.(3分)下列函数中,y随x的增大而减小的函数是()A.y=2x+8B.y=﹣2+4x C.y=﹣2x+8D.y=4x6.(3分)点P(3,﹣5)关于x轴对称的点的坐标为()A.(﹣3,﹣5)B.(5,3)C.(﹣3,5)D.(3,5)7.(3分)已知是方程mx﹣2y=2解,则m的值为()A.B.C.4D.8.(3分)根据表中一次函数的自变量x与函数y的对应值,可得p的值为()A.1B.﹣1C.3D.﹣39.(3分)有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.10.(3分)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.30°B.20°C.15°D.14°11.(3分)有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()A.中位数B.众数C.平均数D.加权平均数12.(3分)点P1(x1,y1),P2(x2,y2)是一次函数y=﹣3x+4图象上的两点.若x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定13.(3分)某校有两种类型的学生宿舍30间,大宿舍每间可住8人,小宿舍每间可住5人.该校198个住宿生恰好住满30间宿舍.设大宿舍有x间,小宿舍有y间,得方程组()A.B.C.D.14.(3分)如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是()A.72B.52C.80D.7615.(3分)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2)﹣CD2,其中结论正确的个数是()A.1B.2C.3D.4二、填空题(每小题3分,共18分)16.(3分)9的平方根是.17.(3分)的相反数是.18.(3分)在平面直角坐标系中,函数y=﹣x﹣2的图象经过第象限.19.(3分)直角三角形两直角边长分别为3和4,则它斜边上的高为.20.(3分)如图,直线a∥b,则∠A的度数是.21.(3分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是.三、解答题(共57分)22.(1)计算:﹣﹣(2)解方程组:.23.如图,已知DF⊥AB于点F,且∠A=45°,∠D=30°,求∠ACB的度数.24.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,请你求出旗杆的高度(滑轮上方的部分忽略不计)25.某社区从不同住宅楼中随机选取了200名居民,调查社区居民双休日的学习状况,并将得到的数据制成扇形统计图(如图1)和频数分布直方图(如图2).(1)在这个调查中,200名居民双休日在家学习的有人(2)在这个调查中,在图书馆等场所学习的居民学习时间的平均数和众数分别是多少?(3)估计该社区2 000名居民双休日学习时间不少于4小时的人数.26.某超市为促销,决定对A,B两种商品进行打折出售.打折前,买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元;打折后,买50件A商品和40件B商品仅需364元,打折前需要多少钱?27.盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)a=,b=;(2)直接写出y1、y2与x之间的函数关系式;(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B 旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?28.Rt△ABC中,∠C=90°,点D、E是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1),∠α=50°,则∠1+∠2=°(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4),则∠α、∠1、∠2之间的关系为:.29.一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,以AB为边在第一象限内做等边△ABC(1)求△ABC的面积和点C的坐标;(2)如果在第二象限内有一点P(a,),试用含a的代数式表示四边形ABPO 的面积.(3)在x轴上是否存在点M,使△MAB为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.2016-2017学年山东省济南市高新区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)在数字,3.33,,,0,,,2.121121112…(相邻两个2之间1的个数逐次多1)中,无理数的个数是()A.2个B.3个C.4个D.5个【解答】解:无理数有:,﹣,2.121121112…(相邻两个2之间1的个数逐次多1),共3个,故选:B.2.(3分)下列几组数据能作为直角三角形的三边长的是()A.2,3,4B.5,3,4C.4,6,9D.5,11,13【解答】解:A、22+32≠42,根据勾股定理的逆定理不是直角三角形,故错误;B、32+42=52,根据勾股定理的逆定理是直角三角形,故正确;C、42+62≠92,根据勾股定理的逆定理不是直角三角形,故错误;D、52+112≠132,根据勾股定理的逆定理不是直角三角形,故错误.故选:B.3.(3分)下列各式中,正确的是()A.B.=1C.D.=±0.5【解答】解:A、没意义,所以A选项错误;B、==,所以B选项正确;C、==,所以C选项错误;D、=0.5,所以D选项错误.故选:B.4.(3分)估计的值在()之间.A.1与2之间B.2与3之间C.3与4之间D.4与5之间【解答】解:∵9<11<16,∴3<<4,即的值在3与4之间.故选:C.5.(3分)下列函数中,y随x的增大而减小的函数是()A.y=2x+8B.y=﹣2+4x C.y=﹣2x+8D.y=4x【解答】解:A、B、D选项中的函数解析式k值都是正数,y随x的增大而增大,C选项y=﹣2x+8中,k=﹣2<0,y随x的增大而减少.故选:C.6.(3分)点P(3,﹣5)关于x轴对称的点的坐标为()A.(﹣3,﹣5)B.(5,3)C.(﹣3,5)D.(3,5)【解答】解:根据轴对称的性质,得点P(3,﹣5)关于y轴对称的点的坐标为(3,5).故选:D.7.(3分)已知是方程mx﹣2y=2解,则m的值为()A.B.C.4D.【解答】解:把代入方程得:3m﹣10=2,解得:m=4,故选:C.8.(3分)根据表中一次函数的自变量x与函数y的对应值,可得p的值为()A.1B.﹣1C.3D.﹣3【解答】解:一次函数的解析式为y=kx+b(k≠0),∵x=﹣2时y=3;x=1时y=0,∴,解得,∴一次函数的解析式为y=﹣x+1,∴当x=0时,y=1,即p=1.故选:A.9.(3分)有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.【解答】解:由图表得,64的算术平方根是8,8的算术平方根是;故选:D.10.(3分)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.30°B.20°C.15°D.14°【解答】解:如图,∠2=30°,∠1=∠3﹣∠2=45°﹣30°=15°.故选:C.11.(3分)有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()A.中位数B.众数C.平均数D.加权平均数【解答】解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:A.12.(3分)点P1(x1,y1),P2(x2,y2)是一次函数y=﹣3x+4图象上的两点.若x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定【解答】解:∵点P1(x1,y1),P2(x2,y2)是一次函数y=﹣3x+4图象上的两点,∴y1=﹣3x1+4,y2=﹣3x2+4,而x1<x2,∴y1>y2.故选:A.13.(3分)某校有两种类型的学生宿舍30间,大宿舍每间可住8人,小宿舍每间可住5人.该校198个住宿生恰好住满30间宿舍.设大宿舍有x间,小宿舍有y间,得方程组()A.B.C.D.【解答】解:由题意可得,,故选:B.14.(3分)如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是()A.72B.52C.80D.76【解答】解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,则x2=122+52=169所以x=13所以“数学风车”的周长是:(13+6)×4=76.故选:D.15.(3分)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2)﹣CD2,其中结论正确的个数是()A.1B.2C.3D.4【解答】解:如图:①∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∴①正确;②∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ABD+∠DBC=45°.∴∠ACE+∠DBC=45°,∴③正确;∵△ABD≌△ACE,∴∠ABD=∠ACE.∵∠CAB=90°,∴∠ABD+∠AFB=90°,∴∠ACE+∠AFB=90°.∵∠DFC=∠AFB,∴∠ACE+∠DFC=90°,∴∠FDC=90°.∴BD⊥CE,∴②正确;④∵BD⊥CE,∴BE2=BD2+DE2,∵∠BAC=∠DAE=90°,AB=AC,AD=AE,∴DE2=2AD2,BC2=2AB2,∵BC2=BD2+CD2,∴2AB2=BD2+CD2,∴BD2=2AB2﹣CD2,∴BE2=BD2+DE2=2AB2﹣CD2+2AD2=2(AD2+AB2)﹣CD2,∴④正确.故选:D.二、填空题(每小题3分,共18分)16.(3分)9的平方根是±3.【解答】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.17.(3分)的相反数是﹣2.【解答】解:2﹣的相反数是﹣2.故答案为:﹣2.18.(3分)在平面直角坐标系中,函数y=﹣x﹣2的图象经过第二、三、四象限.【解答】解:∵k=﹣1,b=﹣2,∴一次函数y=﹣x﹣2的图象经过第二、三、四象限,故答案为:二、三、四19.(3分)直角三角形两直角边长分别为3和4,则它斜边上的高为.【解答】解:设斜边长为c,高为h.由勾股定理可得:c2=32+42,则c=5,直角三角形面积S=×3×4=×c×h可得h=,故答案为:.20.(3分)如图,直线a∥b,则∠A的度数是44°.【解答】解:∵a∥b,∴∠ABE=∠ACF=75°,∵∠D=31°,∴∠A=75°﹣31°=44°,故答案为:44°.21.(3分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是(2n﹣1,2n﹣1).【解答】解:∵点B1(1,1),B2(3,2),∴A1(0,1)A2(1,2)A3(3,4),∴直线y=kx+b(k>0)为y=x+1,的横坐标,纵坐标为An的纵坐标∴Bn的横坐标为A n+1又A n的横坐标数列为An=2n﹣1﹣1,所以纵坐标为2n﹣1,∴Bn的坐标为[A(n+1)的横坐标,An的纵坐标]=(2n﹣1,2n﹣1).故答案为:(2n﹣1,2n﹣1).三、解答题(共57分)22.(1)计算:﹣﹣(2)解方程组:.【解答】解:(1)﹣﹣=3﹣×3﹣2=﹣(2)由(2),可得x=13﹣4y(3),把(3)代入(1),可得2(13﹣4y)+3y=16,整理,可得﹣5y+26=16,解得y=2,∴x=13﹣4y=13﹣4×2=13﹣8=5∴原方程组的解是.23.如图,已知DF⊥AB于点F,且∠A=45°,∠D=30°,求∠ACB的度数.【解答】解:∵DF⊥AB于点F,∴∠EFA=90°,∵∠A=45°,∴∠AEF=45°,∴∠CED=∠AEF=45°,又∵∠D=30°,∴∠ACB=∠CED+∠D=45°+30°=75°.24.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,请你求出旗杆的高度(滑轮上方的部分忽略不计)【解答】解:设旗杆高度为x,则AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.25.某社区从不同住宅楼中随机选取了200名居民,调查社区居民双休日的学习状况,并将得到的数据制成扇形统计图(如图1)和频数分布直方图(如图2).(1)在这个调查中,200名居民双休日在家学习的有120人(2)在这个调查中,在图书馆等场所学习的居民学习时间的平均数和众数分别是多少?(3)估计该社区2 000名居民双休日学习时间不少于4小时的人数.【解答】解:(1)在家学习的所占的比例是60%,因而在家学习的人数是:200×60%=120(人);故答案为:120;(2)根据在图书馆学习的人数占30%,∴在图书馆学习的人数为:200×30%=60人,∴在图书馆学习4小时的有60﹣13﹣16﹣6=25人,∴在图书馆等场所学习的居民学习时间的平均数为:(13×2+16×6+25×4+6×8)÷60=4.5,∴平均数为4.5小时,众数为4小时;(3)在家学习时间不少于4小时的频率是:=0.715,2000×0.715=1430(人).估计该社区2000名居民双休日学习时间不少于4小时的人数为1430人.26.某超市为促销,决定对A,B两种商品进行打折出售.打折前,买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元;打折后,买50件A商品和40件B商品仅需364元,打折前需要多少钱?【解答】解:设打折前A商品的单价为x元,B商品的单价为y元,根据题意得:,解得:,则50×8+40×2=480(元),答:打折前需要的钱数是480元.27.盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)a=6,b=8;(2)直接写出y1、y2与x之间的函数关系式;(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B 旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?【解答】解:(1)由y1图象上点(10,480),得到10人的费用为480元,∴a=×10=6;由y2图象上点(10,800)和(20,1440),得到20人中后10人费用为640元,∴b=×10=8;(2)设y1=k1x,∵函数图象经过点(0,0)和(10,480),∴10k1=480,∴k1=48,∴y1=48x;0≤x≤10时,设y2=k2x,∵函数图象经过点(0,0)和(10,800),∴10k2=800,∴k2=80,∴y2=80x,x>10时,设y2=kx+b,∵函数图象经过点(10,800)和(20,1440),∴,∴,∴y2=64x+160;∴y2=;(3)设B团有n人,则A团的人数为(50﹣n),当0≤n≤10时,80n+48×(50﹣n)=3040,解得n=20(不符合题意舍去),当n>10时,800+64×(n﹣10)+48×(50﹣n)=3040,解得n=30,则50﹣n=50﹣30=20.答:A团有20人,B团有30人.28.Rt△ABC中,∠C=90°,点D、E是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1),∠α=50°,则∠1+∠2=140°(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:∠1+∠2=90°+α(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4),则∠α、∠1、∠2之间的关系为:∠2=90°+∠1﹣α.【解答】解:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°,故答案为:140;(2)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠α+∠C=∠1+∠2,∴∠1+∠2=90°+α,故答案为:∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由:如图3,∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+α=90°+∠2+α;(4)如图4,∵∠PFD=∠EFC,∴180°﹣∠PFD=180°﹣∠EFC,∴∠α+180°﹣∠1=∠C+180°﹣∠2,∴∠2=90°+∠1﹣α,故答案为:∠2=90°+∠1﹣α.29.一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,以AB为边在第一象限内做等边△ABC(1)求△ABC的面积和点C的坐标;(2)如果在第二象限内有一点P(a,),试用含a的代数式表示四边形ABPO 的面积.(3)在x轴上是否存在点M,使△MAB为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【解答】解:(1)y=﹣x+1与x轴、y轴交于A、B两点,∴A(,0),B(0,1).∵△AOB为直角三角形,∴AB=2.=×2×sin60°=.∴S△ABC∵A(,0),B(0,1).∴OA=,OB=1,∴tan∠OAB==,∴∠OAB=30°,∵∠BAC=60°,∴∠OAC=90°,∴C(,2);(2)如图1,S四边形ABPO=S△ABO+S△BOP=×OA×OB+×OB×h=××1+×1×|a|=+|a|.∵P在第二象限,∴a<0∴S=﹣=,四边形ABPO(3)如图2,设点M(m,0),∵A(,0),B(0,1).∴AM2=(m﹣)2,MB2=m2+1,AB=2,∵△MAB为等腰三角形,∴①MA=MB,∴MA2=MB2,∴(m﹣)2=m2+1,∴m=,∴M(,0)②MA=AB,∴MA2=AB2,∴(m﹣)2=4,∴m=±2,∴M(+2,0)或(﹣2,0)③MB=AB,∴MB2=AB2,∴m2+1=4,∴m=(舍)或m=﹣.∴M(﹣,0).∴满足条件的M的坐标为(,0)、(+2,0)、(﹣2,0)、(﹣,0).附赠:初中数学易错题填空专题一、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是____ _____。
