清华大学有元素机化学第七章交叉偶联反应
- 格式:ppt
- 大小:380.50 KB
- 文档页数:15
交叉偶联反应1 什么是交叉偶联反应交叉偶联反应(Coupling Reaction)是一种特殊的化学反应,可用于合成二元碳氢化物(alkane)、醇、醚和无水酸等有机分子。
交叉偶联反应的最常见的实例是在分析两个有机物时,利用一种过渡金属(organometallic)来实现他们之间的组合反应。
一般来说,这种反应通过过渡金属(transition metal)的作用而在两个有机底物之间发生共价键的形成,从而为他们之间的组合提供结构可能性。
2 交叉偶联反应的应用由于交叉偶联反应改变了机械构型,可用于合成许多专门的有机产物。
例如,它可被用于生产用于抗菌药物合成的酯类物质,例如penicillin,以及脂族物质和萜烯类物质,例如芥子油,α-玉米酒精和乙酸甘油酯。
此外,由于交叉偶联反应的跃迁状态低,可被用于有机电荷转移反应的光驱动或电驱动的合成中;这可为合成荧光标记物、有机太阳能电池材料和有机磷谱應用提供可能性。
3 交叉偶联反应的发展改进的科学技术和过程的进步,使得用于交叉偶联反应的金属试剂和反应条件得以改进,从而可以更快、更精确地实现交叉偶联反应。
交叉偶联反平台是一种自动化技术,可以检测实验反应过程中的有机物,并可以实现多种有机物的交叉偶联反应。
利用无氧催化剂,可以有效地实现交叉偶联反应,改善有机物的质量和效率,并减少有机物的能量消耗和废水污染。
4 结语交叉偶联反应是一种成熟可用的合成有机物的非常有效的化学反应。
它不仅可用于各种芳香族分子的合成,还可用于生产药物和结构改变。
总而言之,交叉偶联反应在有机合成工艺中具有重要作用,应该受到重视。
钯催化的交叉偶联反应一、偶联反应综述1.交叉偶联反应偶联反应,从广义上讲,就是由两个有机分子进行某种化学反应而生成一个新有机分子的过程。
狭义的偶联反应是涉及有机金属催化剂的碳-碳键生成的反应,根据类型的不同,又可分为自身偶联反应和交叉偶联。
交叉偶联反应是一个有机分子与另一有机分子发生的不对称偶联反应。
2.碳碳键形成的重要性新碳-碳键的形成在有机化学中是极其重要的。
人们了解了天然有机物质的结构和性能,并根据有机物质的结构,通过碳原子组装成链,建立有机分子,最终实现天然有机物质的人工合成。
目前为止,人类已经利用有机合成化学手段创造出几千万种物质,且越来越多的有机物质已经广泛应用到制药、建材、食品、纺织等人类生活领域,我们的生活也几乎离不开有机物了。
合成药物、塑料等有机物质时,需要用小的有机分子将碳原子连接在一起构建新的复杂大分子,因而有机合成中高效的连接碳-碳键的方法是有机合成化学中的重要工具。
从以往该领域诺贝尔化学奖的授予情况也可以看出合成新碳-碳键的重要性:1912年维克多·格林尼亚因发明格林尼亚试剂——有机镁试剂获奖,1950年迪尔斯和阿尔德因发明双烯反应迪尔斯-阿尔德反应获奖,1979年维蒂希与布朗因发明维蒂希反应共同获奖,2005年伊夫·肖万、罗伯特·格拉布、理查德·施罗克因在有机化学的烯烃复分解反应研究方面作了突出贡献获奖。
3.有机合成中的钯催化交叉偶联反应随着时代发展,合成有机化学的研究愈加深入,20世纪后半期,科学家们发现了大量通过过渡金属催化来创造新有机分子的反应,促使有机合成化学快速发展。
特别是赫克、根岸英一和铃木章发现的钯催化交叉偶联反应,为化学家们提供了一个更为精确有效的工具。
三位科学家发现的钯催化交叉偶联反应中都使用了金属钯作为反应的催化剂,当碳原子与钯原子连在一起时,钯原子唤醒了“懒惰”的碳原子但又不至于使它太活泼,于是形成温和的碳-钯键,在反应过程中,钯原子又可以把别的碳原子吸引过来,形成另一个金属-碳键,此时两个碳原子都连接在钯原子上,它们的距离足够接近而发生反应,生成新的碳-碳单键。
偶联反应[编辑]偶联反应,也写作偶合反应或耦联反应,是两个化学实体(或单位)结合生成一个分子的有机化学反应。
狭义的偶联反应是涉及有机金属催化剂的碳-碳键形成反应,根据类型的不同,又可分为交叉偶联和自身偶联反应。
在偶联反应中有一类重要的反应,RM(R = 有机片段, M = 主基团中心)与R'X的有机卤素化合物反应,形成具有新碳-碳键的产物R-R'。
[1]由于在偶联反应的突出贡献,根岸英一、铃木章与理查德·赫克共同被授予了2010年度诺贝尔化学奖。
[2]偶联反应大体可分为两种类型:•交叉偶联反应:两种不同的片段连接成一个分子,如:溴苯(PhBr)与氯乙烯形成苯乙烯(PhCH=CH2)。
•自身偶联反应:相同的两个片段形成一个分子,如:碘苯(PhI)自身形成联苯(Ph-Ph)。
反应机理[编辑]偶联反应的反应机理通常起始于有机卤代烃和催化剂的氧化加成。
第二步则是另一分子与其发生金属交换,即将两个待偶联的分子接于同一金属中心上。
最后一步是还原消除,即两个待偶联的分子结合在一起形成新分子并再生催化剂。
不饱和的有机基团通常易于发生偶联,这是由于它们在加合一步速度更快。
中间体通常不倾向发生β-氢消除反应。
[3]在一项计算化学研究中表明,不饱和有机基团更易于在金属中心上发生偶联反应。
[4]还原消除的速率高低如下:乙烯基-乙烯基> 苯基-苯基> 炔基-炔基> 烷基-烷基不对称的R-R′形式偶联反应,其活化能垒与反应能量与相应的对称偶联反应R-R与R′-R′的平均值相近,如:乙烯基-乙烯基> 乙烯基-烷基> 烷基-烷基。
另一种假说认为,在水溶液当中的偶联反应其实是通过自由基机理进行,而不是金属-参与机理。
[5]§催化剂[编辑]偶联反应中最常用的金属催化剂是钯催化剂,有时也使用镍与铜催化剂。
钯催化剂当中常用的如:四(三苯基膦)钯等。
钯催化的有机反应有许多优点,如:官能团的耐受性强,有机钯化合物对于水和空气的低敏感性。
钯催化交叉偶联反应作者:杨发丽刘克文杨光来源:《中国校外教育·高教》2011年第07期摘要:经过近40年的发展,钯催化交叉偶联反应在大批科学家共同的努力下取得了巨大成就,为合成天然产物、复杂药物分子、聚合物、功能材料、生命活性化合物等提供了高效、精致的工具,成为支撑制药、材料化学、电子工业等现代工业文明的巨大力量。
本文介绍了2010年诺贝尔化学奖得主理查德-赫克、根岸英一和铃木章在钯催化交叉偶联反应的发现和发展上作出的主要贡献,并分析了该成果的主要应用。
关键词:诺贝尔化学奖钯催化交叉偶联应用2010年10月6日,瑞典皇家学院宣布将诺贝尔化学奖授予美国科学家理查德-赫克、日本科学家根岸英一和铃木章,以表彰他们开发有效的连接碳原子以构建复杂分子的方法——钯催化交叉偶联反应。
一、钯催化交叉偶联反应的相关背景1.交叉偶联反应偶联反应,从广义上讲,就是由两个有机分子进行某种化学反应而生成一个新有机分子的过程。
狭义的偶联反应是涉及有机金属催化剂的碳-碳键生成的反应,根据类型的不同,又可分为自身偶联反应和交叉偶联。
交叉偶联反应是一个有机分子与另一有机分子发生的不对称偶联反应。
2.碳碳键形成的重要性新碳-碳键的形成在有机化学中是极其重要的。
人们了解了天然有机物质的结构和性能,并根据有机物质的结构,通过碳原子组装成链,建立有机分子,最终实现天然有机物质的人工合成。
目前为止,人类已经利用有机合成化学手段创造出几千万种物质,且越来越多的有机物质已经广泛应用到制药、建材、食品、纺织等人类生活领域,我们的生活也几乎离不开有机物了。
合成药物、塑料等有机物质时,需要用小的有机分子将碳原子连接在一起构建新的复杂大分子,因而有机合成中高效的连接碳-碳键的方法是有机合成化学中的重要工具。
从以往该领域诺贝尔化学奖的授予情况也可以看出合成新碳-碳键的重要性:1912年维克多·格林尼亚因发明格林尼亚试剂——有机镁试剂获奖,1950年迪尔斯和阿尔德因发明双烯反应迪尔斯-阿尔德反应获奖,1979年维蒂希与布朗因发明维蒂希反应共同获奖,2005年伊夫·肖万、罗伯特·格拉布、理查德·施罗克因在有机化学的烯烃复分解反应研究方面作了突出贡献获奖。
有机合成中钯催化下的交叉偶联反应-2010年诺贝尔化学奖简介陈明华( 兴义师范学院化学生物系,贵州兴义 562400)摘要:介绍了2010年诺贝尔化学奖的科学背景,即“有机合成中钯催化下的交叉偶联反应”的产生、发展和应用,体现了有机化学已经发展成为一门艺术形式,在这个形式下,科学家们在试管里创造性的产生出不可思议的化学物质的过程。
关键词:钯催化剂;交叉偶联反应;赫克反应;铃木反应;根岸反应Palladium-Catalyzed Cross Couplings in Organic SynthesisCHEN Ming-Hua(Department of Chemistry and Biological, Xingyi Normal College, Xingyi, Guizhou 562400)Abstract: This paper introduces scientific background of the Nobel Prize in Chemistry for 2010, it’s palladium-catalyzed cross couplings in organic synthesis.And this fack had been presents that “Organic chemistry has developed into an art form where scientists produce marvelous chemical creations in their test tubes”.Key words: palladium catalyst; cross-coupling reaction; heck reaction; suzuki reaction; negishi reaction2010年10月6日,瑞典皇家科学院决定授予美国特拉华大学(University of Delaware) 理查德-赫克(Richard F. Heck), 普渡大学(Purdue University)根岸荣一(Ei-ichi Negishi)和日本北海道大学(Hokkaido University)的铃木彰(Akira Suzuki)三位教授2010年的诺贝尔化学奖,以表彰他们在“有机合成中钯催化下的交叉偶联反应”作出的贡献[1]。
Suzuki-Miyaura交叉偶联反应机理及其在有机合成中的应用学院:化学学院专业:有机化学学号:姓名:一、Suzuki-Miyaura 交叉偶联反应概念Suzuki 反应(铃木反应),也称作Suzuki 偶联反应、Suzuki-Miyaura 反应(铃木-宫浦反应),是一个较新的有机偶联反应,是在钯配合物催化下,芳基或烯基的硼酸或硼酸酯与氯、溴、碘代芳烃或烯烃发生交叉偶联。
