2012中考数学分析统计及概率
- 格式:ppt
- 大小:616.50 KB
- 文档页数:2
山西省2012年高中阶段教育阶段学校招生统一考试数学10A(满分:120分 时间:120分钟)第Ⅰ卷(选择题,共24分)一、选择题(本大题共12个小题,每小题2分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求)1.计算-2-5的结果是( )A.-7B.-3C.3D.72.如图,直线AB ∥CD,AF 交CD 于点E,∠CEF=140°,则∠A 等于( )A.35°B.40°C.45°D.50° 3.下列运算正确的是( )A.√4=±2B.2+√3=2√3C.a 2·a 4=a 8D.(-a 3)2=a 64.为了实现街巷硬化工程高质量“全覆盖”,我省今年1~4月公路建设累计投资92.7亿元,该数据用科学记数法可表示为( ) A.0.927×1010元 B.92.7×108元 C.9.27×1011元 D.9.27×109元5.如图,一次函数y=(m-1)x-3的图象分别与x 轴、y 轴的负半轴相交于点A 、B,则m 的取值范围是( )A.m>1B.m<1C.m<0D.m>06.在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是( )A.14B.13C.12D.237.如图所示的工件的主视图是()8.小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,点E、F分别是矩形ABCD的两边AD、BC上的点,且EF∥AB,点M、N是EF上任意两点,则投掷一次,飞镖落在阴影部分的概率是()A.13B.23C.12D.349.如图,AB是☉O的直径,C、D是☉O上的点,∠CDB=20°,过点C作☉O的切线交AB的延长线于点E,则∠E等于()A.40°B.50°C.60°D.70°10.已知直线y=ax(a≠0)与双曲线y=kx(k≠0)的一个交点坐标为(2,6),则它们的另一个交点坐标是()A.(-2,6)B.(-6,-2)C.(-2,-6)D.(6,2)11.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE 的长是()A.5√3cmB.2√5cmC.485cm D.245cm12.如图是某公园的一角,∠AOB=90°,AB⏜的半径OA长是6米,C是OA的中点,点D在AB⏜上,CD∥OB,则图中休闲区(阴影部分)的面积是()A.(12π-92√3)米2B.(π-92√3)米2 C.(6π-92√3)米2 D.(6π-9√3)米2第Ⅱ卷(非选择题,共96分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)13.不等式组{3-2x <5,x -2≤1的解集是 .14.化简x 2-1x 2-2x+1·x -1x 2+x +2x的结果是 . 15.某市民政部门举行“即开式福利彩票”销售活动,发行彩票10万张(每张彩票2元),在这些彩票中,设置如下奖项:奖金(元) 10 000 5 000 1 000 500 100 50 数量(个) 1 4 20 40 100 200如果花2元钱购买1张彩票,那么所得奖金不少于1 000元的概率是 .16.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n 个图案中阴影小三角形的个数是 (用含有n 的代数式表示).17.图1是边长为30 cm 的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是 cm 3.18.如图,在平面直角坐标系中,矩形OABC 的对角线AC 平行于x 轴,边OA 与x 轴正半轴的夹角为30°,OC=2,则点B 的坐标是 .三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本题共2个小题,第1小题5分,第2小题7分,共12分) (1)计算:(-5)0+√12cos 30°-(13)-1; (2)先化简,再求值.(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=-√3.20.