八年级(上)期末数学试卷 题号一二三总分得分一、选择题(本大题共12小题,共48.0分)1.在,6,,上中,无理数是−2512( )A. B. 6 C. D. −25122.下列各组数中,能作为直角三角形三边长的是( )A. 1,2,3B. C. 6,8,10 D. 3,4,513、14、153.下列各点中,位于第二象限的是( )A. B. C. D. (4,3)(−3,5)(3,−4)(−4,−3)4.下列各点中,在正比例函数的图象上的是y =3x ( )A. B. C. D. (1,3)(−1,3)(3,1)(3,−1)5.在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是8.9环,方差分别是,,则关于甲、乙两人在这次射击训练中成绩S 2甲=0.43S 2乙=0.51稳定性的描述正确的是( )A. 甲比乙稳定B. 乙比甲稳定C. 甲和乙一样稳定D. 甲、乙稳定性没法比较6.把方程改写成用含x 的式子表示y 的形式正确的是2x−y =3( )A. B. C. D. 2x =y +3x =y +32y =2x−3y =3−2x7.如图,在中,,ED 是AC 的垂Rt △ABC ∠B =90°直平分线,交AC 于点D ,交BC 于点已知,E.∠C =35°则的度数为∠BAE ( )A. B. C. D. 20°30°40°50°△ABC∠ABC8.如图,中,CD是AB边上的高线,BE平分,交CD于点E,,,则的面积等于BC=8DE=3△BCE( )A. 11B. 8C. 12D. 3y=−3x+2( )9.下列有关一次函数的说法中,错误的是A. 当x值增大时,y的值随着x增大而减小B. 函数图象与y轴的交点坐标为(0,2)C. 函数图象经过第一、二、四象限D. 图象经过点(1,5)△ABC m(10.如图,在平面直角坐标系中,关于直线1)直线m上各点的横坐标都为对称,点C的坐标为(4,1)( ),则点B的坐标为A. (−2,1)B. (−3,1)C. (−2,−1)D. (−2,−1)M(x1,y1)N(x2,y2)|x1−x2|+|y1−y2|11.对于平面直角坐标系中任意两点,,称为M,Nd(M,N).M(2,−3)N(1,4)两点的直角距离,记作:如:,,则d(M,N)=|2−1|+|−3−4|=8.P(x0,y0)Q(x,y)y=kx+b若是一定点,是直线上d(P,Q)y=kx+b P(−1,−3)的一动点,称的最小值为P到直线的直角距离.则到y轴的直角距离d为( )A. 4B. 3C. 2D. 1Rt△ACB∠ACB=90°△ABC12.如图,中,,的角平分线AD、BE相交于点P,过PPF⊥AD①∠APB=135°作交BC的延长线于点F,交AC于点H,则下列结论:;;;连接CP,CP平分,其中正确的是②BF=BA③PH=PD④∠ACB( )A. B. C. D.①②③①②④①③④①②③④二、填空题(本大题共6小题,共24.0分)13.9的算术平方根是______.14.在电影票上如果将“8排4号”记作,那么“3排5号”记作______.(8,4)15.如图,已知,BC 平分,,则AB//CD ∠ABE ∠C =32°∠BED的度数是______ .16.如图,一次函数的图象与的图象相交于点P ,则方程y =k 1x +b 1l 1y =k 2x +b 2l 2组的解是______.{y =k 1x +b 1y =k 2x +b 217.如图,四边形OABC 为长方形,,则点P 表示的数为______.OA =118.如图,连接在一起的两个等边三角形的边长都为1cm ,一个微型机器人由点A 开始按的A→B→C→D→E→C→A→B→C…顺序沿等边三角形的边循环移动.当微型机器人移动了2019cm 后,它停在了点______上.三、解答题(本大题共9小题,共78.0分)19..15×3520.解方程组:.{x +y =10x−y =221.如图,点D 在边AB 的延长线上,BE 平分,若,△ABC ∠CBD ∠ACB =60°求的度数.∠CAB =80°.∠DBE22.已知:如图,,,,垂AE =CF DE ⊥AC BF ⊥AC 足分别为E ,F ,求证:.DE =BF.AB//CD 23.七年级某班为准备科技节表彰的奖品,计划从友谊超市购买笔记本和水笔共40件,在获知某网店有“五一”促销活动后,决定从该网店购买这些奖品.已知笔记本和水笔在这两家商店的零售价分别如下表,且在友谊超市购买这些奖品需花费90元.品名商店笔记本元件(/)水笔元件(/)友谊超市2.42网店2 1.8请求出需购买笔记本和水笔的数量;(1)求从网店购买这些奖品可节省多少元.(2)24.某校八年级全体同学参加了“爱心一日捐捐款活动,该校随杋抽査了部分同学捐ˆ款的情况统计如图所示:求出本次抽查的学生人数;(1)求出捐款10元的学生人数,并将条形图补充完整;(2)捐款金额的众数是______元,中位数是______.(3)请估计全校八年级1000名学生,捐款20元的有多少人?(4)l1l225.如图,和分别是走私船和我公安快艇航行路程与时间的函数图象,请结合图象解决下列问题:(1)在刚出发时,我公安快艇距走私船多少海里?(2)计算走私船与公安艇的速度分别是多少?(3)l1l2求出,的解析式.(4)问6分钟时,走私船与我公安快艇相距多少海里?(1)Rt△ABC∠ACB=90°AC=BC26.探索发现:如图1,已知中,,,直线l过点C,AD⊥l BE⊥l E.AD=CE 过点A作,过点B作,垂足分别为D、求证:,CD=BE.(2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知(1,3)点M的坐标为,求点N的坐标.(3)y=−3x+3拓展应用:如图3,在平面直角坐标系内,已知直线与y轴交于点P,与x轴交于点Q,将直线PQ绕P点沿逆时针方向旋转后,所得的直线交x45°R.轴于点求点R的坐标.B(6,0)A(4,2) 27.如图,在平面直角坐标系中,过点的直线AB与直线OA相交于点.(1)求直线AB的函数表达式;(2)MA+MB若在y轴上存在一点M,使的值最小,请求出点M的坐标;(3)△AON在x轴上是否存在点N,使是等腰三角形?如果存在,直接写出点N的坐标;如果不存在,说明理由.答案和解析1.【答案】C【解析】解:是整数,属于有理数,故本选项不合题意;A.−2B .6是整数,属于有理数,故本选项不合题意;C .是无理数,故本选项符合题意;5D .是分数,属于有理数,故本选项不合题意.12故选:C .无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不π2π尽的数;以及像,等有这样规律的数.0.1010010001…2.【答案】C【解析】解:A 、,此组数据能不作为直角三角形的三边长,故本选项∵12+22≠32∴不合题意;B 、,此组数据不能作为直角三角形的三边长,故本选项不∵(3)2+(4)2≠(5)2∴合题意;C 、,此组数据能作为直角三角形的三边长,故本选项符合题意;∵62+82=102∴D 、,此组数据不能作为直角三角形的三边长,故本选项不合题意;∵(15)2+(14)2≠(13)2∴故选:C .根据勾股定理的逆定理对各选项进行逐一分析即可.本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a ,b ,c 满足,a 2+b 2=c 2那么这个三角形就是直角三角形是解答此题的关键.3.【答案】B【解析】解:位于第二象限的点的横坐标为负,纵坐标为正,∵位于第二象限的是∴(−3,5)故选:B .依据位于第二象限的点的横坐标为负,纵坐标为正,即可得到结论.本题主要考查了点的坐标,解题时注意:位于第二象限的点的横坐标为负,纵坐标为正.4.【答案】A【解析】解:A 、当时,,x =1y =3x =3点在正比例函数的图象上;∴(1,3)y =3x B 、当时,,x =−1y =3x =−3∴(−1,3)y=3x点不在正比例函数的图象上;C、D、当时,,x=3y=3x=9∴(3,1)(3,−1)y=3x点和不在正比例函数的图象上.故选:A.利用一次函数图象上点的坐标特征验证四个选项中的点是否在正比例函数图象上,此题得解.本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系y=kx+b式是解题的关键.5.【答案】AS2甲=0.43<S2乙=0.51【解析】解:因为,方差小的为甲,所以关于甲、乙两人在这次射击训练中成绩稳定是甲,故选:A.根据方差的定义,方差越小数据越稳定即可求解.本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.【答案】C2x−y=32x−3=y y=2x−3【解析】解:由知,即,故选:C.将x看做常数移项求出y即可得.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.7.【答案】A∵ED【解析】解:是AC的垂直平分线,∴AE=CE,∴∠EAC=∠C=35°,∵Rt△ABC∠B=90°在中,,∴∠BAC=90°−∠C=55°,∴∠BAE=∠BAC−∠EAC=20°.故选:A.AE=CE∠BAE=∠C=35°由ED是AC的垂直平分线,可得,继而求得,然后由在Rt△ABC∠B=90°∠BAC中,,即可求得的度数,继而求得答案.此题考查了线段垂直平分线的性质、等腰三角形的性质以及直角三角形的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.8.【答案】C【解析】解:过E 作于F ,EF ⊥BC 是AB 边上的高线,BE 平分,,∵CD ∠ABC DE =3,∴EF =DE =3的面积,∴△BCE S =12×BC ×EF =12×8×3=12故选C .过E 作于F ,根据角平分线性质得出,根据三角形的面积公式求EF ⊥BC EF =DE =3出即可.本题考查了角平分线性质的应用,能求出BC 边上的高是解此题的关键,注意:角平分线上的点到角的两边的距离相等.9.【答案】D【解析】解:A 、,∵k =−3<0当x 值增大时,y 的值随着x 增大而减小,选项A 不符合题意;∴B 、当时,,x =0y =−3x +2=2函数图象与y 轴的交点坐标为,选项B 不符合题意;∴(0,2)C 、,,∵k =−3<0b =2>0一次函数的图象经过第一、二、四象限,选项C 不符合题意;∴y =−3x +2D 、当时,,x =1y =−3x +2=−1一次函数的图象不经过点,选项D 符合题意.∴y =−3x +2(1,5)故选:D .A 、由,可得出:当x 值增大时,y 的值随着x 增大而减小,选项A 不符合k =−3<0题意;B 、利用一次函数图象上点的坐标特征,可得出:函数图象与y 轴的交点坐标为,(0,2)选项B 不符合题意;C 、由,,利用一次函数图象与系数的关系可得出:一次函数k =−3<0b =2>0的图象经过第一、二、四象限,选项C 不符合题意;y =−3x +2D 、利用一次函数图象上点的坐标特征,可得出:一次函数的图象不经过y =−3x +2点,选项D 符合题意.此题得解.(1,5)本题考查了一次函数图象上点的坐标特征以及一次函数的性质,逐一分析四个选项的正误是解题的关键.10.【答案】A【解析】【分析】此题主要考查了坐标与图形的变化,得出C ,B 关于直线m 对称是解题关键.根据题意得出C ,B 关于直线m 对称,即关于直线对称,进而得出答案.x =1【解答】解:关于直线直线m 上各点的横坐标都为对称,∵△ABC m(1),B 关于直线m 对称,即关于直线对称,∴C x =1点C 的坐标为,∵(4,1),∴4+x 2=1解得:,x =−2则点B 的坐标为:.(−2,1)故选A .11.【答案】D【解析】解:垂线段最短,∵到y 轴最近的点的坐标为,∴P(−1,−3)(0,−3).∴|−1−0|+|−3+3|=1故选:D .先找出到y 轴最近的点的坐标,再根据直角距离公式即可得出结论.P(−1,−3)本题考查的是一次函数图象上上点的坐标特点,正确理解直角距离的定义是解答此题的关键.12.【答案】D【解析】【分析】根据三角形内角和定理以及角平分线定义判断;根据全等三角形的判定和性质判断①;根据角平分线的判定与性质判断.②③④本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理.掌握相关性质是解题的关键.【解答】解:在中,,△ABC ∵∠ACB =90°,∴∠BAC +∠ABC =90°又、BE 分别平分、,∵AD ∠BAC ∠ABC ,∴∠BAD +∠ABE =12(∠BAC +∠ABC)=45°,故正确.∴∠APB =135°①,∴∠BPD =45°又,∵PF ⊥AD ,∴∠FPB =90°+45°=135°,∴∠APB =∠FPB 又,,∵∠ABP =∠FBP BP =BP ≌,∴△ABP △FBP ,,,故正确.∴∠BAP =∠BFP AB =FB PA =PF ②在和中,△APH △FPD ,,,∵∠APH =∠FPD =90°∠PAH =∠BAP =∠BFP PA =PF ≌,∴△APH △FPD,故正确.∴PH =PD ③的角平分线AD 、BE 相交于点P ,∵△ABC 点P 到AB 、AC 的距离相等,点P 到AB 、BC 的距离相等,∴点P 到BC 、AC 的距离相等,∴点P 在的平分线上,∴∠ACB 平分,故正确.∴CP ∠ACB ④故选:D .13.【答案】3【解析】解:,∵(±3)2=9的算术平方根是.∴9|±3|=3故答案为:3.9的平方根为,算术平方根为非负,从而得出结论.±3本题考查了数的算式平方根,解题的关键是牢记算术平方根为非负.14.【答案】(3,5)【解析】解:“8排4号”记作,∵(8,4)排5号记作.∴3(3,5)故答案为:.(3,5)由于将“8排4号”记作,根据这个规定即可确定3排5表示的点坐标.(8,4)此题主要考查了根据坐标确定点的位置,解题的关键是理解题目的规定,知道坐标与位置的对应关系.15.【答案】64°【解析】解:,∵AB//CD ,∴∠ABC =∠C =32°又平分,∵BC ∠ABE ,∴∠ABC =∠EBC =32°.∴∠BED =∠C +∠EBC =32°+32°=64°故答案为:.64°根据平行线的性质得到,再根据角平分线的定义得到∠ABC =∠C =32°,然后利用三角形外角性质计算即可.∠ABC =∠EBC =32°本题考查了平行线的性质:两直线平行,内错角相等.也考查了三角形外角性质以及角平分线的定义.16.【答案】{x =−2y =3【解析】解:由图象可知:一次函数的图象与的图象的∵y =k 1x +b 1l 1y =k 2x +b 2l 2交点P 的坐标是,(−2,3)方程组的解是,∴{y =k 1x +b 1y =k 2x +b 2{x =−2y =3故答案为:.{x =−2y =3根据图象求出交点P 的坐标,根据点P 的坐标即可得出答案.本题考查了对一次函数与二元一次方程组的关系的理解和运用,主要考查学生的观察图形的能力和理解能力,题目比较典型,但是一道比较容易出错的题目.17.【答案】10【解析】解:,,∵OA =1OC =3,∴OB =32+12=10故点P 表示的数为,10故答案为:.10根据勾股定理即可得到结论.本题考查了实数与数轴,勾股定理,熟练掌握勾股定理是解题的关键.18.【答案】D【解析】解:两个全等的等边三角形的边长为1cm ,∵机器人由A 点开始按ABCDBEA 的顺序沿等边三角形的边循环运动一圈,即为6cm ,∴,即行走了336圈又3cm ,∵2019=6×336+3行走2016cm 后,则这个微型机器人停在A 点,再走3cm ,则停在D 点,∴故答案为:D .根据等边三角形和全等三角形的性质,可以推出,每行走一圈一共走了6个1cm ,,行走了336圈又多3cm ,即落到D 点.2019=6×336+3本题主要考查全等三角形的性质、等边三角形的性质,解题的关键在于求出2019为6的倍数余数是几.19.【答案】解:.15×35=3×5×35=3【解析】首先利用二次根式的乘法运算得出,进而化简约分得出即可.15=3×5此题主要考查了二次根式的乘法运算,正确把握运算公式是解题关键.20.【答案】解:,{x +y =10 ①x−y =2 ②得:,②+①2x =12解得:,x =6把代入得:,x =6①y +6=10解得:,y =4则方程组的解为.{x =6y =4【解析】方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.【答案】解:,,,∵∠CBD =∠ACB +∠CAB ∠ACB =60°∠CAB =80°,∴∠CBD =60°+80°=140°平分∵BE ∠CBD.∴∠DBE =12∠CBD =70°【解析】利用三角形外角的性质求出即可解决问题;∠DBC 本题考查三角形外角的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】解:如图,,,∵DE ⊥AC BF ⊥AC .∴∠DEC =∠BFA =90°又,∵AE =CF ,即,∴AE +EF =CF +EF AF =CE 在与中,△AFB △CED ,{BF =DE ∠BFA =∠DEC AF =CE≌.∴△AFB △CED(SAS).∴∠A =∠C .∴AB//CD 【解析】要证,可通过证,那么就需证明这两个角所在的三角形全等AB//CD ∠A =∠C 即可.本题考查了三角形全等的判定及性质;题目采用从结论开始推理容易突破.有平行推出需要找到有关角相等,进而分析需证三角形全等.23.【答案】解:设需购买笔记本x 件,水笔y 件,(1)根据题意得:{x +y =402.4x +2y =90,解得:.{x =25y =15答:需购买笔记本25件,水笔15件.在网店购买这些奖品所需费用为元,(2)25×2+15×1.8=77()节省的钱数为元.90−77=13()答:从网店购买这些奖品可节省13元.【解析】设需购买笔记本x 件,水笔y 件,根据从友谊超市购买笔记本和水笔共40(1)件需花费90元,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;根据总价单价数量求出在网店购买这些奖品所需费用,用90减去该值即可得(2)=×出结论.本题考查了二元一次方程组的应用,解题的关键是:找准等量关系,正确列出二元(1)一次方程组;根据总价单价数量求出在网店购买这些奖品所需费用.(2)=×24.