Z=Cl,Br,I自从1981年Suzuki 等报道了通过钯催化的有机硼化学物和卤代烃可以在很温和的条件下发生偶联反应制备不对称联芳烃以后,为芳-芳键的形成展开了一个新的领域[1]。
Suzuki-Miyaura 交叉偶联反应被证明是目前制备联芳基及其衍生物最为广泛利用的方法,因为其具有很强的底物适应性及官能团耐受性,常用于合成多烯烃、苯乙烯和联苯的衍生物,从而应用于众多天然产物、有机材料的合成中。
铃木章也凭借此贡献与理查德·赫克、根岸英一共同获得2010年诺贝尔化学奖。
二、Suzuki-Miyaura 交叉偶联反应机理Suzuki-Miyaura 交叉偶联的反应机理通常是一个普通的催化循环过程。
这个过程主要包括三个步骤:(1)氧化加成(oxidative addition) (2)转移金属化(transmetalation) (3)还原消除(reductive elimination)Ar-Pd-Ar 1Ar-ArPd(0)ArXArPdXArPdOHNaOHNaXB(OH)4ArB -(OH)3NaOHArB(OH)2氧化加成还原消除转移金属化ZB(OH)2BrZ+3% Pd(PPh 3)4Benzene, Na 2CO 3/H 2O首先,卤代芳烃与Pd(0)氧化加成后,与1mol 的碱生成有机钯氢氧化物中间物种,取代了键极性较弱的钯卤键,这种含有强极性的Pd-OH 的中间体具有非常强的亲电性;同时另1mol 的碱与芳基硼酸生成四价硼酸盐中间物种,具有非常强的富电性,有利于向Pd 金属中心迁移。
有机合成中的交叉偶联反应及其应用研究有机合成是现代有机化学中极为重要的一项工作。
它通过对有机化合物进行分子构建和转换,从而制备出具有特定结构和性能的化合物和分子。
交叉偶联反应则是有机合成中一个重要的反应类型,它可以将不同的分子结构通过化学键的形成进行结合,具有广泛的应用前景。
本文将介绍交叉偶联反应的原理和实验方法,并探讨它在生物医学、材料科学和能源领域中的应用。
一、交叉偶联反应的原理和实验方法交叉偶联反应是将两种或更多的基团进行反应,形成新的化学键。
这种反应可以使用不同的化学反应体系进行实现,常用的反应体系包括钯催化反应、铜催化反应、铁催化反应等。
其中,钯催化反应可是是最常用的一种反应。
钯催化反应是通过在有机磷配体相助下,钯催化剂能够将有机物中的烯烃与卤化物、磺酸酯、醛、酸、卤酸酯等反应官能团发生交叉偶联反应,生成新的化合物。
在实验方法上,交叉偶联反应所需要的试剂和反应条件不同,反应温度通常在常温下到反应体系熔点的80%之间。
同时,反应体系对催化剂、试剂摩尔比和添加剂等的选择也产生了重要的影响。
二、交叉偶联反应在生物医学领域的应用交叉偶联反应的应用非常广泛,其中在生物医学领域中有着非常重要的应用。
钯催化的交叉偶联反应适用于合成类似天然产品的化合物、制备药物化合物的中间体以及制备复杂化合物等。
例如,在癌症治疗中,经过一系列的交叉偶联反应,合成出了一种可对肿瘤内生物活性进行溯源、遥控及调控的“分子记录器”。
另外,交叉偶联反应还可以用于合成新型药物,如ADCs等。
ADCs即抗体药物连结物(antibody-drug conjugates),它是指将化学药物与抗体结合的一种药物,具有针对癌细胞、促进细胞内吞噬和抗肿瘤毒性增强等多种独特的生物学效应。
三、交叉偶联反应在材料科学领域的应用交叉偶联反应也有着广泛的在材料科学领域中的应用。
例如,交叉偶联反应可以用于合成各种高分子材料。
在这里,特别是值得一提的是,聚合物的合成通常可以使用控制的交叉偶联反应来实现,可能产生更多的结构多样性和高度控制性。
有机交叉耦联
有机交叉耦联,是一种有机化学反应,在两个有机分子之间,通过化学键进行共轭,形成新的化合物的过程。
在化学领域里被广泛的研究和应用。
这种反应的具体过程,是两个有机分子之间,通过一种桥接的分子的共同作用,完成它们之间的化学键的重排和形成。
在这过程中,这种桥接分子称为交联剂(cross-linking agent),它通过其中的一些化学官能团,与有机分子中的官能团形成共价键,使得两个有机分子发生共轭。
最早,这种反应被用于有机系荧光分子的修饰,能够实现发光分子之间的电荷转移,达到荧光共振能量转移(FRET)的效果。
随后,这种反应逐渐被用于分子传感器的制备、药物分子的合成、生物医学成像等领域。
它不仅可以提高分子的光、电导性能,还可实现分子功能的加和或乘积,极大拓展了有机分子的化学、物理性质的范畴。
有机交叉耦联由于其多样化的应用前景,现已成为有机化学领域里的一个热点研究方向,值得进一步深入研究和开发应用。
suzuki交叉偶联反应交叉偶联反应是有机化学中一种重要的反应类型,通常用于合成有机分子中的碳—碳键。
suzuki交叉偶联反应是其中最常见和广泛应用的一种,它以四氢呋喃为溶剂,在存在钯催化剂和有机硼试剂的条件下进行。
本文将系统介绍suzuki交叉偶联反应的反应机理、应用领域以及相关的实验条件。
suzuki交叉偶联反应的反应机理可以分为两个主要步骤:(1)钯与有机硼试剂发生配位,形成一个活性的钯配合物;(2)该钯配合物与称为亲电试剂的底物发生交叉偶联反应,生成所需的产物。
在这个反应中,钯是关键的催化剂。
它可以与有机硼试剂形成一个烯烃配合物,其中钯与硼之间形成了一个稳定的钯—硼键。
这个钯—硼配合物可以在反应溶剂中与亲电试剂反应,发生碳—碳键的形成。
最终,用于交叉偶联反应的有机硼试剂和亲电试剂都会耗尽,而生成的产物则是两者的结合物。
suzuki交叉偶联反应被广泛应用于有机合成中。
因为它能够有效地构建复杂的有机分子骨架,并且具有较高的化学选择性和几乎没有废气产生。
这使得suzuki交叉偶联反应成为药物合成、天然产物合成以及有机电子材料合成等领域中的重要工具。
在实际应用中,suzuki交叉偶联反应通常在四氢呋喃或二甲基亚砜等溶剂中进行。
所需的钯催化剂可以通过还原钯盐与配体进行现场生成,也可以直接购买商用的钯配合物。
有机硼试剂可以使用各种不同的试剂,如芳香硼酸、芳香硼酸酯和芳香硼酸酰胺等。
亲电试剂的选择则取决于所需的化学转化。
此外,suzuki交叉偶联反应还可以在不同的温度下进行,通常在室温或略高温的条件下进行。
反应时间也可以根据底物的性质和反应的需要进行调节。
反应之后,产物可以通过简单的工艺步骤进行分离和纯化。
虽然suzuki交叉偶联反应在有机合成中具有广泛的应用,但也存在一些限制。
特别是,底物中的制约基团可能会对反应产率和选择性产生影响。
此外,一些复杂的底物可能需要更高的反应条件。
总之,suzuki交叉偶联反应是有机合成领域中一种重要的反应类型。
远程迁移交叉亲电偶联和烯烃加氢芳基化反应引言有机化学是研究有机化合物的合成、结构、性质和反应机理的学科。
在有机化学领域中,远程迁移交叉亲电偶联和烯烃加氢芳基化反应是两个重要的反应类型。
本文将对这两个反应进行详细介绍,并讨论其在有机合成中的应用。
远程迁移交叉亲电偶联反应远程迁移交叉亲电偶联反应是指在有机分子中,一个亲电中心和一个亲核中心通过共轭体系进行迁移,从而实现两个不相邻位置的化学键的形成。
这种反应通常需要一个催化剂的存在,常见的催化剂有过渡金属配合物。
远程迁移交叉亲电偶联反应具有以下特点: - 能够实现不相邻位置的键的形成,从而构建复杂的分子结构。
- 可以实现高立体选择性,控制反应产物的立体化学性质。
- 可以应用于天然产物的合成和药物分子的构建。
远程迁移交叉亲电偶联反应的机理复杂多样,常见的机理包括自由基迁移、负离子迁移和正离子迁移等。
这些机理的选择取决于底物的结构和反应条件。
研究人员通过理论计算和实验方法来揭示这些反应的机理,并进一步优化反应条件,提高反应的效率和选择性。
远程迁移交叉亲电偶联反应在有机合成中的应用非常广泛。
例如,通过远程迁移交叉亲电偶联反应,可以实现天然产物的合成,合成复杂的天然产物结构和药物分子。
此外,远程迁移交叉亲电偶联反应还可以用于构建新型的功能性材料和有机电子器件。
烯烃加氢芳基化反应烯烃加氢芳基化反应是指将芳基基团引入到烯烃分子中的反应。
这种反应通常需要一个催化剂的存在,常见的催化剂有过渡金属配合物。
烯烃加氢芳基化反应具有以下特点: - 可以实现对烯烃分子的选择性芳基化,从而构建具有芳香性质的化合物。
- 可以应用于有机合成中的重要中间体的构建,如酮、醛等。
烯烃加氢芳基化反应的机理通常涉及烯烃的氢化、芳基的活化和反应的环化等步骤。
研究人员通过理论计算和实验方法来揭示这些反应的机理,并进一步优化反应条件,提高反应的效率和选择性。
烯烃加氢芳基化反应在有机合成中的应用非常广泛。
Organoboron CompoundsNorio MiyauraDivision of Molecular Chemistry,Graduate School of Engineering,Hokkaido University, Sapporo,060-8628,JapanE-mail:miyaura@org-mc.eng.hokudai.ac.jpUntil recently,organoboronic acids had found limited use in organic synthesis due to their low reactivity for ionic reactions.However,it became increasingly clear that they are a valuable reagent capable of undergoing many catalytic carbon-carbon bond formations in organic syntheses including asymmetric synthesis,combinatorial synthesis,and polymer synthesis.A review of the metal-catalyzed cross-coupling reaction of these compounds is presented here with particular emphasis on their application in selective organic syntheses.Representative methods for achieving selective coupling are outlined,along with a survey of a wide range of C-C bond formations.Keywords.Cross-coupling reaction,Organoboron compounds,Palladium and nickel catalysts, Carbon-carbon