(本题7分)解方程:23x-1-1=36x-2.10B21.(本题6分)实践与操作:如图1是以正方形两顶点为圆心,边长为半径,画两段相等的圆弧而成的轴对称图形,图2是以图1为基本图案经过图形变换拼成的一个中心对称图形.(1)请你仿照图1,用两段相等的圆弧(小于或等于半圆),在图3中重新设计一个不同的轴对称图形;(2)以你在图3中所画的图形为基本图案,经过图形变换在图4中拼成一个中心对称图形.22.(本题8分)今年太原市提出城市核心价值观:“包容、尚德、守法、诚信、卓越”.某校德育处为了解学生对城市核心价值观中哪一项内容最感兴趣,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题:(1)填空:该校共调查了名学生;(2)请分别把条形统计图和扇形统计图补充完整;(3)若该校共有3000名学生,请你估计全校对“诚信”最感兴趣的人数.23.(本题9分)如图,为了开发利用海洋资源,某勘测飞机欲测量一岛屿两端A、B的距离,飞机在距海平面垂直高度为100米的点C处测得端点A的俯角为60°,然后沿着平行于AB的方向水平飞行了500米,在点D处测得端点B的俯角为45°,求岛屿两端A、B的距离.(结果精确到0.1米.参考数据:√3≈1.73,√2≈1.41)24.(本题10分)山西特产专卖店销售核桃,其进价为每千克40元.按每千克60元出售,平均每天可售出100千克.后来经过市场调查发现,单价每降低2元,则平均每天的销售量可增加20千克.若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?25.(本题12分)问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC 于点N,试判断线段OM与ON的数量关系,并说明理由.图1探究展示:小宇同学展示出如下正确的解法:解:OM=ON.证明如下:连结CO,则CO是AB边上的中线.∵CA=CB,∴CO是∠ACB的角平分线.(依据1)∵OM⊥AC,ON⊥BC,∴OM=ON.(依据2)反思交流:(1)上述证明过程中的“依据1”和“依据2”分别是指:依据1:;依据2:;(2)你有与小宇不同的思考方法吗?请写出你的证明过程;拓展延伸:(3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连结OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程.图226.(本题14分)综合与探究:如图,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,点D是该抛物线的顶点.(1)求直线AC的解析式及B、D两点的坐标;(2)点P是x轴上一个动点,过P作直线l∥AC交抛物线于点Q.试探究:随着P点的运动,在抛物线上是否存在点Q,使以点A、P、Q、C为顶点的四边形是平行四边形.若存在,请直接写出....符合条件的点Q的坐标;若不存在,请说明理由;(3)请在直线AC上找一点M,使△BDM的周长最小,求出M点的坐标.山西省2012年高中阶段教育阶段学校招生统一考试一、选择题1.A将有理数的减法转化为有理数的加法,-2-5=-2+(-5)=-7,故选A.2.B本题考查平行线的性质.因为∠CEF=140°,所以∠FED=40°,又AB∥CD,所以∠A=40°,故选B.3.D根据运算法则进行判断,√4=2,故A错误;由于有理数与无理数不能合并,故B错误;a2·a4=a6,故C错误;(-a3)2=(-1)2·(a3)2=a6,D正确,故选D.评析熟练掌握运算法则是解决此类问题的关键.4.D92.7亿=92.7×108=9.27×109,故选D.评析本题主要考查用科学记数法表示一个较大数的方法.