【答案】10 12.5【解析】解:人(1)14÷28%=50()本次测试共调查了50名学生,∴人(2)50−(9+14+7+4)=16()捐款10元的学生人数为16人,∴补全条形统计图图形如下:由条形图可知,捐款10元人数最多,故众数是10元;(3)中位数是元,10+152=12.5()故答案为:10、;12.5人(4)1000×750=140()全校八年级1000名学生,捐款20元的有140人.∴有题意可知,捐款15元的有14人,占捐款总人数的,由此可得总人数;(1)28%将捐款总人数减去捐款5、15、20、25元的人数可得捐10元的人数;(2)从条形统计图中可知,捐款10元的人数最多,可知众数,将50人的捐款总额除以(3)总人数可得平均数,求出第25、26个数据的平均数可得数据的中位数;由捐款20元的人数占总数的百分数,依据全校八年级1000名学生,即可得到结论.(4)本题主要考查了条形统计图,扇形统计图,平均数和众数,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.25.【答案】解:当时,,,(1)t =0y 1=5y 2=0,∴5−0=5在刚出发时,我公安快艇距走私船5海里.∴海里分钟,(2)(9−5)÷4=1(/)海里分钟.6÷4=1.5(/)走私船的速度是1海里分钟,公安艇的速度为海里分钟.∴/ 1.5/设图象的解析式为,(3)l 1y 1=kt +b(k ≠0)将,代入,得:(0,5)(4,9)y 1=kt +b ,解得:,{b =54k +b =9{k =1b =5图象的解析式为;∴l 1y 1=t +5设图象的解析式为,l 2y 2=mt(m ≠0)将代入,得:(4,6)y 2=mt ,解得:,4m =6m =1.5图象的解析式为.∴l 2y 2=1.5t 当时,,,(4)t =6y 1=6+5=11y 2=1.5×6=9海里,∵11−9=2()分钟时,走私船与我公安快艇相距2海里.∴6【解析】由当时,,,二者做差后即可得出结论;(1)t =0y 1=5y 2=0利用速度路程时间,可分别求出走私船与公安艇的速度;(2)=÷观察函数图象,找出点的坐标,利用待定系数法即可求出,的解析式;(3)l 1l 2利用一次函数图象上点的坐标特征,求出时,,的值,做差后即可得出结(4)x =6y 1y 2论.本题考查了待定系数法求一次函数解析式、函数图象以及一次函数图象上点的坐标特征,解题的关键是:观察函数图象,找出当时y 的值;利用速度路程时间(1)t =0(2)=÷求出两船的速度;根据点的坐标,利用待定系数法求出一次函数解析式;利用一(3)(4)次函数图象上点的坐标特征求出当时,的值.t =6y 1y 226.【答案】证明:,(1)∵∠ACB =90°AD ⊥l∴∠ACB =∠ADC,∵∠ACE =∠ADC +∠CAD ∠ACE =∠ACB +∠BCE,∴∠CAD =∠BCE 在和中,△ACD △CBE ,{∠ADC =∠CEB =90∘∠CAD =∠BCE AC =BC≌,∴△ACD △CBE(AAS),,∴AD =CE CD =BE解:如图2,过点M 作轴,垂足为F ,过点N 作(2)MF ⊥y ,交FM 的延长线于G ,NG ⊥MF 由已知得,且OM =MN ∠OMN =90°由得,,∴(1)MF =NG OF =MG ∵M(1,3),∴MF =1OF =3,∴MG =3NG =1,∴FG =MF +MG =1+3=4,∴OF−NG =3−1=2点N 的坐标为,∴(4,2)如图3,过点Q 作,交PR 于S ,过点S 作轴(3)QS ⊥PQ SH ⊥x 于H ,对于直线,由得y =−3x +3x =0y =3,∴P(0,3)∴OP =3由得,y =0x =1,,∴Q(1,0)OQ =1∵∠QPR =45°∴∠PSQ =45°=∠QPS∴PQ =SQ由得,∴(1)SH =OQ QH =OP,∴OH =OQ +QH =OQ +OP =3+1=4SH =OQ =1,∴S(4,1)设直线PR 为,将点P 、R 代入,y =kx +b 则,解得{b =34k +b =1{k =−12b =3直线PR 为∴y =−12x +3由得,y =0x =6.∴R(6,0)【解析】先判断出,再判断出,进而判断出≌(1)∠ACB =∠ADC ∠CAD =∠BCE △ACD ,即可得出结论;△CBE 先判断出,,进而得出,,即可求出(2)MF =NG OF =MG MF =1OF =3,即可得出结论;FG =MF +MG =1+3=4先求出,由得,进而得出,,再判断出,(3)OP =3y =0x =1Q(1,0)OQ =1PQ =SQ 即可判断出,,进而求出直线PR 的解析式,即可得出结论.OH =4SH =OQ =1此题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.27.【答案】解:设直线AB 的解析式为,(1)y =kx +b 把,代入得:,解得:,A(4,2)B(6,0){2=4k +b 0=6k +b {k =−1b =6直线AB 的表达式为;∴y =−x +6作点关于y 轴的对称点,(2)B(6,0),连接交y 轴于M ,此时最小,MA +MB 设直线的解析式为,y =mx +n将,代入得:,解得:,A(4,2){2=4m +n 0=−6m +n {m =15n =65直线的解析式为:,∴y =15x +65当时,,;x =0y =65∴M(0,65)存在,理由:(3)设:点,点,点,N(m,0)A(4,2)O(0,0)则,,,AO 2=20AN 2=(m−4)2+4ON 2=m 2当时,,①AO =AN 20=(m−4)2+4解得:或舍去;m =80(0)当时,同理可得:;②AO =ON m =±25当时,同理可得:;③AN =ON m =52故符合条件的点N 坐标为:或或或.(−25,0)(25,0)(8,0)(52,0)【解析】设直线AB 的解析式为,把,代入即可求解;(1)y =kx +b A(4,2)B(6,0)点关于y 轴的对称点,,连接交y 轴于M ,此时(2)B(6,0)MA +MB最小,即可求解;分、、三种情况,分别求解即可.(3)AO =AN AO =ON AN =ON 本题考查的是一次函数综合运用,涉及到等腰三角形的性质、点的对称性等,其中,(3)要注意分类求解,避免遗漏.。
2016-2017学年山东省济南市历下区八年级(上)期末数学试卷一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)9的平方根为()A.3B.﹣3C.±3D.2.(5分)如图,已知直线a∥b,若∠1=110°,则∠2=()A.60°B.70°C.80°D.90°3.(5分)若a>b,则下列各式中一定成立的是()A.a+1>b+1B.3a<3b C.﹣a>﹣b D.ac<bc4.(5分)在平面直角坐标系中,点P(﹣1,5)在()A.第一象限B.第二象限C.第三象限D.第四象限5.(5分)一次函数y=2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(5分)下列长度的三条线段能组成直角三角形的是()A.3,4,4B.6,8,10C.5,5,5D.6,7,87.(5分)某市五月份连续五天的日最高气温分别为:23、20、20、21、26(单位:℃),这组数据的中位数和众数分别是()A.22℃,26℃B.22℃,20℃C.21℃,26℃D.21℃,20℃8.(5分)如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30°B.40°C.60°D.70°9.(5分)若线段CD是由线段AB平移得到的,点A(﹣1,3)的对应点为C(2,2),则点B(﹣3,﹣1)的对应点D的坐标是()A.(0,﹣2)B.(1,﹣2)C.(﹣2,0)D.(4,6)10.(5分)已知方程组,则m﹣n的值是()A.﹣1B.0C.1D.211.(5分)如图,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D.则BD的长为()A.B.C.D.12.(5分)A(x1,y1)、B(x2,y2)是一次函数y=kx+2(k>0)图象上不同的两点,若t =(x1﹣x2)(y1﹣y2),则()A.t<0B.t=0C.t>0D.t≤0二、填空题(本大题共4小题,每小题4分,共16分)13.(4分)8的立方根是.14.(4分)不等式4x﹣6≥3x﹣5的解集为.15.(4分)如图,一只蚂蚁沿着边长为1的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则最短路径的长为.16.(4分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是.三、解答题(本大题共8小题,共74分)17.(8分)已知方程组与有相同的解,求代数式a﹣4b的值.18.(8分)已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4.AD与BE 平行吗?为什么?解:AD∥BE,理由如下:∵AB∥CD(已知)∴∠4=()∵∠3=∠4(已知)∴∠3=()∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF()即=∴∠3=()∴AD∥BE()19.(8分)为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为1.5小时的人数,并补充频数分布直方图;(3)求户外活动时间的众数和中位数是多少?(4)本次调查中学生参加户外活动的平均时间是否符合要求?说明理由.20.(9分)阅读对话后,完成下面的要求:张老师:王芳,你怎么哭了?王芳:张老师,我还没来得及记下来,李兵就把这道题后面的擦掉了.张老师:是这么回事呀!如果我告诉你这道题的答案是x≥﹣4,而且后面被擦掉的是一个常数,你能把这个常数补上吗?王芳:…,我知道了,谢谢老师(笑).根据以上信息,你能否求出被擦掉的常数?试试看!21.(9分)某蔬菜公司收购到某种蔬菜104吨,准备加工后上市销售.该公司加工该种蔬菜的能力是:每天可以精加工4吨或粗加工8吨.现计划用16天正好完成加工任务,则该公司应安排几天精加工,几天粗加工?22.(10分)李明骑自行车去上学途中,经过先上坡后下坡的一条路段,在这段路上所走的路程S(米)与时间t(分钟)之间的函数关系如图所示.根据图象,解答下列问题:(1)求李明上坡时所走的路程S1(米)与时间t(分钟)之间的函数关系式和下坡时所走的路程S2(米)与时间t(分钟)之间的函数关系式;(2)若李明放学后按原路返回,且往返过程中,上坡的速度相同,下坡的速度也相同,问李明返回时走这段路所用的时间为多少分钟?23.(10分)如图,在长方形ABCD中,点E,F分别在边AB和BC上,∠AEF的平分线与边AD交于点G,线段EG的反向延长线与∠EFB的平分线交于点H.(1)当∠BEF=50°(图1),试求∠H的度数.(2)当E,F在边AB和BC上任意移动时(不与点B重合)(图2),∠H的大小是否变化?若变化,请说明理由;若不变化,求出∠H的度数.24.(12分)张老师给爱好数学的小林提出这样一个问题:如图①,在△ABC中,AB=AC,点P为边BC上的任意一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D,E,过点C 作CF⊥AB,垂足为F,求证:PD+PE=CF.小林的证明思路是:如图②,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.【变式探究】如图③,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;【结论运用】请运用上述解答中所积累的经验和方法完成下题:如图④,在平面直角坐标系中有两条直线l1:y=x+3,l2:y=﹣3x+3,若l2上的一点M到l1的距离是1,请运用上述的结论求出点M的坐标.2016-2017学年山东省济南市历下区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.【解答】解:9的平方根有:=±3.故选:C.2.【解答】解:∵a∥b,∴∠3=∠1=110°,∴∠2=180°﹣110°=70°,故选:B.3.【解答】解:A、两边都加1,不等号的方向不变,故A符合题意;B、两边都乘以3,不等号的方向不变,故B不符合题意;C、两边都乘以﹣1,不等号的方向不变,故D不符合题意;D、c>0时ac>bc,故D不符合题意;故选:A.4.【解答】解:点P(﹣1,5)在第二象限.故选:B.5.【解答】解:∵k=2>0,图象过一三象限,b=1>0,图象过第二象限,∴直线y=2x+1经过一、二、三象限,不经过第四象限.故选:D.6.【解答】解:A、32+42≠42,不能组成直角三角形,故此选项错误;B、62+82=102,能组成直角三角形,故此选项正确;C、52+52≠52,不能组成直角三角形,故此选项错误;D、62+72≠82,不能组成直角三角形,故此选项错误;故选:B.7.【解答】解:把所给数据按照由小到大的顺序排序后为20、20、21、23、26,∴中位数为21,众数为20.故选:D.8.【解答】解:如图,∵AB∥CD,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1﹣∠C=70°﹣40°=30°.故选:A.9.【解答】解:点A(﹣1,3)的对应点为C(2,2),可知横坐标由﹣1变为2,向右移动了3个单位,3变为2,表示向下移动了1个单位,于是B(﹣3,﹣1)的对应点D的横坐标为﹣3+3=0,点D的纵坐标为﹣1﹣1=﹣2,故D(0,﹣2).故选:A.10.【解答】解:,解①﹣②得,m﹣n=1.故选:C.11.【解答】解:如图,由勾股定理得AC==.∵BC×2=AC•BD,即×2×2=×BD∴BD=.故选:C.12.【解答】解:∵A(x1,y1)、B(x2,y2)是一次函数y=kx+2(k>0)图象上不同的两点,∴x1﹣x2≠0,∴y1=kx1+2,y2=kx2+2则t=(x1﹣x2)(y1﹣y2)=(x1﹣x2)(kx1+2﹣kx2﹣2)=(x1﹣x2)k(x1﹣x2)=k(x1﹣x2)2,∵x1﹣x2≠0,k>0,∴k(x1﹣x2)2>0,∴t>0,故选:C.二、填空题(本大题共4小题,每小题4分,共16分)13.【解答】解:8的立方根为2,故答案为:2.14.【解答】解:4x﹣6≥3x﹣5,4x﹣3x≥﹣5+6,x≥1,故答案为:x≥1.15.【解答】解:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,AB==,故答案为:.16.【解答】解:∵点B1(1,1),B2(3,2),∴A1(0,1)A2(1,2)A3(3,4),∴直线y=kx+b(k>0)为y=x+1,∴Bn的横坐标为A n+1的横坐标,纵坐标为An的纵坐标又A n的横坐标数列为An=2n﹣1﹣1,所以纵坐标为2n﹣1,∴Bn的坐标为[A(n+1)的横坐标,An的纵坐标]=(2n﹣1,2n﹣1).故答案为:(2n﹣1,2n﹣1).三、解答题(本大题共8小题,共74分)17.【解答】解:联立得:,①+②得:5x=5,解得:x=1,把x=1代入①得:y=1,把代入得:,解得:,则原式=5+4=9.18.【解答】解:AD∥BE,理由如下:∵AB∥CD(已知),∴∠4=∠BAE(两直线平行,同位角相等);∵∠3=∠4(已知),∴∠3=∠BAE(等量代换);∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF(等式的性质),即∠BAF=∠DAC,∴∠3=∠DAC(等量代换),∴AD∥BE(内错角相等,两直线平行).19.【解答】解:(1)根据题意得:=50(名),答:在这次调查中共调查了50名学生;(2)户外活动时间为1.5小时的人数是:50×24%=12(人),(3)∵1小时出现的次数最多,∴众数是1;∵共有50个数,∴中位数是第25、26个数的平均数,∴中位数是:(1+1)÷2=1;(4)∵本次调查中学生参加户外活动的平均时间是:=1.18>1,∴本次调查中学生参加户外活动的平均时间符合要求.20.【解答】解:设被擦掉的常数为m,则原不等式可表示为:+m,不等式两边同时乘以12得:4(2x﹣1)≤3(3x﹣2)+12m,去括号得:8x﹣4≤9x﹣6+12m,移项得:8x﹣9x≤﹣6+12m+4,合并同类项得:﹣x≤12m﹣2,系数化为1得:x≥2﹣12m.∵这道题的答案是x≥﹣4,∴2﹣12m=﹣4,解得:m=,即被擦掉的常数为.21.【解答】解:设该公司安排x天粗加工,安排y天精加工,据题意,得解得:答:该公司安排10天粗加工,安排6天精加工.22.【解答】解:(1)设s1=k1t(0≤t≤6)∵图象经过点(6,900)∴900=6k1解方程,得k1=150∴s1=150t(0≤t≤6)设s2=k2t+b(6<t≤10)∵图象经过点(6,900),(10,2100)∴解这个方程组,得∴s2=300t﹣900(6<t≤10)(2)李明返回时所用时间为(2100﹣900)÷(900÷6)+900÷[(2100﹣900)÷(10﹣6)]=8+3=11(分钟)答:李明返回时所用时间为11分钟.23.【解答】解:(1)∵∠B=90°,∠BEF=50°,∴∠EFB=40°.∵GE是∠AEF的平分线,HF是∠BFE的平分线,∴∠GEF=65°,∠EFH=20°.∵∠GEF=∠H+∠EFH,∴∠H=65°﹣20°=45°.(2)不变化.∵∠B=90°,∴∠EFB=90°﹣∠BEF.∵GE是∠AEF的平分线,HF是∠BFE的平分线,∴∠GEF=∠AEF=(180°﹣∠BEF),∠EFH=∠EFB=(90°﹣∠BEF).∵∠GEF=∠H+∠EFH,∴∠H=∠GEF﹣∠EFH=(180°﹣∠BEF)﹣(90°﹣∠BEF)=45°.24.【解答】解:如图②,连接AP,∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABP=AB•PD,S△ACP=AC•PE,S△ABC=AB•CF,∵S△ABP+S△ACP=S△ABC,∴AB•PD+AC•PE=AB•CF,又AB=AC,∴PD+PE=CF;【变式探究】如图③,连接AP,∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABP=AB•PD,S△ACP=AC•PE,S△ABC=AB•CF,∵S△ABP﹣S△ACP=S△ABC,∴AB•PD﹣AC•PE=AB•CF,又∵AB=AC,∴PD﹣PE=CF;【结论运用】如图④,由题意可求得A(﹣4,0),B(0,3),C(1,0),∴AB=5,AC=5,BC=,OB=3,当M在线段BC上时,过M分别作MP⊥x轴,MQ⊥AB,垂足分别为P、Q,∵l2上的一点M到l1的距离是1,∴MQ=1,由图②的结论得:MP+MQ=3,∴MP=2,∴M点的纵坐标为2,又∵M在直线y=﹣3x+3,∴当y=2时,x=,∴M坐标为(,2);同理,由前面结论可知当M点在线段BC外时,有|MP﹣MQ|=OB,可求得MP=4或MP=﹣2,即M点的纵坐标为4或﹣2,分别代入y=﹣3x+3,可求得x=﹣或x=(舍,因为它到l1的距离不是1),∴M点的坐标为(﹣,4);综上可知M点的坐标为(,2)或(﹣,4).。