bond formation1Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122Catalytic Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . .123Reaction Conditions. . . . . . . . . . . . . . . . . . . . . . . . . .15 3.1Catalysts,Bases,and Solvents. . . . . . . . . . . . . . . . . . . . .15 3.1.1Catalysts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 3.1.2Bases and Solvents. . . . . . . . . . . . . . . . . . . . . . . . . . .20 3.2Side Reactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 3.2.1Participation of Phosphine-Bound Aryls. . . . . . . . . . . . . . .24 3.2.2Oxygen-Induced Homocoupling . . . . . . . . . . . . . . . . . . . .26 3.2.3Dehalogenation,Deamination and Dehydrogenation. . . . . . . .26 3.2.4Protodeboronation. . . . . . . . . . . . . . . . . . . . . . . . . . .26 3.2.5Head to Tail Coupling . . . . . . . . . . . . . . . . . . . . . . . . . .274Representative Procedures and Applications. . . . . . . . . . . . .27 4.1Alkylboron Compounds. . . . . . . . . . . . . . . . . . . . . . . .27 4.21-Alkenylboron Compounds . . . . . . . . . . . . . . . . . . . . . .32 4.3Arylboron Compounds . . . . . . . . . . . . . . . . . . . . . . . . .36 4.4Allylboron and 1-Alkynylboron Compounds . . . . . . . . . . . . .47 4.5Diborons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 4.6Arylation of N-H and O-H Compounds . . . . . . . . . . . . . . . .52 5References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53Topics in Current Chemistry,V ol.219© Springer-V erlag Berlin Heidelberg 200212N.Miyaura 1IntroductionIn 1979,the cross-coupling reaction of organoboron compounds,which involves transmetalation to palladium(II) halides as a key step,was found to proceed smoothly in the presence of an aqueous base.The protocol has been proved to be a quite general reaction for a wide range of selective carbon-carbon bond formations,in addition to previous studies for related coupling reactions of organomagnesiums,-zincs,-stannanes,and -silicones [1].Now,many organo-metallic reagents undergo similar cross-coupling reactions,but much attention has recently been focused on the use of organoboronic acids in laboratories and industries since they are convenient reagents,generally thermally stable and inert to water and oxygen,thus allowing handling without special precautions. This review discusses the palladium- or nickel-catalyzed cross-coupling reac-tion of organoboron compounds with organic halides or triflates,the reaction mechanism,the scope of synthetic applications,and other related catalytic processes with transition-metal complexes.Since the previous reviews covered the references until the end of1995 [2],new developments which appeared dur-ing 1996 to the end of2000 are discussed in this review,which will,in part,over-lap with related articles [3–5].2Catalytic CycleThe cross-coupling reaction of organoboron compounds follows an analogous catalytic cycle to main metal reagents,involving (a) oxidative addition of organic halides or other electrophiles to a palladium(0) complex yielding R-Pd-X (1),(b) transmetalation between Pd-X and R¢-B,and (c) reductive elimination of R-R¢to regenerate the palladium(0) complex [1].Although the two steps for oxidative addition and reductive elimination are reasonably well understood, less is known about the transmetalation with the aid of base.Available informa-tion indicates that there are three processes,path A-C,for transferring the organic group on the boron atom to R-Pd-X (1) (Scheme 1).The addition of sodium hydroxide or other bases exerts a remarkable accel-erating effect on the transmetalation between R-Pd-X and trialkylboranes or organoboronic acids,which is quite different from the related reactions of other organometallics.Although organoboronic acids do not react with R-Pd-X (X=halogen),the ate-complexes such as Bu4BLi [2],[ArB(Bu)3]Li [2],Ph4BNa [6,7],[R3BOMe]Na [8],[ArB(R)(OR)2]Li [9],and [ArBF3]K [10,11] readily undergo the palladium- or nickel-catalyzed coupling reaction in the absence of a base.Thus,the quarternization of the boron atom with a negatively charged base enhances the nucleophilicity of the organic group on the boron atom for alkylation of R-Pd-X (1).Although there is no direct evidence for analogous hydroxyboronate anions,RB(OH)3–(2) [12a],which exists in alkaline solution in equilibrium with a free organoboronic acid,could similarly alkylate R-Pd-X (1) (path A).The transmetalation to 1decreasing in the order of Cl > Br > I [12] is inreverse of the oxidative addition of organic halides to palladium(0) complexes