熟记科学记数法的表示形式即a×10n或a×10-n(其中1≤|a|<10,n为整数)是解题关键,注意数字后带有单位时不可忽略其单位.5.B本题考查一次函数的性质,由图象知一次函数y=(m-1)x-3经过二、三、四象限,得m-1<0,解得m<1,故选B.6.A本题考查概率的计算,将摸球情况列树状图或列表如下:第一次第二次白球黑球白球白球,白球白球,黑球黑球黑球,白球黑球,黑球从树状图或列表法分析可知随机摸出一球,摸两次共有四种情况,其中两次都摸到黑球的情况只有一种,所以两次都摸到黑球的概率是14,故选A.7.B主视图即为从正面看到的图形,主视图看到的是一个梯形与一个三角形,故选B.8.C根据三角形面积公式及矩形的面积公式得矩形ABFE的面积是三角形ABM面积的2倍,矩形EFCD的面积是三角形CDN面积的2倍,故阴影部分的面积等于矩形ABCD的面积的一半,所以飞镖落在阴影部分的概率是12,故选C.9.B连结OC,则∠OCE=90°,由同弧所对的圆周角相等得∠A=∠CDB=20°,所以∠COE=40°,所以∠E=90°-40°=50°,故选B.10.C正比例函数图象与双曲线的图象的交点关于原点中心对称,所以由一个交点坐标为(2,6),可以推得另一个交点坐标是(-2,-6),故选C.11.D由菱形的性质知菱形边长为√32+42=5(cm),所以S菱形=12×6×8=5AE,解得AE=245(cm),故选D.评析菱形面积的两种计算方法:一是对角线乘积的一半,二是底乘以高.12.C因为∠AOB=90°,CD∥OB,所以∠OCD=90°,又因为C为OA的中点,所以OD=OA=2OC,所以∠BOD=∠CDO=30°,所以∠DOC=60°,所以CD=sin60°·OD=sin60°·OA=3√3,S阴影=S扇形AOD -S△DOC=60×π×62360-12×3×3√3=(6π-92√3)米2,故此题选C.二、填空题13.答案-1<x≤3解析解不等式3-2x<5得x>-1,解不等式x-2≤1得x≤3,所以不等式组的解集是-1<x≤3.评析 本题主要考查确定不等式组的解集的两种方法:一是数轴法,即分别将两个不等式的解集表示在数轴上,然后通过观察数轴确定不等式组的解集;二是口诀法,即根据大大取大,小小取小,大小小大中间找,大大小小为空集的原则确定不等式组的解集. 14.答案 3x解析x 2-1x 2-2x+1·x -1x 2+x +2x=(x+1)(x -1)(x -1)2·x -1x(x+1)+2x =1x +2x =3x.15.答案 1 4 000(或0.000 25)解析 观察统计表可以知道所得奖金不少于1 000元的彩票有1+4+20=25张,所以所得奖金不少于1 000元的概率是25100 000=14 000(或0.000 25).16.答案 4n-2(或2+4(n-1))解析 第一个图案有正三角形2个;第二个图案有正三角形6个;第三个图案有正三角形10个;第四个图案有正三角形14个;……,即后面的每一个图案比前面一个图案多4个正三角形,所以第n 个图案中正三角形的个数用含有n 的代数式表示是4n-2(或2+4(n-1)). 17.答案 1 000解析 设长方体的高为x cm,则长方体的宽为2x cm,由题图可知x+2x+x+2x=30,解得x=5,所以长方体的宽为10 cm,故长方体的长为30-2×5=20(cm),故长方体的体积为5×10×20=1 000(cm 3).18.答案 (2,2√3)解析 作BE ⊥y 轴于E,BF ⊥AC 交AC 于F,设BC 交y 轴于点M,AC 交y 轴于点N,由于OA 与x 轴正半轴的夹角为30°,所以∠CON=30°,因为OC=2,所以CN=1,ON=√3,在△CNM 中,因为∠MCN=30°,所以MN=√33,由题意得BF=EN=ON=√3,所以EM=2√33,因为△CNM ∽△BEM,所以EM NM =EBCN ,所以2√33√33=EB1,解得BE=2,所以点B 的坐标是(2,2√3).评析 本题主要考查矩形的性质、相似三角形的判定和性质以及坐标系中点的坐标特征的综合应用,在填空题中,属于较难题.三、解答题19.解析(1)原式=1+2√3×√32-3(4分)=1+3-3=1.(5分)(2)原式=4x2-9-4x2+4x+x2-4x+4(8分)=x2-5.(10分)当x=-√3时,原式=(-√3)2-5=3-5=-2.(12分)20.解析方程两边同时乘以2(3x-1),得4-2(3x-1)=3.(2分)化简,得-6x=-3,解得x=12.(6分)检验:x=12时,2(3x-1)=2×(3×12-1)≠0.所以,x=12是原方程的解.(7分)评分说明:检验时,将x=12代入原方程检验或写“经检验……”,均可给分.21.解析(1)在题图3中设计出符合题目要求的图形.