2016-2017学年山东省济南市历城区八年级(上)期末数学试卷一、选择题(本大题共15个小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)4的算术平方根是()A.±2B.2C.﹣2D.±2.(4分)如图,在平面直角坐标系中,点P的坐标为()A.(3,﹣2)B.(﹣2,3)C.(﹣3,2)D.(2,﹣3)3.(4分)观察下列图形,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个4.(4分)下面哪个点不在函数y=﹣2x+3的图象上()A.(﹣5,13)B.(0.5,2)C.(3,0)D.(1,1)5.(4分)如图,直线AB∥CD,∠A=40°,∠D=45°,则∠1的度数是()A.80°B.85°C.90°D.95°6.(4分)下列命题是真命题的是()A.同旁内角互补B.三角形的一个外角大于内角C.三角形的一个外角等于它的两个内角之和D.直角三角形的两锐角互余7.(4分)若x,y为实数,且+(x﹣y+3)2=0,则x+y的值为()A.0B.﹣1C.1D.58.(4分)某校九年级(1)班50名学生积极参加献爱心慈善捐款活动,班长将捐款情况进行统计,并绘制成了统计图.根据统计图提供的信息,捐款金额的众数和中位数分别是()A.20、20B.30、20C.20、30D.30、30 9.(4分)一次函数y=kx+b,y随x增大而增大,且b>0,则该函数的大致图象为()A.B.C.D.10.(4分)已知e、f满足方程组,则2e+f的值为()A.2B.4C.6D.811.(4分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2B.3C.4D.512.(4分)如图,在平面直角坐标系xOy中,如果一个点的坐标可以用来表示关于x、y的二元一次方程组的解,那么这个点是()A.M B.N C.E D.F13.(4分)在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A.点A B.点B C.点C D.点D14.(4分)济南市某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A.4小时B.4.4小时C.4.8小时D.5小时15.(4分)如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=()A.6B.8C.10D.12二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16.(3分)已知数据:﹣1,0,1,2,3,这组数据的方差为.17.(3分)等腰三角形的两边长分别为3cm,6cm,则它的周长是cm.18.(3分)如图,在△ABC中,∠A=70°,点O到AB、BC、AC的距离相等,连接BO、CO,则∠BOC=°.19.(3分)将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB 在x轴上,若OB=4,则点A的坐标为.20.(3分)如图,在△ABC中,AB的垂直平分线DE交AB于点D,交AC于点E,且AC=15cm,△BCE的周长等于25cm.则BC边的长度为cm.21.(3分)在直角坐标系中,直线y=x+1与y轴交于点A,按如图方式作正方形A1B1C1O、A2B2C2C1、A3B3C3C2…,A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,图中阴影部分三角形的面积从左到右依次记为S1、S2、S3、…S n,则S n的值为(用含n的代数式表示,n为正整数).三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤.)22.(16分)计算:(1)÷﹣×+(2)(2﹣)2(3)(4).23.(12分)(1)如图1,已知∠ADE=∠B,∠1=∠2,求证:CD∥GF.(2)如图2,锐角三角形ABC的两条高BD与CE相交于点O,且OB=OC,求证:AB=AC.24.(8分)某校运动会需购买A、B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,则最多购买B种奖品多少件.25.(8分)如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)(1)求BC所在直线的解析式.(2)求△ABC的面积;(3)点P在y轴上,当△ABP的面积为6时,请求出点P的坐标.26.(8分)小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1 m,小明爸爸与家之间的距离为s2 m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象.(1)求s2与t之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?27.(10分)如图,在平面直角坐标系中,直线y=x+2与x轴、y轴分别交于A、B两点,以AB为边在第二象限内作正方形ABCD.(1)求点A、B的坐标,并求边AB的长;(2)求点C和点D的坐标;(3)在x轴上找一点M,使△MDB的周长最小,请求出M点的坐标,并直接写出△MDB的周长最小值.28.(10分)通过类比联想,引申拓展研究典型题目,可达到解一题知一类的目的,下面是一个案例,请补充完整.原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,试猜想EF、BE、DF之间的数量关系.(1)思路梳理把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,由∠ADG=∠B=90°,得∠FDG=180°,即点F、D、G共线,易证△AFG≌,故EF、BE、DF 之间的数量关系为.(2)类比引申如图2,点E、F分别在正方形ABCD的边CB、DC的延长线上,∠EAF=45°.连接EF,试猜想EF、BE、DF之间的数量关系,并给出证明.(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.若BD=1,EC=2,则DE的长为.2016-2017学年山东省济南市历城区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共15个小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)4的算术平方根是()A.±2B.2C.﹣2D.±【解答】解:∵22=4,∴4算术平方根为2.故选:B.2.(4分)如图,在平面直角坐标系中,点P的坐标为()A.(3,﹣2)B.(﹣2,3)C.(﹣3,2)D.(2,﹣3)【解答】解:点P的坐标为(3,﹣2).故选:A.3.(4分)观察下列图形,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个【解答】解:第一个图形不是轴对称图形,是中心对称图形,故本选项错误;第二个图形既是轴对称图形又是中心对称图形;第三个图形既是轴对称图形又是中心对称图形;第四个图形既是轴对称图形又是中心对称图形;所以,既是轴对称图形又是中心对称图形共有3个.故选:C.4.(4分)下面哪个点不在函数y=﹣2x+3的图象上()A.(﹣5,13)B.(0.5,2)C.(3,0)D.(1,1)【解答】解:A、当x=﹣5时,y=﹣2x+3=13,点在函数图象上;B、当x=0.5时,y=﹣2x+3=2,点在函数图象上;C、当x=3时,y=﹣2x+3=﹣3,点不在函数图象上;D、当x=1时,y=﹣2x+3=1,点在函数图象上;故选:C.5.(4分)如图,直线AB∥CD,∠A=40°,∠D=45°,则∠1的度数是()A.80°B.85°C.90°D.95°【解答】解:∵AB∥CD,∴∠A=∠C=40°,∵∠1=∠D+∠C,∵∠D=45°,∴∠1=∠D+∠C=45°+40°=85°,故选:B.6.(4分)下列命题是真命题的是()A.同旁内角互补B.三角形的一个外角大于内角C.三角形的一个外角等于它的两个内角之和D.直角三角形的两锐角互余【解答】解:两直线平行,同旁内角互补,A是假命题;三角形的一个外角大于与它不相邻的任意一个内角,B是假命题;三角形的一个外角等于与它不相邻的两个内角之和,C是假命题;直角三角形的两锐角互余,D是真命题,故选:D.7.(4分)若x,y为实数,且+(x﹣y+3)2=0,则x+y的值为()A.0B.﹣1C.1D.5【解答】解:由题意得,①+②得,3x+3=0,解得,x=﹣1,把x=﹣1代入①得,y=2,则x+y=1,故选:C.8.(4分)某校九年级(1)班50名学生积极参加献爱心慈善捐款活动,班长将捐款情况进行统计,并绘制成了统计图.根据统计图提供的信息,捐款金额的众数和中位数分别是()A.20、20B.30、20C.20、30D.30、30【解答】解:捐款30元的人数为20人,最多,则众数为30,中间两个数分别为30和30,则中位数是30,故选:D.9.(4分)一次函数y=kx+b,y随x增大而增大,且b>0,则该函数的大致图象为()A.B.C.D.【解答】解:∵一次函数y=kx+b,y随x增大而增大,∴k>0,∵b>0,∴此函数的图象经过一、二、三象限.故选:B.10.(4分)已知e、f满足方程组,则2e+f的值为()A.2B.4C.6D.8【解答】解:,①+②得:2e+f=8,故选:D.11.(4分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2B.3C.4D.5【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.12.(4分)如图,在平面直角坐标系xOy中,如果一个点的坐标可以用来表示关于x、y的二元一次方程组的解,那么这个点是()A.M B.N C.E D.F【解答】解:两直线都过定点E,所以点E表示关于x、y的二元一次方程组的解,故选:C.13.(4分)在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A.点A B.点B C.点C D.点D【解答】解:∵△MNP绕某点旋转一定的角度,得到△M1N1P1,∴连接PP1、NN1、MM1,作PP1的垂直平分线过B、D、C,作NN1的垂直平分线过B、A,作MM1的垂直平分线过B,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选:B.14.(4分)济南市某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A.4小时B.4.4小时C.4.8小时D.5小时【解答】解:解法一:调进物资共用4小时,且速度保持不变,则4小时的时候已经调进结束,且共调进物资60吨;货物还剩10吨,说明在2小时内,调出物资50吨,可得调出物资的速度为25吨/时,则剩下10吨用时:=0.4小时,故共用时间4.4小时.解法二:由图中可以看出,2小时调进物资30吨,调进物资共用4小时,说明物资一共有60吨;2小时后,调进物资和调出物资同时进行,4小时时,物资调进完毕,仓库还剩10吨,说明调出速度为:(60﹣10)÷2吨,需要时间为:60÷25时,由此即可求出答案.物资一共有60吨,调出速度为:(60﹣10)÷2=25吨,需要时间为:60÷25=2.4(时)∴这批物资从开始调进到全部调出需要的时间是:2+2.4=4.4小时.15.(4分)如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=()A.6B.8C.10D.12【解答】解:过A作直线a的垂线,并在此垂线上取点A′,使得AA′=4,连接A′B,与直线b交于点N,过N作直线a的垂线,交直线a于点M,连接AM,过点B作BE⊥AA′,交射线AA′于点E,如图.∵AA′⊥a,MN⊥a,∴AA′∥MN.又∵AA′=MN=4,∴四边形AA′NM是平行四边形,∴AM=A′N.由于AM+MN+NB要最小,且MN固定为4,所以AM+NB最小.由两点之间线段最短,可知AM+NB的最小值为A′B.∵AE=2+3+4=9,AB=,∴BE==,∵A′E=AE﹣AA′=9﹣4=5,∴A′B==8所以AM+NB的最小值为8.二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16.(3分)已知数据:﹣1,0,1,2,3,这组数据的方差为2.【解答】解:这组数据的平均数是:(﹣1+0+1+2+3)÷5=1,则方差S2=[(﹣1﹣1)2+(0﹣1)2+(1﹣1)2+(2﹣1)2+(3﹣1)2]=2;故答案为:217.(3分)等腰三角形的两边长分别为3cm,6cm,则它的周长是15cm.【解答】解:①6cm为腰,3cm为底,此时周长为6+6+3=15cm;②6cm为底,3cm为腰,则两边和等于第三边无法构成三角形,故舍去.故其周长是15cm.故答案是:15.18.(3分)如图,在△ABC中,∠A=70°,点O到AB、BC、AC的距离相等,连接BO、CO,则∠BOC=125°.【解答】解:∵点O到AB、BC、AC的距离相等,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=ABC,∠OCB=∠ACB,∵∠A=70°,∴∠ABC+∠ACB=180°﹣70°=110°,∴∠OBC+∠OCB=110°=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=125°.故答案为:125.19.(3分)将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB 在x轴上,若OB=4,则点A的坐标为(3,).【解答】解:如图,过点A作AD⊥OB于点D,在直角△ABO中,∠AOB=30°,0B=4,∴OA=OB•cos30°=4×=2.在直角△AOD中,∠AOD=30°,则AD=OA=,OD=OA•cos30°=2×=3.∴点A的坐标是(3,).故答案是:(3,).20.(3分)如图,在△ABC中,AB的垂直平分线DE交AB于点D,交AC于点E,且AC=15cm,△BCE的周长等于25cm.则BC边的长度为10cm.【解答】解:∵MN是AB的垂直平分线,∴EA=EB,∵△BCE的周长=BC+BE+EC=BC+AE+EC=BC+AC=25,∴BC=25﹣AC=10(cm),故答案为:10.21.(3分)在直角坐标系中,直线y=x+1与y轴交于点A,按如图方式作正方形A1B1C1O、A2B2C2C1、A3B3C3C2…,A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,图中阴影部分三角形的面积从左到右依次记为S1、S2、S3、…S n,则S n的值为22n﹣3(用含n的代数式表示,n为正整数).【解答】方法一:解:∵直线y=x+1,当x=0时,y=1,当y=0时,x=﹣1,∴OA1=1,OD=1,∴∠ODA1=45°,∴∠A2A1B1=45°,∴A2B1=A1B1=1,∴S1=×1×1=,∵A2B1=A1B1=1,∴A2C1=2=21,∴S2=×(21)2=21同理得:A3C2=4=22,…,S3=×(22)2=23∴S n=×(2n﹣1)2=22n﹣3故答案为:22n﹣3.方法二:∵y=x+1,正方形A1B1C1O,∴OA1=OC1=1,A2C1=2,B1C1=1,∴A2B1=1,S1=,∵OC2=1+2=3,∴A3C2=4,B2C2=2,∴A3B2=2,S2=2,∴q==4,∴S n=.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤.)22.(16分)计算:(1)÷﹣×+(2)(2﹣)2(3)(4).【解答】解:(1)原式=4÷﹣×2+2=4﹣+2=4+;(2)原式=(2)2﹣2×2×+()2=12﹣12+6=18﹣12;(3),②﹣①×3,得:x=5,将x=5代入①,得:10﹣y=5,解得:y=5,则方程组的解为;(4),①﹣②,得:2x=6,解得:x=3,将x=3代入②,得:3+2y=8,解得:y=2.5,则方程组的解为.23.(12分)(1)如图1,已知∠ADE=∠B,∠1=∠2,求证:CD∥GF.(2)如图2,锐角三角形ABC的两条高BD与CE相交于点O,且OB=OC,求证:AB=AC.【解答】证明:(1)∵∠ADE=∠B,∴ED∥BC.∴∠1=∠DCF.∵∠1=∠2,∴∠DCF=∠2.∴CD∥FG;(2)∵BD,CE是△ABC的两条高,∴∠BEC=∠CDB=90°.∵OB=OC,∴∠BCE=∠DBC.在△BCE和△CBD中,,∴△BCE≌△CBD(AAS),∴∠EBD=∠DCB.∴AB=AC,24.(8分)某校运动会需购买A、B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,则最多购买B种奖品多少件.【解答】解:(1)设A,B两奖品单价分别为x元和y元,根据题意得,解这个方程组得:,答:A,B两奖品单价分别为10元和15元;(2)设购买B种奖品为x件,则A种奖品为(100﹣x)件,依题意得10(100﹣x)+15x≤1150,解得:x≤30,答:最多购买B种奖品30件.25.(8分)如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)(1)求BC所在直线的解析式.(2)求△ABC的面积;(3)点P在y轴上,当△ABP的面积为6时,请求出点P的坐标.【解答】解:(1)设BC所在直线的解析式为:y=kx+b,把B(4,3)、C(﹣1,﹣3)代入得:,解得:,∴直线BC的解析式为:y=x﹣;(2)∵A(﹣2,3)、B(4,3)、∴AB∥x轴,且AB=4﹣(﹣2)=6,∵C(﹣1,﹣3)∴点C到边AB的距离为:3﹣(﹣3)=6,∴△ABC的面积为:×6×6=18.