and is highly dependent on the added base,as is discussed in the next section.An alternative process is transmetalation to an (alkoxo)-,(hydroxo)-,(ace-toxo)-,or (acetylacetoxo)palladium(II) complex (4) in situ generated by the lig-and exchange between R-Pd-X and a base (R ≤O –).Such (oxo)palladium(II) com-plexes smoothly undergo transmetalation with organoboronic acids without the aid of a base (path B).For example,(methoxo)- (6) [13],(hydroxo)- (7) [14],and (phenoxo)palladium(II) [15] complex (8) yield the corresponding coupling products on treatment with an organoboron compounds (Scheme 2).Thus,the coupling reaction often proceeds under neutral conditions for organic elec-trophiles directly yielding an (oxo)palladium(II) intermediate (4) (path C).The cross-coupling reactions of allyl phenoxide [16],propargyl carbonates [17],1,3-butadiene monoxide [18] and phenyl trifluoroacetates [15] were carried out in the absence of a base.The reaction may involve a rate-determining coordina-tion of the R ¢¢O ligand to the boron atom [17].As a result of complex formation(5),the transfer of an activated organic group from boron to palladium then takes place.High reactivity of the oxo-palladium complexes can be attributed to both the high basicity of the Pd-O species and the high oxophilicity of the boron center.The basicity of R-Pd-OH is not known,but the related platinum com-plexes,such as PtH(OH)[P(i Pr)2] or trans -Pt(OH)(Ph)(PPh 3)2,are reported to be more basic than NaOH [19].On the other hand,the oxidative addition of Ph 2IX (X=BF 4,OTs,OTf) [20],PhI(OH)OTs [20],or ArN 2BF 4[21] generating a cationic palladium species directly undergo transmetalation with organoboron-ic acids,as was reported in a related reaction between [Pt(MeOH)2(PPh 3)2]2+and PhB(OH)2[22].Organoboron Compounds in Cross-Coupling Reaction13Scheme 1.Catalytic cycle for cross-couplingIt is known that the halogen or OTf ligand on R-Pd-X (1) is readily displaced by an alkoxy,hydroxy,or acetoxy anion to provide a basic R-Pd-OR ≤(4) com-plex,as is seen in the syntheses of 6and 7.Thus,available information indicates that there are two transmetalation processes (path A and path B) for the cross-coupling reaction in alkaline solution;however,it is not yet obvious in many reactions which process is predominant.It was recently demonstrated that the reaction of 9-alkyl-9-BBN (10) proceeded through the former process (path A)and the latter (path B) was predominant in a less acidic 9-oxa-10-borabicy-clo[3.3.2]decane (14) [23] (Scheme 3).NMR study revealed the exclusive forma-tion of an ate-complex (11) between 10and NaOH whereas the corresponding 14remained unchanged with an added base.The reactions were zero-order in 14N.Miyaura Scheme 2.Transmetalation to (oxo)palladium(II) complexesScheme 3.Two transmetalation processes depending on boron reagentstwo boranes suggesting no rate-determining role of the transmetalation,where-as the oxidative addition of bromobenzene to palladium(0) leading to 12or the ligand exchange between 12and NaOH giving a (hydroxo)palladium species(13) determined the reaction rates for 10and 14,respectively.The results indi-cate that transmetalation process and the rate-determining step are highly dependent on organoboron reagents,presumably also organic electrophiles and the functionality therein [12a].3Reaction Conditions3.1Catalysts,Bases,and Solvents3.1.1CatalystsThe reaction is feasible with various catalysts,bases,and solvents;however,the combinations will significantly affect the yields and the selectivity of products.Pd(PPh 3)4is the most common,but Pd 2(dba)3itself or plus a phosphine ligand are convenient for preparing the desired palladium(0)/phosphine complexes while adjusting the Pd/P ratio.Pd(OAc)2and PdCl 2/phosphines or plus an addi-tional ligand are also good precursors to generate an analogous palladium(0)species because they are easily reduced in situ to the corresponding palladi-um(0) complexes [24] (Scheme 4).The reduction of Pd(OAc)2with phosphine is instantaneous [25],but PdCl 2/phosphines can be aided by the presence of a base[26,27].However,the treatment with BuLi or DIBAL-H is recommended for NiCl 2/phosphine complexes because their reduction is very slow [28] or leads to nickel hydroxide in the presence of an aqueous base [29].Organoboron Compounds in Cross-Coupling Reaction15Scheme 4.In situ reduction of palladium(II) and nickel(II) halidesVarious phosphine ligands are effective in stabilizing the palladium(0)species,but the stoichiometry of phosphine to palladium and the bulkiness or donating ability of phosphine ligands change the reactivity of catalysts toward oxidative addition and transmetalation (Scheme 5).Pd(PPh 3)4and otherPd/phosphine complexes are in equilibrium with their coordinatively un-saturated species,Among them,either a diphosphine palladium(0) L 2Pd(0) or a monophosphine palladium(0) LPd(0) species could be responsible for the oxidative addition of organic halides [30,31].Thus,palladium complexes that having fewer than four phosphines,a weakly coordinating ligand such as AsPh 3,or a bulky phosphine,such as P(o -tolyl)3and P(t -Bu)3,provide highly reactive catalysts because of the ready formation of the coordinatively unsaturated species.The inhibitory effect of the phosphine ligand can be mainly attributed to its large steric hindrance during oxidative addition and transmetalation.Another role of the ligand is electron donation to the palladium(0) metal center,which was amply demonstrated in the coupling reaction of chloroarenes.Although triarylphosphines are an efficient ligand for organic iodides,bro-mides,and triflates,their reaction with chlorides is very slow [32].Bulky and highly donating ligands overcome this limitation;for example,P(t -Bu)3[31] and 2-(di-t -butylphosphino)biphenyl (18c ) [33] provided highly active catalysts for chloroarenes even at room temperature.The high reactivity of these catalysts is attributable to a strong electron-donating ability to the metal center and the ready dissociation of the ligand to generate a coordinatively unsaturated species.However,it was also noted that less bulky phosphines,such as P(Cy)3[31],(dicyclohexylphosphino)arylphosphines (18b and 20b ) [33,34],19[35]and N-heterocyclic carbene (21) [36,37],are more practical ligands yielding stable catalysts at higher temperature.On the other hand,the biaryl coupling of activated chloroarenes possessing an electron-withdrawing group [38],chloro-pyridines [39,40,41] and chloroquinolines [42] is well catalyzed by triphenyl-phosphine/palladium or bisphosphime/palladium complexes.Palladacycles 16N.Miyaura Scheme 5.Ligands for palladium catalysts(15 [43],16 [44]and 17 [45]) exhibited exceptionally high catalyst-efficiency in the biaryl coupling of arylboronic acids.The highest turnover number of cata-lyst (TON) achieved for 4-bromoacetophenone was 74,000 with 16and 1,000,000with 17.Biaryl coupling by ligand 18c [33]:A flask was charged with Pd(OAc)2(0.01mmol),18c (0.02mmol),arylboronic acid (1.5mmol),and KF (3mmol).The flask was evacuated and backfilled with argon,and THF (1ml) and chloroarene (1mmol) were then added.The mixture was stirred at room temperature until the starting chloroarene was completely consumed (2–24h).The reaction with phenylboronic acid:4-chloroanisole (6h,93%),2-chloroanisole (24h,96%),4-chlorotoluene (6h,95%),methyl 4-chlorobenzoate (2h,91%),3-chloropyri-dine (9h,94%).Biaryl coupling by ligand 21[36]:A Schlenk tube charged with Pd 2(dba)3(0.015mmol) and 21(0.03mmol) and Cs 2CO 3(2mmol) was flushed with argon.1,4-Dioxane (3ml),chloroarene (1mmol) and arylboronic acid (1.5mmol) were added,and the mixture was then stirred for 1.5–2 h at 80°C.The nickel catalyst has an advantage over the palladium/phosphine complex-es because of their high catalyst activity for chloroarenes [28,46] and mesylates[47] [Scheme 6].Preliminary study for the reaction of chloroarenes had been carried out in dioxane in the presence of NiCl 2(dppf) and K 3PO 4·nH 2O [28,46],but NiCl 2/PPh 3complexes are desirable in large-scale preparation in industry.The triphenylphosphine complex achieved higher catalyst efficiency than that of dppf when using toluene as the solvent [29].The reduced nickel catalyst supported on charcoal [48] and NiCl 2(bipyridine) [49] also had been studied as the catalyst for analogous biaryl coupling.The nickel(II) complexes catalyze the reaction of ate-complexes of aryl- or 1-alkenylboronates (e.g.,23) [50] under very mild conditions.The vinyl-vinyl or aryl-aryl coupling of iodo- or bromo-alkenes [50,51],allyl acetates [52],and aryl mesylates [53] proceeded smoothly at room temperature in the presence of NiCl 2(PPh 3)2.Synthesis of 22[29]:NiCl 2(PPh 3)2(0.03mmol),PPh 3(0.06mmol),4-tolyl-boronic acid (1.3mmol),and K 3PO 4·nH 2O (2.6mmol) were added to a flask flushed with argon.Toluene (2ml) and 2-chlorobenzonitrile (1.0mmol) were then added.The resulting mixture was stirred at 80°C for 2h.Chromatography over silica gel gave 22(97%).Organoboron Compounds in Cross-Coupling Reaction17Scheme 6.Nickel-catalyzed cross-coupling reactionA