(3)设点P的坐标为(0,y),∵△ABP的面积为6,A(﹣2,3)、B(4,3),∴×6×|y﹣3|=6,∴|y﹣3|=2,∴y=1或y=5,∴P点的坐标为(0,1)或(0,5).26.(8分)小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1 m,小明爸爸与家之间的距离为s2 m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象.(1)求s2与t之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?【解答】解:(1)∵小明的爸爸以96m/min速度从邮局同一条道路步行回家,∴小明的爸爸用的时间为:=25(min),即OF=25,如图:设s2与t之间的函数关系式为:s2=kt+b,∵E(0,2400),F(25,0),∴,解得:,∴s2与t之间的函数关系式为:s2=﹣96t+2400;(2)如图:小明用了10分钟到邮局,∴D点的坐标为(22,0),设直线BD即s1与t之间的函数关系式为:s1=at+c(12≤t≤22),∴,解得:,∴s1与t之间的函数关系式为:s1=﹣240t+5280(12≤t≤22),当s1=s2时,小明在返回途中追上爸爸,即﹣96t+2400=﹣240t+5280,解得:t=20,∴s1=s2=480,∴小明从家出发,经过20min在返回途中追上爸爸,这时他们距离家还有480m.27.(10分)如图,在平面直角坐标系中,直线y=x+2与x轴、y轴分别交于A、B两点,以AB为边在第二象限内作正方形ABCD.(1)求点A、B的坐标,并求边AB的长;(2)求点C和点D的坐标;(3)在x轴上找一点M,使△MDB的周长最小,请求出M点的坐标,并直接写出△MDB的周长最小值.【解答】解:(1)对于直线y=x+2,令x=0,得到y=2;令y=0,得到x=﹣4,∴A(﹣4,0),B(0,2),即OA=4,OB=2,则AB==2;(2)过D作DE⊥x轴,过C作CF⊥y轴,∵四边形ABCD为正方形,∴AB=BC=AD,∠ABC=∠BAD=∠BFC=∠DEA=∠AOB=90°,∵∠FBC+∠ABO=90°,∠ABO+∠BAO=90°,∠DAE+∠BAO=90°,∴∠FBC=∠OAB=∠EDA,∴△DEA≌△AOB≌△BFC(AAS),∴AE=OB=CF=2,DE=OA=FB=4,即OE=OA+AE=4+2=6,OF=OB+BF=2+4=6,则D(﹣6,4),C(﹣2,6);(3)如图所示,连接BD,找出B关于y轴的对称点B′,连接DB′,交x轴于点M,此时BM+MD=DM+MB′=DB′最小,即△BDM周长最小,∵B(0,2),∴B′(0,﹣2),设直线DB′解析式为y=kx+b,把D(﹣6,4),B′(0,﹣2)代入得:,解得:k=﹣1,b=﹣2,∴直线DB′解析式为y=﹣x﹣2,令y=0,得到x=﹣2,则M坐标为(﹣2,0),此时△MDB的周长为2+6.28.(10分)通过类比联想,引申拓展研究典型题目,可达到解一题知一类的目的,下面是一个案例,请补充完整.原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,试猜想EF、BE、DF之间的数量关系.(1)思路梳理把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,由∠ADG=∠B=90°,得∠FDG=180°,即点F、D、G共线,易证△AFG≌△AFE,故EF、BE、DF 之间的数量关系为BE+FD=EF.(2)类比引申如图2,点E、F分别在正方形ABCD的边CB、DC的延长线上,∠EAF=45°.连接EF,试猜想EF、BE、DF之间的数量关系,并给出证明.(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.若BD=1,EC=2,则DE的长为.【解答】解:(1)如图1所示:∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线,∴∠DAG=∠BAE,AE=AG,∴∠FAG=∠FAD+∠GAD=∠FAD+∠BAE=90°﹣45°=45°=∠EAF,即∠EAF=∠FAG.在△EAF和△GAF中,,∴△AFG≌△AFE.∴EF=FG.∴EF=DF+DG=DF+BE,即EF=BE+DF.故答案为:△AFE;BE+FD=EF.(2)DF=EF+BE.理由:如图2所示.∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,∵∠ADC=∠ABE=90°,∴点C、D、G在一条直线上.∴EB=DG,AE=AG,∠EAB=∠GAD.又∵∠BAG+∠GAD=90°,∴∠EAG=∠BAD=90°.∵∠EAF=45°,∴∠FAG=∠EAG﹣∠EAF=90°﹣45°=45°.∴∠EAF=∠GAF.在△EAF和△GAF中,,∴△EAF≌△GAF.∴EF=FG.∵FD=FG+DG,∴DF=EF+BE.(3)把△ACE旋转到ABF的位置,连接DF,则∠FAB=∠CAE.∵∠BAC=90°,∠DAE=45°,∴∠BAD+∠CAE=45°,又∵∠FAB=∠CAE,∴∠FAD=∠DAE=45°,则在△ADF和△ADE中,,∴△ADF≌△ADE.∴DF=DE,∠C=∠ABF=45°.∴∠BDF=90°.∴△BDF是直角三角形.∴BD2+BF2=DF2.∴BD2+CE2=DE2.∴DE==.故答案为:.。
2016-2017学年山东省济南市槐荫区八年级(上)期中数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.化简的结果是()A.2 B.±2 C.D.±2.下列语句中正确的是()A.﹣9的平方根是﹣3 B.9的平方根是3C.9的算术平方根是±3 D.3是9的平方根3.下列个组数中不能作为直角三角形的三边长的是()A.0.3,0.4,0.5 B.32,42,52C.6,8,10 D.9,40,414.下列各式从左到右的变形中,是因式分解的是()A.(x+1)(x﹣2)=x2﹣x﹣2 B.x2﹣4+2x=(x+2)(x﹣2)+2xC.2a(b+c)=2ab+2ac D.m2﹣n2=(m+n)(m﹣n)5.下列计算正确的是()A.B.C.D.6.已知多项式x2+bx+c分解因式为(x+3)(x﹣2),则b,c的值为()A.b=1,c=﹣6 B.b=﹣6,c=1 C.b=﹣1,c=6 D.b=6,c=﹣17.本学期的五次数学测试中,甲、乙两同学的平均成绩一样,方差分别为1.2、0.5,则下列说法正确的是()A.乙同学的成绩更稳定B.甲同学的成绩更稳定C.甲、乙两位同学的成绩一样稳定D.不能确定8.李阿姨是一名健步走运动的爱好者,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成如图所示的统计图,在每天所走的步数这组数据中,众数和中位数分别是()A.1.2,1.3 B.1.4,1.3 C.1.4,1.35 D.1.3,1.39.等边三角形的边长为2,则该三角形的面积为()A.4 B.C.2 D.310.若三角形的三边长分别为a、b、c,满足a2b﹣a2c+b2c﹣b3=0,这个三角形是()A.等腰三角形B.直角三角形C.等边三角形D.三角形的形状不确定11.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C的度数为()A.135°B.120°C.90°D.105°12.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2015的值为()A.()2012B.()2013C.()2012D.()2013二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在题中横线上.13.如图中的三角形为直角三角形,字母A所在的正方形的面积是.14.1的相反数是.15.因式分解:xy﹣x=.16.如图所示的圆柱体中底面圆的半径是,高为3,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是.(结果保留根号)17.如图,把一块等腰直角三角形零件ABC(∠ACB=90°)如图放置在一凹槽内,顶点A、B、C分别落在凹槽内壁上,∠ADE=∠BED=90°,测得AD=5cm,BE=7cm,则该零件的面积为.18.如图,在Rt△ABC 中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A 顺时针旋转90°后,得到△AFB,连接EF.下列结论中正确的有.(请将正确答案的序号填在横线上)①∠EAF=45°②EA平分∠CEF③BE2+DC2=DE2④BE=DC.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤)19.(24分)(1)计算:﹣(2)计算:÷×(3)计算:﹣3(4)因式分解:m3n﹣9mn.(5)因式分解:a2(x﹣y)+4b2(y﹣x)(6)因式分解:25(x﹣y)2+10(y﹣x)+1.20.(8分)如图,一架长为5米的梯子AB斜靠在与地面OM垂直的墙ON上,梯子底端距离墙ON有3米.(1)求梯子顶端与地面的距离OA的长.(2)若梯子顶点A下滑1米到C点,求梯子的底端向右滑到D的距离.21.(8分)某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后相距30海里.(1)求PQ、PR的长.(2)如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行?为什么?22.(8分)如图所示,把一副直角三角板摆放在一起,∠ACB=30°,∠BCD=45°,∠ABC=∠BDC=90°,量得CD=20cm,试求BC、AC的长.23.(9分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为10的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;(3)如图3,点A、B、C是小正方形的顶点,求∠ABC的度数.24.(9分)如表格是李刚同学一学期数学成绩的记录,根据表格提供的信息回答下面的问题考试类别平时期中考试期末考试第一单元第二单元第三单元第四单元成绩868690929096(1)李刚同学6次成绩的极差是.(2)李刚同学6次成绩的中位数是.(3)李刚同学平时成绩的平均数是.(4)利用如图的权重计算一下李刚本学期的综合成绩(平时成绩用四次成绩的平均数写出解题过程,每次考试满分都是100分).25.(12分)已知,△ABC是边长3cm的等边三角形.动点P以1cm/s的速度从点A出发,沿线段AB向点B运动.(1)如图1,设点P的运动时间为t(s),那么t=(s)时,△PBC是直角三角形;(2)如图2,若另一动点Q从点B出发,沿线段BC向点C运动,如果动点P、Q都以1cm/s的速度同时出发.设运动时间为t(s),那么t为何值时,△PBQ是直角三角形?(3)如图3,若另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D.如果动点P、Q都以1cm/s的速度同时出发.设运动时间为t(s),那么t为何值时,△DCQ是等腰三角形?(4)如图4,若另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D,连接PC.如果动点P、Q都以1cm/s的速度同时出发.请你猜想:在点P、Q的运动过程中,△PCD和△QCD的面积有什么关系?并说明理由.2016-2017学年山东省济南市槐荫区八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.化简的结果是()A.2 B.±2 C.D.±【考点】二次根式的性质与化简.【分析】结合二次根式的性质进行求解即可.【解答】解:=2.故选A.【点评】本题考查了二次根式的性质与化简,解答本题的关键在于熟练掌握二次根式的性质及二次根式的化简.2.下列语句中正确的是()A.﹣9的平方根是﹣3 B.9的平方根是3C.9的算术平方根是±3 D.3是9的平方根【考点】算术平方根;平方根.【分析】利用算术平方根及平方根的定义判断即可.【解答】解:A、9的平方根是±3,错误;B、9的平方根是±3,错误;C、9的算术平方根是3,错误;D、3是9的平方根,正确,故选D【点评】此题考查了算术平方根,以及平方根,熟练掌握各自的定义是解本题的关键.3.下列个组数中不能作为直角三角形的三边长的是()A.0.3,0.4,0.5 B.32,42,52C.6,8,10 D.9,40,41【考点】勾股定理的逆定理.【分析】判断是否为直角三角形,只要验证两小边的平方和是否等于最长边的平方即可.【解答】解:解:A、0.32+0.42=0.52,能组成直角三角形,不符合题意;B、(32)2+(42)≠(52)2,不能组成直角三角形,符合题意;C、62+82=102,能组成直角三角形,不符合题意;D、92+402=412,能组成直角三角形,不符合题意.故选:B【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.4.下列各式从左到右的变形中,是因式分解的是()A.(x+1)(x﹣2)=x2﹣x﹣2 B.x2﹣4+2x=(x+2)(x﹣2)+2xC.2a(b+c)=2ab+2ac D.m2﹣n2=(m+n)(m﹣n)【考点】因式分解的意义.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【解答】解:A、是整式的乘法,故A错误;B、没把一个多项式化为几个整式的积的形式,故B错误;C、是整式的乘法,故C错误;D、把一个多项式化为几个整式的积的形式,故D正确;故选:D.【点评】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.5.下列计算正确的是()A.B.C.D.【考点】立方根.【分析】A、B、C、D都可以直接根据立方根的定义求解即可判定.【解答】解:A、0.53=0.125,故选项错误;B、应取负号,故选项错误;C、∵等于,∴的立方根等于,故选项正确;D、应取正号,故选项错误.故选C【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.6.已知多项式x2+bx+c分解因式为(x+3)(x﹣2),则b,c的值为()A.b=1,c=﹣6 B.b=﹣6,c=1 C.b=﹣1,c=6 D.b=6,c=﹣1【考点】因式分解-十字相乘法等.【分析】因式分解结果利用多项式乘以多项式法则计算,再利用多项式相等的条件求出b与c 的值即可.【解答】解:根据题意得:x2+bx+c=(x+3)(x﹣2)=x2+x﹣6,则b=1,c=﹣6,故选A【点评】此题考查了因式分解﹣十字相乘法,熟练掌握十字相乘的方法是解本题的关键.7.本学期的五次数学测试中,甲、乙两同学的平均成绩一样,方差分别为1.2、0.5,则下列说法正确的是()A.乙同学的成绩更稳定B.甲同学的成绩更稳定C.甲、乙两位同学的成绩一样稳定D.不能确定【考点】方差;算术平均数.【分析】根据方差的定义,方差越小数据越稳定.2=1.2>S乙2=0.5,方差小的为乙,所以本题中成绩比较稳定的是乙.【解答】解:因为S甲故选:A.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.李阿姨是一名健步走运动的爱好者,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成如图所示的统计图,在每天所走的步数这组数据中,众数和中位数分别是()A.1.2,1.3 B.1.4,1.3 C.1.4,1.35 D.1.3,1.3【考点】众数;条形统计图;中位数.【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.【解答】解:由条形统计图中出现频数最大条形最高的数据是在第四组,7环,故众数是1.4(万步);因图中是按从小到大的顺序排列的,最中间的步数都是1.3(万步),故中位数是1.3(万步).故选B.【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.9.等边三角形的边长为2,则该三角形的面积为()A.4 B.C.2 D.3【考点】等边三角形的性质.【分析】根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD 中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.【解答】解:∵等边三角形高线即中点,AB=2,∴BD=CD=1,在Rt△ABD中,AB=2,BD=1,∴AD=,=BC•AD=×2×=,∴S△ABC故选B.【点评】本题考查的是等边三角形的性质,熟知等腰三角形“三线合一”的性质是解题的关键.10.若三角形的三边长分别为a、b、c,满足a2b﹣a2c+b2c﹣b3=0,这个三角形是()A.等腰三角形B.直角三角形C.等边三角形D.三角形的形状不确定【考点】因式分解的应用.【分析】首先将原式变形为a2(b﹣c)﹣b2(b﹣c)﹣c2(b﹣c)=0,就有(b﹣c)(a2﹣b2﹣c2)=0,可以得到b﹣c=0或a2﹣b2﹣c2=0,进而得到,b=c或a2=b2+c2.从而得出△ABC的形状.【解答】解:∵a2b﹣a2c+b2c﹣b3=0,∴a2(b﹣c)﹣b2(c﹣b)﹣c2=0,∴(b﹣c)(a2+b2)=0,∴b﹣c=0或a2+b2=0(舍去),∴△ABC是等腰三角形.故选A.【点评】本题考查因式分解提公因式法在实际问题中的运用,等腰三角形的判定和直角三角形的判定.11.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C的度数为()A.135°B.120°C.90°D.105°【考点】旋转的性质;正方形的性质.【分析】连接EE′,如图,根据旋转的性质得BE=BE′=2,AE=CE′=1,∠EBE′=90°,则可判断△BEE′为等腰直角三角形,根据等腰直角三角形的性质得EE′=BE=2,∠BE′E=45°,在△CEE′中,由于CE′2+EE′2=CE2,根据勾股定理的逆定理得到△CEE′为直角三角形,即∠EE′C=90°,然后利用∠BE′C=∠BE′E+∠CE′E求解.