free-phosphine palladium generated in situ from Pd(OAc)2is an excellent catalyst for biaryl coupling in water or in aqueous organic solvents (Scheme 7).The advantage of such ligandless catalyst is that it eliminates phosphine-related side reactions such as aryl-aryl exchange and phosphonium salt formation (see,section 3–2),and achieves high catalyst efficiency allowing for shorter reaction times and high turnover of the catalyst.The catalyst completed the reaction of water-soluble bromoarenes (24) within 2h at room temperature [54].On the other hand,Pd(OAc)2,[(h 3-C 3H 5)PdCl]2,or Pd 2(dba)3in aqueous acetone was recognized to be the best combination for water-insoluble bromo- and iodoarenes (25).Ligandless palladiums significantly shortened the reaction time than that of phosphine complexes [55].Addition of 1 equivalent of Bu 4NBr to the bromides (26) allowed the quantitative reaction in a single water phase with 0.2mol% of Pd(OAc)2[56,57].The role of Bu 4NBr is not known,but it will act for generating or stabilizing a fine metallic palladium.A novel solventless biaryl coupling of arylboronic acids was recently carried out in a solid-phase of KF/g -alumina in the presence of palladium black [58].Biaryl coupling of 26[57]:p -Tolylboronic acid (2.2mmol),26(2mmol),Pd(OAc)2(0.2mol%),Na 2CO 3(5mmol) and Bu 4NBr (2mmol) were added to a flask and flushed with argon.Water (2.2ml) was then added and the resulting suspension was stirred for 2h at 70°C.The product was extracted with EtOAc,dried (Na 2SO 4),and chromatographed on silica gel to give the biaryl (98%).Although the ligandless catalysts often achieve significantly fast coupling in aqueous media,complete conversion can not be always possible,especially for the slow reactions of electron-rich and sterically hindered haloarenes.The addi-tion of more than two phosphines is generally recommended to avoid the pre-18N.MiyauraScheme 7.Ligandless palladium catalystscipitation of palladium-black by stabilizing the resting state of the palladium species.Various water-soluble phosphines are now available for the catalyzed reactions in aqueous media (Scheme 8).Sulfonated phosphines such as TPPMS and TPPTS are a traditional ligand for homogeneous palladium or rhodium catalysts in aqueous media,which are now utilized in several industrial processes [59].Hoechst succeeded in replacing a previous five-step synthesis of 2-cyano-4¢-methylbiphenyl to the one-step process using a cross-coupling reaction of p -tolylboronic acid with 2-chloro-benzonitrile in aqueous media in the presence of a Pd/TPPTS catalyst (50–100tons/year) [59,60].The reaction in aqueous media offers advantages in large-scale industrial processes because of the simplicity of catalyst-product separa-tion,economy,and safety in using water as the solvent [61].The glycosides of triphenylphosphine 28 [62]and 29(GLCAphos) [63] are a new ligand which achieved higher turnover numbers of the catalyst (7100–9000) than TPPTS in a two-phase basic aqueous-organic or in a single basic aqueous media.Due to the electron-withdrawing property of the SO 3Na group (s m =0.30),the relative effi-ciency is in the order of the electron-donating ability of phosphines (28~29>TPPMS >TPPTS).Water-insoluble solid and liquid haloarenes as well as water-soluble haloarenes were promoted the reaction to completion at 80°C in a single aqueous media [63].Biaryl coupling by TPPMS [61]:To an aqueous solution of Na 2PdCl 4(0.242mmol) was added a solution of TPPMS (0.863mmol) in ethanol (5ml).After being stirred for 5min,the mixture was then treated with activated zinc powder (0.09g) for 1h.The mixture was filtered through Celite,concentrated in vacuo ,and layered with t -BuOH to give air-sensitive yellow crystals of Pd[PPh 2(TPPMS]3(H 2O)4in a yield of 94%.A solution of p -tolylboronic acid (1mmol) in EtOH (5ml) was added to a solution of 4-BrC 6H 4SO 3Na (1.25mmol),Na 2CO 3(2mmol),and the above catalyst (0.06mmol) in water (5ml).The mix-Organoboron Compounds in Cross-Coupling Reaction19Scheme 8.Water-soluble ligands20N.Miyaura ture was stirred for 7h at 80°C.The solid precipitated was filtered,washed with water,benzene,and ether,to give the analytically pure biaryl.The filtrate from the initial filtration was concentrated in vacuo and refiltered to give a second crop of the biaryl (78%).Biaryl coupling by ligand 29[63]:Pd(OAc)2(0.001mmol),GLCAphos 29 (0.004mmol) and arylboronic acid (1.3mmol) were added.The flask was flushed with argon and then charged with degassed H2O (2ml),K3PO4(2M solution,2mmol),and aryl halides (1.0mmol).After