【解答】解:连接EE′,如图,∵△ABE绕点B顺时针旋转90°得到△CBE′,∴BE=BE′=2,AE=CE′=1,∠EBE′=90°,∴△BEE′为等腰直角三角形,∴EE′=BE=2,∠BE′E=45°,在△CEE′中,CE=3,CE′=1,EE′=2,∵12+(2)2=32,∴CE′2+EE′2=CE2,∴△CEE′为直角三角形,∴∠EE′C=90°,∴∠BE′C=∠BE′E+∠CE′E=135°.故选:A.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了勾股定理的逆定理、等腰直角三角形的判定与性质和正方形的性质.12.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2015的值为()A.()2012B.()2013C.()2012D.()2013【考点】等腰直角三角形;正方形的性质.【分析】根据题意可知第2个正方形的边长是,则第3个正方形的边长是,…,进而可找出规律,第n个正方形的边长是,那么易求S2015的值.【解答】解:根据题意:第一个正方形的边长为2;第二个正方形的边长为:;第三个正方形的边长为:,…第n个正方形的边长是,所以S2015的值是()2012,故选C【点评】本题考查了正方形的性质、等腰直角三角形的性质、勾股定理.解题的关键是找出第n个正方形的边长.二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在题中横线上.13.如图中的三角形为直角三角形,字母A所在的正方形的面积是16.【考点】勾股定理.【分析】根据正方形的面积公式和勾股定理,知以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.【解答】解:根据勾股定理,可知A=25﹣9=16.故答案为:16.【点评】本题考查的是勾股定理,熟知以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积是解答此题的关键.14.1的相反数是.【考点】实数的性质.【分析】如果两数互为相反数,那么它们和为0,由此即可求出1﹣的相反数.【解答】解:1﹣的相反数是﹣1.故答案为:﹣1.【点评】本题考查的是相反数的概念:两数互为相反数,它们和为0.15.因式分解:xy﹣x=x(y﹣1).【考点】因式分解-提公因式法.【分析】直接提公因式法x,整理即可.【解答】解:xy﹣x=x(y﹣1).故答案为:x(y﹣1).【点评】本题考查学生提取公因式的能力,解题时要首先确定公因式.16.如图所示的圆柱体中底面圆的半径是,高为3,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是.(结果保留根号)【考点】平面展开-最短路径问题.【分析】先将图形展开,再根据两点之间线段最短,由勾股定理可得出.【解答】解:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C是边的中点,矩形的宽即高等于圆柱的母线长.∵AB=π•=2,CB=2.∴AC=.故答案为:【点评】此题主要考查了平面展开图最短路径问题,此矩形的长等于圆柱底面周长,矩形的宽即高等于圆柱的母线长.本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.17.如图,把一块等腰直角三角形零件ABC(∠ACB=90°)如图放置在一凹槽内,顶点A、B、C分别落在凹槽内壁上,∠ADE=∠BED=90°,测得AD=5cm,BE=7cm,则该零件的面积为37cm2.【考点】全等三角形的应用;等腰直角三角形.【分析】首先证明△ADC≌△CEB,根据全等三角形的性质可得DC=BE=7cm,再利用勾股定理计算出AC长,然后利用三角形的面积公式计算出该零件的面积即可.【解答】解:∵△ABC是等腰直角三角形,∴AC=BC,∠ACB=90°,∴∠ACD+∠BCE=90°,∵∠ADC=90°,∴∠ACD+∠DAC=90°,∴∠DAC=∠BCE,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴DC=BE=7cm,∴AC===(cm),∴BC=cm,∴该零件的面积为:××=37(cm2).故答案为:37cm2.【点评】此题主要考查了全等三角形的应用,以及勾股定理的应用,关键是掌握全等三角形的判定方法.18.如图,在Rt△ABC 中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A 顺时针旋转90°后,得到△AFB,连接EF.下列结论中正确的有①②③.(请将正确答案的序号填在横线上)②EA平分∠CEF③BE2+DC2=DE2④BE=DC.【考点】旋转的性质;勾股定理.【分析】根据等腰直角三角形求出∠ABC=∠C=45°,根据旋转得出BF=DC,∠CAD=∠BAF,∠DAF=90°,∠FBA=∠C,即可判断①,证△EAF≌△EAD,即可判断②,求出BF=DC,∠FBE=90°,根据勾股定理即可判断③,根据已知判断④即可.【解答】解:正确的有①②③,理由是:∵在Rt△ABC 中,AB=AC,∴∠C=∠ABC=45°,∵将△ADC绕点A顺时针旋转90°后,得到△AFB,∴△AFB≌△ADC,∴BF=DC,∠CAD=∠BAF,∠DAF=90°,∵∠BAC=90°,∠DAE=45°,∴∠BAE+∠DAC=45°,∴∠EAF=∠BAF+∠BAE=∠DAC+∠BAE=45°,∴①正确;即∠FAE=∠DAE=45°,在△FAE和△DAE中∴△FAE≌△DAE(SAS),∴∠FEA=∠DEA,即EA平分∠CEF,∴②正确;∴EF=DE,∵将△ADC绕点A顺时针旋转90°后,得到△AFB,∴∠C=∠FBA=45°,BF=DC,∴∠FBE=45°+45°=90°,在Rt△FBE中,由勾股定理得:BE2+BF2=EF2,∵BF=DC,EF=DE,∴BE2+DC2=DE2,∴③正确;不能推出BE=DC,∴④错误;故答案为:①②③.【点评】本题考查了全等三角形的性质和判定,等腰直角三角形性质,旋转的性质的应用,能综合运用定理进行推理是解此题的关键.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤)19.(24分)(2016秋•槐荫区期中)(1)计算:﹣(2)计算:÷×(3)计算:﹣3(4)因式分解:m3n﹣9mn.(5)因式分解:a2(x﹣y)+4b2(y﹣x)(6)因式分解:25(x﹣y)2+10(y﹣x)+1.【考点】二次根式的混合运算;提公因式法与公式法的综合运用.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的乘除法则运算;(3)利用二次根式的除法法则运算;(4)先提公因式,然后利用平方差公式因式分解;(5)先提公因式(x﹣y),然后利用平方差公式因式分解;(6)利用完全平方公式进行因式分解.【解答】解:(1)原式=3﹣=;(2)原式==10;(3)原式=+﹣3=3+1﹣3=1;(4)原式=mn(m2﹣9)=mn(m+3)(m﹣3);(5)原式=a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(a2﹣4b2)=(x﹣y)(a+2b)(a﹣2b);(6)原式=25(x﹣y)2﹣10(x﹣y)+1.=[5(x﹣y)﹣1]2=(5x﹣5y﹣1)2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了因式分解.20.如图,一架长为5米的梯子AB斜靠在与地面OM垂直的墙ON上,梯子底端距离墙ON 有3米.(1)求梯子顶端与地面的距离OA的长.(2)若梯子顶点A下滑1米到C点,求梯子的底端向右滑到D的距离.【考点】勾股定理的应用.【分析】(1)已知直角三角形的斜边和一条直角边,可以运用勾股定理计算另一条直角边;(2)在直角三角形OCD中,已知斜边仍然是5,OC=4﹣1=3,再根据勾股定理求得OD的长即可.【解答】解:(1)AO==4米;(2)OD==4米,BD=OD﹣OB=4﹣3=1米.【点评】能够运用数学知识解决实际生活中的问题,考查了勾股定理的应用.21.某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后相距30海里.(1)求PQ、PR的长.(2)如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行?为什么?【考点】勾股定理的应用.【分析】(1)根据路程=速度×时间计算即可.(2)利用勾股定理的逆定理证明∠QPR=90°即可.【解答】解:根据题意,得(1)PQ=16×1.5=24(海里),PR=12×1.5=18(海里),(2)∵PQ2+PR2=242+182=900,QR2=900∴PQ2+PR2=QR2,∴∠QPR=90°.由“远航号”沿东北方向航行可知,∠QPS=45°,则∠SPR=45°,即“海天”号沿西北方向航行.【点评】本题考查路程、速度、时间之间的关系,勾股定理的逆定理、方位角等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.22.如图所示,把一副直角三角板摆放在一起,∠ACB=30°,∠BCD=45°,∠ABC=∠BDC=90°,量得CD=20cm,试求BC、AC的长.【考点】勾股定理.【分析】在直角△BCD中,利用勾股定理求得BC的长度;然后在直角△ABC中由“30度角所对的直角边等于斜边的一半”和勾股定理来求AB的长度,则AC=2AB.【解答】解:∵BD=CD=20,∴BC===20(cm)设AB=x,在Rt△ABC中,∵∠ACB=30°,则AC=2x.∵由勾股定理得AB2+BC2=AC2,∴x2+(20)2=(2x)2,得x2=,又x>0,∴x=,即AC=2AB=.【点评】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.23.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为10的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;(3)如图3,点A、B、C是小正方形的顶点,求∠ABC的度数.【考点】勾股定理.【分析】(1)根据勾股定理画出边长为的正方形即可;(2)根据勾股定理和已知画出符合条件的三角形即可;(3)连接AC、CD,求出△ACB是等腰直角三角形即可.【解答】解:(1)如图1的正方形的边长是,面积是10;(2)如图2的三角形的边长分别为2,,;(3)如图3,连接AC,CD,则AD=BD=CD==,∴∠ACB=90°,由勾股定理得:AC=BC==,∴∠ABC=∠BAC=45°.【点评】本题考查了勾股定理,三角形的面积,直角三角形的判定的应用,主要考查学生的计算能力和动手操作能力.24.如表格是李刚同学一学期数学成绩的记录,根据表格提供的信息回答下面的问题考试类别平时期中考试期末考试第一单元第二单元第三单元第四单元成绩868690929096(1)李刚同学6次成绩的极差是10分.(2)李刚同学6次成绩的中位数是90分.(3)李刚同学平时成绩的平均数是89分.(4)利用如图的权重计算一下李刚本学期的综合成绩(平时成绩用四次成绩的平均数写出解题过程,每次考试满分都是100分).【考点】扇形统计图;加权平均数;中位数;极差.【分析】(1)用最大值减去最小值即可求得极差;(2)排序后位于中间位置的数是中位数;(3)用算术平均数的公式直接计算即可;(4)用加权平均数的计算公式直接计算即可.【解答】解:(1)极差为:96﹣86=10分;(2)中位数为(90+90)÷2=90分;(3)平均数是(86+86+90+92+90+96)÷6=90分;(4)综合成绩为96×60%+90×30%+89×10%=93.5.【点评】本题考查了扇形统计图及有关统计量的计算,难度较小,关键是计算要认真仔细.25.(12分)(2015春•张家港市期末)已知,△ABC是边长3cm的等边三角形.动点P以1cm/s的速度从点A出发,沿线段AB向点B运动.(1)如图1,设点P的运动时间为t(s),那么t=(s)时,△PBC是直角三角形;(2)如图2,若另一动点Q从点B出发,沿线段BC向点C运动,如果动点P、Q都以1cm/s 的速度同时出发.设运动时间为t(s),那么t为何值时,△PBQ是直角三角形?(3)如图3,若另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D.如果动点P、Q都以1cm/s的速度同时出发.设运动时间为t(s),那么t为何值时,△DCQ是等腰三角形?(4)如图4,若另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D,连接PC.如果动点P、Q都以1cm/s的速度同时出发.请你猜想:在点P、Q的运动过程中,△PCD和△QCD的面积有什么关系?并说明理由.【考点】勾股定理的应用;三角形的面积;等腰三角形的判定.【分析】(1)当△PBC是直角三角形时,∠B=60°,所以BP=1.5cm,即可算出t的值;(2)因为∠B=60°,可选取∠BPQ=90°或∠BQP=90°,然后根据勾股定理计算出BP长,即可算出t的大小;(3)因为∠DCQ=120°,当△DCQ是等腰三角形时,CD=CQ,然后可证明△APD是直角三角形,即可根据题意求出t的值;(4)面积相等.可通过同底等高验证.【解答】解:(1)当△PBC是直角三角形时,∠B=60°,∠BPC=90°,所以BP=1.5cm,所以t=(2分)(2)当∠BPQ=90°时,BP=0.5BQ,3﹣t=0.5t,所以t=2;当∠BQP=90°时,BP=2BQ,3﹣t=2t,所以t=1;所以t=1或2(s)(3)因为∠DCQ=120°,当△DCQ是等腰三角形时,CD=CQ,所以∠PDA=∠CDQ=∠CQD=30°,又因为∠A=60°,所以AD=2AP,2t+t=3,解得t=1(s);(2分)(4)相等,如图所示:作PE垂直AD,QG垂直AD延长线,则PE∥QG,所以,∠G=∠AEP,因为,所以△EAP≌△GCQ(AAS),所以PE=QG,所以,△PCD和△QCD同底等高,所以面积相等.【点评】本题主要考查对于勾股定理的应用和等腰三角形的判定,还要注意三角形面积的求法.。
八年级数学试题参考答案与评分标准一、选择题二、填空题 14. ( a -3) 2 15. -3 16.1317. 18.三.解答题: 19.解:(1)3-3- ··················································································· 1分 = 3- ························································································ 2分 =1 ··································································································· 3分(2)22122a a a a+÷-- =2(2)21a a a a +-⋅- ················································································· 5分 =22a a + ·························································································· 6分20.解:(1) m 3n -9mn .=2(9)mn m - ······················································································ 1分 =22(3)mn m - ····················································································· 2分 =(3)(3)mn m m +- ··············································································· 3分(2)解:3(x -2)≤2(7-x ) ·································································· 4分3x-6≤14-2x5x≤20x≤4 ············································································· 5分∴这个不等式的正整数解为1、2、3、4. ················································· 6分21.(1) 123222xx x-=+--122(2)3x x-=--····································································· 1分12243x x-=--······································································· 2分48x-=-2x= ················································································ 3分经检验2x=是增根,原方程无解····················································· 4分(2)43421x xx x-⎧⎨+-⎩><,解:解不等式①得:x>1, ·································································· 5分解不等式②得:x>5, ········································································ 6分∴不等式组的解集为x>5, ································································· 7分在数轴上表示不等式组的解集为:.············································· 8分22. (1)解:∵正△ABC沿直线BC向右平移得到正△DCE∴BE=2BC=4, BC=CD,DE=AC=2,∠E=∠ACB=∠DCE=∠ABC=60°················· 2分∴∠DBE=12∠DCE =30°······································································ 3分∴∠BDE=90° ···················································································· 4分在Rt△BDE中,由勾股定理得22224223BD BE DE=--=······················································· 5分(2)解:设小明答对了x道题,······························································· 6分4x-(25-x) ≥85 ··············································································· 8分x≥22 ················································································ 9分所以,小明至少答对了22道题. ····························································10分23. 解:设普通快车的速度为x km/h,由题意得: ····································· 1分48048043x x-=···················································································· 3分4801604x x-=320x=4 ····························································································· 4分经检验x =80是原分式方程的解······························································ 6分 3x =3×80=240 ···················································································· 7分 答:高铁列车的平均行驶速度是240km/h .·············································· 8分 24.解:31112x x x x -⎛⎫+-⋅⎪--⎝⎭ =(1)(1)31[]112x x x x x x +---⨯--- ························································· 1分 =24112x x x x --⨯--············································································ 2分 =(2)(2)2x x x +--············································································ 3分=2x + ······················································································ 4分当x ==2=时 ··········································· 5分原式22+········································································· 6分 25. 解:(1)x 甲 =(83+79+90)÷3=84, x 乙=(85+80+75)÷3=80,x 丙=(80+90+73)÷3=81. ·································································· 3分从高到低确定三名应聘者的排名顺序为:甲,丙,乙; ······························ 4分 (2)∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分, ∴甲淘汰, ······················································································ 5分 乙成绩=85×60%+80×30%+75×10%=82.5, ··············································· 7分 丙成绩=80×60%+90×30%+73×10%=82.3, ·············································· 9分 ∴乙将被录取. ············································································· 10分 26解: (1)过点D 作DH ⊥AC , ···························································· 1分 ∵∠CED =45°, ∴∠EDH =45°, ∴∠HED =∠EDH , ∴EH =DH , ······················································································ 3分 ∵EH 2+DH 2=DE 2,DE ∴EH 2=1,又∵∠DCE=30°,∠DHC=90°,∴DC=2 ·························································································· 6分(2)∵在Rt△DHC中,222DH HC DC+=················································· 7分∴12+HC2=22,∴HC3······················································································ 8分∵∠AEB=∠CED=45°,∠BAC=90°,BE2∴AB=AE=2, ···················································································· 9分∴AC33 ·····································································10分∴S四边形ABCD=S△BAC+S△DAC ···················································································11分=12×2×(3+12×1×(3339+·························································································12分27. 解:(1)①90°. ··········································································· 2分②线段OA,OB,OC之间的数量关系是222OA OB OC+=. ························· 3分如图1,连接OD. ··············································································· 4分∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴△ADC≌△BOC,∠OCD=60°.∴CD = OC,∠ADC =∠BOC=120°,AD= OB.∴△OCD是等边三角形, ···································································· 5分∴OC=OD=CD,∠COD=∠CDO=60°,∵∠AOB=150°,∠BOC=120°,∴∠AOC=90°,∴∠AOD=30°,∠ADO=60°.∴∠DAO=90°. ··················································································· 6分在Rt△ADO中,∠DAO=90°,∴222OA AD OD+=.∴222OA OB OC+=. ·············································································· 7分DAB CO图1(2)①如图2,当α=β=120°时,OA+OB+OC有最小值. ······························· 8分作图如图2, ····················································································· 9分如图2,将△AOC绕点C按顺时针方向旋转60°得△A’O’C,连接OO’.∴△A′O′C≌△AOC,∠OCO′=∠ACA′=60°.∴O′C= OC, O′A′ = OA,A′C = BC,∠A′O′C =∠AOC.∴△OC O′是等边三角形. ·····································································10分∴OC= O′C = OO′,∠COO′=∠CO′O=60°.∵∠AOB=∠BOC=120°,∴∠AOC =∠A′O′C=120°.∴∠BOO′=∠OO′A′=180°.∴四点B,O,O′,A′共线.∴OA+OB+OC= O′A′ +OB+OO′=BA′时值最小.·······································11分②当等边△ABC的边长为1时,OA+OB+OC的最小值A′B················12分OO /A/4321AB C图2。
山东省济南市八年级(上)期末数学试卷一、选择题(每题4分,共48分)1.(4分)下列实数中的无理数是()A.B.C.D.2.(4分)以下列各组数为边长,不能构成直角三角形的是()A.3,4,5B.1,1,C.8,12,13D.3.(4分)289的平方根是±17的数学表达式是()A.=17B.=±17C.±=±17D.±=174.(4分)下列命题中的假命题是()A.过直线外一点有且只有一条直线与这条直线平行B.平行于同一直线的两条直线平行C.直线y=2x﹣1与直线y=2x+3一定互相平行D.如果两个角的两边分别平行,那么这两个角相等5.(4分)已知点A(2x﹣4,x+2)在坐标轴上,则x的值等于()A.2或﹣2B.﹣2C.2D.非上述答案6.(4分)对于函数y=k2x(k是常数,k≠0),下列说法不正确的是()A.该函数是正比例函数B.该函数图象过点(,k)C.该函数图象经过二、四象限D.y随着x的增大而增大7.(4分)将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n()A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°8.(4分)小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则这两个数分别为()A.4和6B.6和4C.2和8D.8和﹣29.(4分)某超市的某种商品一周内每天的进价与售价信息和实际每天的销售量情况如图表所示,则下列推断不合理的是()进价与售价折线图(单位:元/斤)实际销售量表(单位:斤)日期周一周二周三周四周五周六周日销售量30403530506050 A.该商品周一的利润最小B.该商品周日的利润最大C.由一周中的该商品每天售价组成的这组数据的众数是4(元/斤)D.由一周中的该商品每天进价组成的这组数据的中位数是3(元/斤)10.(4分)如图,以两条直线l1,l2的交点坐标为解的方程组是()A.B.C.D.11.(4分)一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离s(km)与慢车行驶时间t(h)之间的函数图象如图所示,则下列说法中:①甲、乙两地之间的距离为560km;②快车速度是慢车速度的1.5倍;③快车到达甲地时,慢车距离甲地60km;④相遇时,快车距甲地320km.正确的是()A.①②B.①③C.①④D.①③④12.(4分)如图,在△ABC中.∠ACB=90°,AC=4,,点D在AB上,将△ACD沿CD折叠,点A落在点A1处,A1C与AB相交于点E,若A1D∥BC,则A1E的长为()A.B.C.D.二、填空题(每题4分,共24分)13.(4分)计算=.14.(4分)如图,△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=153°,则∠B的度数为.15.(4分)一组数2、a、4、6、8的平均数是5,这组数的中位数是.16.(4分)定义:如图,点P、Q把线段AB分割成线段AP、PQ和BQ,若以AP、PQ、BQ为边的三角形是一个直角三角形,则称点P、Q是线段AB的勾股分割点.已知点P、Q是线段AB的勾股分割点,如果AP=8,PQ=12(PQ>BQ),那么BQ=.17.(4分)现有八个大小相同的矩形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小矩形的面积是.18.(4分)如图,已知在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C、D的坐标分别为A(9,0)、C(0,4),D(5,0),点P从点O出发,以每秒1个单位长度的速度沿O→C→B→A运动,点P 的运动时间为t秒.则当t=秒时,△ODP是腰长为5的等腰三角形?三.解答题(共78分)19.(6分)(1)计算:﹣5(2)计算:620.(6分)已知点A(m+2,3)和点B(m﹣1,2m﹣4),且AB∥x轴.(1)求m的值;(2)求AB的长.21.(6分)在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.22.(8分)阅读理解:已知两直线,L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1,根据以上结论解答下列各题:(1)已知直线y=2x+1与直线y=kx﹣1垂直,求k的值.(2)若一条直线经过A(2,3),且与y=x+3垂直,求这条直线的函数关系式.23.(8分)如图,∠α和∠β的度数满足方程组,且CD∥EF,AC⊥AE.(1)求∠α和∠β的度数.(2)求∠C的度数.24.(10分)某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.(1)根据图示填写下表:平均数/分中位数/分众数/分A校85B校85100(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;(3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.25.(10分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:进价(元/只)售价(元/只)甲种节能灯3040乙种节能灯3550(1)求甲、乙两种节能灯各进多少只?(2)全部售完100只节能灯后,该商场获利多少元?26.(12分)如图,已知AB∥CD,∠A=40°.点P是射线AB上一动点(与点A不重合),CE、CF分别平分∠ACP和∠DCP交射线AB于点E、F.(1)求∠ECF的度数;(2)随着点P的运动,∠APC与∠AFC之间的数量关系是否改变?若不改变,请求出此数量关系;若改变,请说明理由;(3)当∠AEC=∠ACF时,求∠APC的度数.27.(12分)已知:如图1,在平面直角坐标系中,一次函数y=x+3交x轴于点A,交y轴于点B,点C是点A 关于y轴对称的点,过点C作y轴平行的射线CD,交直线AB与点D,点P是射线CD上的一个动点.(1)求点A,B的坐标.(2)如图2,将△ACP沿着AP翻折,当点C的对应点C′落在直线AB上时,求点P的坐标.(3)若直线OP与直线AD有交点,不妨设交点为Q(不与点D重合),连接CQ,是否存在点P,使得S△CPQ=2S,若存在,请求出对应的点Q坐标;若不存在,请说明理由.△DPQ山东省济南市八年级(上)期末数学试卷参考答案与试题解析一、选择题(每题4分,共48分)1.【解答】解:A、=2,不是无理数,故此选项错误;B、=2,是无理数,故此选项正确;C、,不是无理数,故此选项错误;D、=3,不是无理数,故此选项错误;故选:B.2.【解答】解:A、32+42=52,故是直角三角形,故此选项不符合题意;B、12+12=()2,故是直角三角形,故此选项不符合题意;C、82+122≠132,故不是直角三角形,故此选项符合题意;D、()2+()2=()2,故是直角三角形,故此选项不符合题意.故选:C.3.【解答】解:289的平方根是±17的数学表达式是±=±17,故选:C.4.【解答】解:A、过直线外一点有且只有一条直线与这条直线平行,正确.B、平行于同一直线的两条直线平行,正确;C、直线y=2x﹣1与直线y=2x+3一定互相平行,正确;D、如果两个角的两边分别平行,那么这两个角相等,错误;应该是如果两个角的两边分别平行,那么这两个角相等或互补;故选:D.5.