being stirred for 16h at 80°C,chromatography on silica gel gave biaryl.The basic problems of homogeneous catalysts incurred at separation and recy-cling of the catalyst can be solved by using a supported metal catalyst or by carry-ing the reaction in a liquid-liquid two-phase system,particularly for industrial applications [1,59].The cross-coupling reaction of organoboronic acids proceeds smoothly even in a multi-phase system consisting of a solid catalyst,an organic solvent,and an aqueous base (Scheme 9).Palladium supported on charcoal (Pd/C)[64] or clay [65] and a reduced nickel on charcoal (Ni(NO3)2/C/BuLi) [48] have been used for the biaryl-coupling of arylboronic acids.A palladium-phos-phine complex supported on polystyrene resin (30) catalyzed the reaction of vinyl- and arylboronic acids with organic halides or triflates in a two-phase sys-tem of using toluene and aqueous base [41,66,67].Deloxan consists of a cross-linked macroporous polysiloxane backbone (31) and is a commercially available resin which catalyzed the biaryl coupling in refluxing aqueous isopropanol [68].A palladium supported on amphiphilic resin (32) was used for the coupling reaction of arylboronic acids with haloarenes or allyl acetates [69].By combining a highly unsaturated palladium complex and an amphiphilic poly(ethylene glycol) graft resin,the reaction was carried out at room temperature in a single water media. Unlike Pd(PPh3)4,these supported catalysts are stable to air,easily separated fromthe reaction mixture,and can be reused with no significant decrease in activity.Scheme9.Polymer-supported catalysts3.1.2Bases and SolventsThe cross-coupling reaction of organoboronic acids,in general,require the pres-ence of a negatively charged base,such as sodium or potassium carbonate,phos-phate,and hydroxide (1.5~2 equivalents),which is used as aqueous solution,oras suspension in toluene,dioxane,DME or DMF.A combination of a base and a phase transfer catalyst such as Bu4NX is also used successfully.Aqueous Na2CO3is a mild base effective for the biaryl-coupling reaction of arylboronic acids.However,the slow reaction of mesitylboronic acid with iodobenzene revealed the following order of reactivity;TlOH > Tl2CO3 ~ Ba(OH)2> NaOH > K3PO4> Na2CO3> NaHCO3[70,71].Among them,Ba(OH)2 was recognized to be the best base for the synthesis of sterically crowded 2,6,2¢-trisubstituted biaryls from ortho-disubstituted haloarenes or arylboronic acids [70,72–74] (Scheme 10).Since the transmetalation involves nucleophilic substi-tution of Pd-X (path A or B in Scheme 1),a strong base is recommended when several ortho substituents are in the halides or the boronic acids.The substitu-tion of metal halides with thallium,barium,or silver nucleophiles is significant-ly faster than that of sodium or potassium due to the irreversible formation of highly insoluble metal salts.Biaryl coupling induced by Ba(OH)2[70]:A flask was charged with Pd(PPh3)4 (0.02mmol),mesitylboronic acid (1.1mmol),and Ba(OH)2·8H2O (1.5mmol), and flushed with nitrogen.DME (6ml),H2O (1ml) and 1-bromonaphthalene (1mmol) were added.The resulting mixture was then stirred overnight at 80°C. Chromatography over silica gel gave the biaryl (86%).Scheme10.Ba(OH)2for the synthesis of sterically hindered biarylsThe cross-coupling reaction of1-alkenylboronic acids with 1-halo-1-alkenes requires a relatively stronger base than that of arylboronic acids [13],in the order of K3PO4< NaOH < Ag2O < TlOH [75] (Scheme 11).Aqueous TlOH solu-tion exhibited an exceptionally large accelerating effect,completing the reaction within 1h at room temperature.These significantly mild conditions modified by Kishi have been successfully applied to the syntheses of palytoxine [75] and other various natural products including a stereodefined conjugate dienes or trienes [76–78].The difficulties encountered during the reaction in basic solutions are saponification of the esters,racemization of optically active compounds,Aldolcondensation of carbonyl compounds or hydrolytic B-C bond cleavage.These difficulties associated with bases can be overcome by the heterogeneous use of the bases.Esters can remain intact in two-phase systems using an aqueous NaOH and toluene [79],or a solid K 3PO 4·nH 2O,or Cs 2CO 3suspended in DMF,dioxane or toluene [8].For example,the synthesis of arylalanine suffered from base-induced racemization,but the optically pure compound was finally obtained when anhydrous K 2CO 3was suspended in toluene [80].However,the presence of some water or the use of hydrated inorganic