【解答】解:∵点A(2x﹣4,x+2)在坐标轴上,∴当2x﹣4=0时,x=2,当x+2=0时,x=﹣2,∴x的值为±2,故选:A.6.【解答】解:对于函数y=k2x(k是常数,k≠0)的图象,∵k2>0,∴直线y=k2x经过第一、三象限,y随x的增大而增大,∵当x=时,y=k,∴直线y=k2x经过点(,k).故选:C.7.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.8.【解答】解:∵x=5是方程组的解,∴2×5﹣y=12,∴y=﹣2,∴2x+y=2×5﹣2=8,∴●是8,★是﹣2.故选:D.9.【解答】解:A.该商品周一的利润45元,最小,正确;B.该商品周日的利润85元,最大,正确;C.由一周中的该商品每天售价组成的这组数据的众数是4(元/斤),正确;D.一周中的该商品每天进价组成的这组数据的中位数是(2.8元/斤),错误;故选:D.10.【解答】解:直线l1经过(2,3)、(0,﹣1),易知其函数解析式为y=2x﹣1;直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l1,l2的交点坐标为解的方程组是:.故选:C.11.【解答】解:由题意可得出:甲乙两地之间的距离为560千米,故①正确;由题意可得出:慢车和快车经过4个小时后相遇,出发后两车之间的距离开始增大直到快车到达甲地后两车之间的距离开始缩小,由图分析可知快车经过3个小时后到达甲地,此段路程慢车需要行驶4小时,因此慢车和快车的速度之比为3:4,故②错误;∴设慢车速度为3xkm/h,快车速度为4xkm/h,∴(3x+4x)×4=560,x=20∴快车的速度是80km/h,慢车的速度是60km/h.由题意可得出:快车和慢车相遇地离甲地的距离为4×60=240km,故④错误,当慢车行驶了7小时后,快车已到达甲地,此时两车之间的距离为240﹣3×60=60km,故③正确.故选:B.12.【解答】解:∵A1D∥BC,∴∠B=∠A1DB,由折叠可得,∠A1=∠A,又∵∠A+∠B=90°,∴∠A1+∠A1DB=90°,∴AB⊥CE,∵∠ACB=90°,AC=4,,∴AB==3,∵AB×CE=BC×AC,∴CE==,又∵A1C=AC=4,∴A1E=4﹣=,故选:B.二、填空题(每题4分,共24分)13.【解答】解:==2,故答案为:2.14.【解答】解:∵∠1+∠EDC=180°,∠1=153°,∴∠EDC=27°,∵DE∥BC,∴∠EDC=∠C=27°,∵∠A=90°,∴∠B=90°﹣∠C=63°,故答案为63°.15.【解答】解:由题意得,(2+a+4+6+8)=5,解得:x=5,这组数据按照从小到大的顺序排列为:2,4,5,6,8,则中位数为5;故答案为:5.16.【解答】解:依题意得:AP2+BQ2=PQ2,即82+BQ2=122,解得BQ=4(舍去负值).故答案是:4.17.【解答】解:设小矩形的宽是x,长是y,,解得:.小矩形的面积为:6×10=60.故答案为:60.18.【解答】解:当OD=OP=5时,在直角△OPC中,CP==3,则t=4+3=7;当PD=OD=5时,作DE⊥BC于点E,同理,在直角△PED中,得到PE=3,则当P在E的左边时,CP=5﹣3=2,则t=4+2=6;当P在E的右边时CP=5+3=8,则t=4+8=12;或AP=3,则t=4+9+4﹣3=14;当OP=PD,CP=2.5,t=4+2.5=6.5(舍去)总之,t=7或6或12或14.故答案为:6或7或12或14.三.解答题(共78分)19.【解答】解:(1)原式=﹣﹣5=2﹣2﹣5=﹣2﹣3;(2)原式=2﹣+9﹣=9.20.【解答】解:(1)∵A(m+2,3)和点B(m﹣1,2m﹣4),且AB∥x轴,∴2m﹣4=3,∴m=.(2)由(1)得:m=,∴m+2=,m﹣1=,2m﹣4=3,∴A(,3),B(,3),∵﹣=3,∴AB的长为3.21.【解答】解:如图,过C作CD⊥AB于D,∵BC=400米,AC=300米,∠ACB=90°,∴根据勾股定理得AB=500米,∵AB•CD=BC•AC,∴CD=240米.∵240米<250米,故有危险,因此AB段公路需要暂时封锁.22.【解答】解:(1)∵直线y=2x+1与直线y=kx﹣1垂直,∴2•k=﹣1,∴k=(2)∵过点A的直线与y=x+3垂直,∴可设过点A的直线解析式为y=﹣3x+b将点A(2,3)代入,得:﹣6+b=3,解得:b=9,所以过点A的直线解析式为y=﹣3x+923.【解答】解:(1)解方程组,得.(2)∵∠α+∠β=55°+125°=180°,∴AB∥CD,∴∠C+∠CAB=180°,∵AC⊥AE,∴∠CAE=90°,∴∠C=180°﹣90°﹣55°=35°.24.【解答】解:(1)A校平均数为:(75+80+85+85+100)=85(分),众数85(分);B校中位数80(分).填表如下:平均数/分中位数/分众数/分A校858585B校8580100故答案为:85;85;80.(2)A校成绩好些.因为两个队的平均数都相同,A校的中位数高,所以在平均数相同的情况下中位数高的A校成绩好些.(3)∵A校的方差s12=×[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,B校的方差s22=×[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160.∴s12<s22,因此,A校代表队选手成绩较为稳定.25.【解答】解:(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据题意,得,解这个方程组,得,答:甲、乙两种节能灯分别购进40、60只.(2)商场获利=40×(40﹣30)+60×(50﹣35)=1300(元),答:商场获利1300元.26.【解答】解:(1)∵AB∥CD,∴∠A+∠ACD=180°,∴∠ACD=180°﹣40°=140°,∵CE平分∠ACP,CF平分∠DCP,∴∠ACP=2∠ECP,∠DCP=2∠PCF,∴∠ECF=∠ACD=70°;(2)不变.数量关系为:∠APC=2∠AFC.∵AB∥CD,∴∠AFC=∠DCF,∠APC=∠DCP,∵CF平分∠DCP,∴∠DCP=2∠DCF,∴∠APC=2∠AFC;(3)∵AB∥CD,∴∠AEC=∠ECD,当∠AEC=∠ACF时,则有∠ECD=∠ACF,∴∠ACE=∠DCF,∴∠PCD=∠ACD=70°,∴∠APC=∠PCD=70°.27.【解答】解:(1)令x=0,则y=3,∴B(0,3),令y=0,则x+3=0,∴x=﹣4,∴A(﹣4,0);(2)∵点C是点A关于y轴对称的点,∴C(4,0),∵CD⊥x轴,∴x=4时,y=6,∴D(4,6),∴AC=8,CD=6,AD=10,由折叠知,AC'=AC=8,∴C'D=AD﹣AC'=2,设PC=a,∴PC'=a,DP=6﹣a,在Rt△DC'P中,a2+4=(6﹣a)2,∴a=,∴P(4,);(3)设P(4,m),∴CP=m,DP=|m﹣6|,∵S△CPQ=2S△DPQ,∴CP=2PD,∴2|m﹣6|=m,∴m=4或m=12,∴P(4,4)或P(4,12),∵直线AB的解析式为y=x+3①,当P(4,4)时,直线OP的解析式为y=x②,联立①②解得,x=12,y=12,∴Q(12,12),当P(4,12)时,直线OP解析式为y=3x③,联立①③解得,x=,y=4,∴Q(,4),即:满足条件的点Q(12,12)或(,4).。
长江中学2016-2017学年度第一学期期中考试考试 八年级数学试卷 (考试时间:120分钟 总分:150分) 一、选择题(10小题,每小题3分,共30分) ( ) 1.下列图形中,是轴对称图形的是( ) 2.如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是 A .4 B .3 C .2 D .8 ( )3已知点P(2,-1),那么点P 关于y 轴对称的点Q 的坐标是 A .(-2,1) B .(-2,-1) C .(-1,2) D .(2,1) ( )4.一个多边形的外角和是内角和的25,这个多边形的边数是 A .5 B .6 C .7 D .8 ( )5.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是 A .SSS B .SAS C .AAS D .ASA ( )6.若2139273m m ⨯⨯=,则m 的值为 A.3 B.4 C.5 D.6( )7.如图,在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于A .10B .7C .5D .4( )8. 如图,在△ABE 中,∠A=105°,AE 的垂直平分线MN 交BE 于点C ,且AB=CE ,则∠B 的度数是A .50°B .60°C .45°D .55°( )9.如图,P 为∠AOB 内一定点,M 、N 分别是射线OA 、OB 上一点,当△PMN 周长最小时,∠N PM=50°,则∠AOB=( )A .40°B .45°C .50°D .65°(第8题) (第9题) (第10题)( )10.如图,已知∠MON=30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上;△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形.若OA 1=1,则△A 2015B 2015A 2016的边长为( )A .4028B .4030C .22014D .22015二.填空题(8小题,每小题3分,共24分)11.若点A (n ,2)与点B (﹣3,m )关于x 轴对称,则n ﹣m=__________.12. 20132013(0.125)(8)-=_______八年级( )班 姓名_________ 学号_______ 考场号_______13.等腰三角形的一个外角是150°,则它的顶角的度数是____.14.如图,△ABC≌△ADE,∠EAC=35°,则∠BAD=__________°.15.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=16. 如图,△ABC 中,DE 是AC 的垂直平分线,AE=5cm ,△CBD 的周长为24cm ,则△ABC 的周长为 .(14题) (15题) (16题)17.如图,在△ABC 中,AB =AC ,∠A =50°,P 是△ABC 内一点,且∠PBC=∠PCA, 则∠BPC=________.18.如图,AC =BC ,∠ACB =90°,AE 平分∠BAC,BF ⊥AE ,交AC 的延长线于F ,且垂足为E ,则下列结论:①AD=BF ;②BF=AF ;③AC+CD =AB ;④AB =BF ;⑤AD=2BE ,其中正确的结论是______________.(填序号)(17题) (18题)三.解答题(10小题,共96分)19.(8分)如图,在平面直角坐标系xOy 中,A (﹣1,5),B (﹣1,0),C (﹣4,3).(1)求出△ABC 的面积.(2)在图中作出△ABC 关于y 轴的对称图形△A 1B 1C 1.(3)写出点A 1,B 1,C 1的坐标.20.(8分)已知n 是正整数,且32n x =, 求3223(3)(2)n n x x +-的值.21. (8分)如图,已知:∠A=60°,∠B=30°,∠C=20°,求∠BDC 的度数.22.(8分)如图,点B、D、C、F在一条直线上,BC=FD,AB=EF,且AB∥EF.求证:AC∥ED.23.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.24. (10分)如图,在△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线AE于E,EF⊥AB于F,EG⊥AC交AC延长线于G.求证:BF=CG.25.(10分)将一张长方形纸条ABCD按如图所示折叠,若折叠角∠FEC=64°.(1)求∠1的度数;(2)求证:△EFG是等腰三角形.26. (12分)如图,△ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE,AE与BD 相交于点P,(1)求∠BPE的度数;(2)若BF⊥AE于点F,试判断BP与PF的数量关系.27. (12分)如图,△ABC中,∠ACB=90°,AC=BC,D为△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=AC.(1)求∠CDE的度数;(2)若点M在DE上,且DC=DM,求证:ME=BD.28. (12分)等腰Rt△ABC中,∠BAC=90°,点A、点B分别是x轴、y轴两个动点,直角边AC交x轴于点D,斜边B C交y轴于点E。
2016-2017学年山东省济南市槐荫区八年级(上)期末数学试卷
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四
个选项中,只有一项是符合题目要求的.)
1.(4分)25的平方根是()
A.5B.﹣5C.±D.±5
2.(4分)下列图形中,是中心对称图形的是()
A.B.
C.D.
3.(4分)某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是()
A.7,7B.8,7.5C.7,7.5D.8,6.5 4.(4分)如图,两个较大正方形的面积分别为225,289,中间所夹三角形为直角三角形,则字母A所代表的正方形的面积为()
A.4B.8C.16D.64
5.(4分)化简÷的结果是()
A.B.C.D.2(x+1)6.(4分)不等式组的解集在数轴上表示为()
A.
B.
C.
D.
7.(4分)如果关于x的不等式(a+1)x>a+1的解集为x<1,则a的取值范围是()
A.a<0B.a<﹣1C.a>1D.a>﹣1
8.(4分)实数a在数轴上的位置如图所示,则化简后为()
A.7B.﹣7C.2a﹣15D.无法确定9.(4分)若方程+=,则A、B的值分别为()A.2,1B.1,2C.1,1D.﹣1,﹣1 10.(4分)如图,矩形ABCD中,AB=3,AD=9,将此矩形折叠,使点B与点D 重合,折痕为EF,则△ABE的面积为()
A.6B.8C.10D.12
11.(4分)如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=
,则图中阴影部分的面积等于()
A.2﹣B.1C.D.﹣l 12.(4分)如图中,∠ACB=90°,AC>BC,分别以△ABC的边AB、BC、CA为一边向△ABC外作正方形ABDE、BCMN、CAFG,连接EF、GM、ND,设△AEF、△CGM、△BND的面积分别为S1、S2、S3,则下列结论正确的是()
A.S1=S2=S3B.S1=S2<S3C.S1=S3<S2D.S2=S3<S1
二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的
横线上.)
13.(4分)化简:﹣=.
14.(4分)分解因式:x2﹣6x+9=.
15.(4分)当x=时,分式的值为0.
16.(4分)已知a+b=3,a2b+ab2=1,则ab=.
17.(4分)如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则最短距离为.
18.(4分)如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.
三、解答题(本大题共9个小厦,共78分,解答应写出文字说明,证明过程或
演算步骤.)
19.(6分)计算:
(1)﹣3
(2)÷.
20.(6分)(1)因式分解:m3n﹣9mn.
(2)求不等式≤的正整数解.
21.(8分)(1)解方程:=2+
(2)解不等式组,并把解集在数轴上表示出来.
22.(10分)如图,△ABC是边长为2的等边三角形,将△ABC沿直线BC向右平移,使点B与点C重合,得到△DCE,连接BD,交AC于点F.求线段BD 的长.
23.一次环保知识竞赛共有25道题,评委会决定:答对一道题得4分,答错或不答一题扣1分,在这次竞赛中,小明被评为优秀(85分或85分以上),小明至少答对了几道题?
24.(8分)济南与北京两地相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.
25.(6分)先化简再求值:(x+1﹣)×,其中x=﹣.26.(10分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:
(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.
(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.27.(12分)如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,
∠CED=45°,∠DCE=30°,DE=,BE=2.
(1)求CD的长:
(2)求四边形ABCD的面积.
28.(12分)已知,点O是等边△ABC内的任一点,连接OA,OB,OC.
(1)如图1,已知∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.
①∠DAO的度数是
②用等式表示线段OA,OB,OC之间的数量关系,并证明;
(2)设∠AOB=α,∠BOC=β.
①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的
图形,并说明理由;
②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.
2016-2017学年山东省济南市槐荫区八年级(上)期末数
学试卷
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四
个选项中,只有一项是符合题目要求的.)
1.D;2.C;3.C;4.D;5.C;6.B;7.B;8.A;9.C;10.A;11.D;
12.A;
二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的
横线上.)
13.;14.(x﹣3)2;15.﹣3;16.;17.2;18.;
三、解答题(本大题共9个小厦,共78分,解答应写出文字说明,证明过程或
演算步骤.)
19.;20.;21.;22.;23.;24.;
25.;26.;27.;28.90°;。