bases is preferable since the reaction is greatly accelerated in the presence of some water [81].The cross-coupling reaction of 2-cyanophenylboronate suffered from incomplete con-version of the haloarene due to fast hydrolytic B-C bond cleavage,but it finally furnished an antagonist of D3/D2/5-HT2 (E2040) within 30min on addition of an 8 equivalents of water to K 3PO 4·2H 2O [82] (Scheme 12).Such large acceler-Scheme 11.Effect ofbases on vinyl-vinyl couplingScheme 12.Effect of H 2O on reaction ratesating effect of water is observed commonly in other coupling reactions of organoboron compounds.Fluoride salts such as CsF and Bu4NF (2–3 equivs) are a mild base accelerat-ing the coupling reaction of such substrates sensitive to bases [83] (Scheme 13). Although the reaction is slow for sterically crowded halides or boronic acids,a wide range of functional groups is tolerated.Scheme13.Fluoride bases for cross-coupling3.2Side ReactionsThe side reactions giving undesirable homocoupling products are summarized [Scheme 14].The Grignard reagent has suffered from the homocoupling result-ing from the metal-halogen exchange reaction.The metathesis of R-M-X to R2M and MX2(M=Ni,Pd) yields both dimers of electrophiles and organometallics [84a].The oxidative addition of the metal-carbon bonds to the low-valent tran-sition metals is another route leading to the dimer of organometallics [84b].The homocoupling of electrophiles derives from the oxidative addition involving an electron transfer mechanism [85].Although there are several probable process-Scheme14.Homocouplings in Pd- and Ni-catalyzed reactiones leading to homocoupling products,these reactions will not disturb the cou-pling reaction of organoboronic acids with palladium or nickel catalysts.3.2.1Participation of Phosphine-Bound ArylsTriarylphosphines are an excellent ligand to stabilize the palladium species; however,there is an undesirable side reaction of the aryl-aryl interchange between palladium- and phosphine-bound aryls leading to the coupling product of phosphine-bound aryls [86,87].The phenyl-coupling product (33) derived from triphenylphosphine was serious in electron-rich haloarenes,while it was obtained in very small amounts in electron-deficient haloarenes [88] (Scheme 15).On the other hand,the presence of an ortho-substituent effected to reduce such side-reaction.It is also interesting to note that bromoarenes always afford-ed better selectivity than the corresponding iodides,though iodoarenes had been widely used due to their high reactivity to a palladium(0) complex.Thus, the phosphine-bound aryls can participate in the cross-coupling reaction of electron-rich haloarenes having no steric hindrance of ortho substituent.Scheme15.Participation of triphenylphosphine (33)The aryl-aryl interchange is highly sensitive to electronic and steric effects of a phosphine ligand and haloarenes [89–91] (Scheme 16).An electron-donating group in either phosphine or haloarenes increased the aryl-aryl interchange whereas both withdrawing groups and steric hindrance of ortho-substituent reversely slowed down the equilibration.Since the interchange between 36and 38proceeds through phosphonium salt formation (37) [92,93],it is retarded by steric hindrance and is accelerated by electron-rich aryls stabilizing 37.The results indicate the superiority of sterically bulky and low donating phosphines for the ligand of a palladium catalyst,but donating phosphines having largesteric hindrance are generally recommended because of fast oxidative addition of organic halides to the coordinatively unsaturated and electron-rich complex-es.P(o -tolyl)3[89],P(t -Bu)3[31],(di-t -butylphosphino)- and (dicyclohexyl-phosphino)arenes (18–21) [33,34,36] have been successfully used,avoiding the participation of phosphine-bound aryls.The dppf complexes are better catalysts than that of triphenylphosphine to suppress such side reaction.The advantages of ligandless palladiums such as Pd(OAc)2are discussed in Scheme 7.The aryl exchange occurs before transmetalation;thus,the slow transmetala-tion due to steric and electronic reasons results in increasing the participation of phosphine-bound aryls.The transmetalation is slowed down in electron-rich haloarenes,but strong bases will sufficiently accelerate transmetalation relative to aryl-aryl interchange.The phenyl coupling product 33significantly decreased indeed in the order of basic strength:Na 2CO 3> K 3PO 4> NaOH [88] (Scheme 17).Scheme 16.Aryl-Aryl interchange (36to 38) at 50°C for 1hScheme 17.Effect of bases on selectivity。