(2分)(2)在题图4中画出符合题目要求的图形.(6分)评分说明:此题为开放性试题,答案不唯一,只要符合题目要求即可给分.22.解析(1)500.(2分)(2)补全条形统计图(如图1).图1(4分)补全扇形统计图(如图2).图2(6分)(3)3000×25%=750(人),或3000×125500=750(人).答:该校对“诚信”最感兴趣的学生约750人.(8分)23.解析过点A作AE⊥CD于点E,过点B作BF⊥CD于点F,则四边形ABFE为矩形.∴AB=EF,AE=BF.由题意可知:AE=BF=100,CD=500.(2分)在Rt△AEC中,∠C=60°,AE=100.∴CE=AEtan60°=√3=1003√3.(4分)在Rt△BFD中,∠BDF=45°,BF=100,∴DF=BFtan45°=1001=100.(6分)∴AB=EF=CD+DF-CE=500+100-1003√3≈600-1003×1.73≈600-57.67≈542.3(米).(8分)答:岛屿两端A、B的距离为542.3米.(9分)评分说明:其他解法请参照给分.24.解析(1)设每千克核桃应降价x元.(1分)根据题意,得(60-x-40)(100+x2×20)=2240.(4分)化简,得x2-10x+24=0.解得x1=4,x2=6.(6分)答:每千克核桃应降价4元或6元.(7分)(2)由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.(8分)此时,售价为60-6=54(元),5460×100%=90%.(9分)答:该店应按原售价的九折出售.(10分)25.解析(1)依据1:等腰三角形三线合一(或等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合).(1分)依据2:角平分线的性质(或角平分线上的点到角的两边的距离相等).(2分)评分说明:考生答案只要与定理内容意思相同即可给分.(2)证明:∵CA=CB,∴∠A=∠B.∵O是AB的中点,∴OA=OB.∵DF⊥AC,DE⊥BC,∴∠AMO=∠BNO=90°.∴△OMA≌△ONB(AAS).(4分)∴OM=ON.(5分)评分说明:此题有多种证法,其他证法可参照给分.(3)OM=ON,OM⊥ON.(6分)(注:两个结论都正确只给1分,若考生此处未写两个结论,但在证明过程中有此结论,且证明正确,可不扣分)证明如下:证法一:如图1.连结CO,则CO是AB边上的中线.图1∵∠ACB=90°,∴OC=12AB=OA.(7分)又∵CA=CB,∴∠CAB=∠B=45°,∠1=∠2=45°, ∠AOC=∠BOC=90°. ∴∠2=∠CAB=45°,∴∠OCN=∠OAM=135°.(8分)∵FM ⊥MC,∴∠DMC=90°.∵∠3=∠CAB=45°,∴∠4=45°.∴∠3=∠4.∴DM=AM.(9分)∵∠ACB=90°,∴∠NCM=90°.又∵BN ⊥DE,∴∠DNC=90°.∴ 四边形DMCN 是矩形.∴DM=CN.∴AM=CN.(10分)∴△OAM ≌△OCN(SAS).∴OM=ON,∠5=∠6.(11分)∵∠AOC=90°,即∠5+∠7=90°.∴∠6+∠7=90°,即∠MON=90°.∴OM ⊥ON.(12分) 证法二:如图2.连结CO,则CO 是AB 边上的中线.图2∵∠ACB=90°,∴OC=12AB=OB.(7分) 又∵CA=CB,∴∠CAB=∠B=45°, ∠1=∠2=45°,∠AOC=∠BOC=90°. ∴∠1=∠B.(8分)∵BN ⊥DE,∴∠BND=90°.又∵∠B=45°,∴∠3=45°.∴∠3=∠B.∴DN=NB.同证法一可得,四边形DMCN 是矩形.∴DN=MC.(9分)∴MC=NB.(10分)∴△MOC ≌△NOB(SAS).∴OM=ON.(11分) ∠MOC=∠NOB.∴∠MOC-∠4=∠NOB-∠4. 即∠MON=∠BOC=90°.∴OM ⊥ON.(12分)评分说明:此题还有其他证法(如过点O 作OP ⊥AC 于点P,OQ ⊥BC 于点Q,通过证明Rt △OPM ≌Rt △OQN 得证),可参照给分.26.解析 (1)当y=0时,-x 2+2x+3=0,解得x 1=-1,x 2=3.∵点A 在点B 的左侧,∴A 、B 的坐标分别为(-1,0)、(3,0).当x=0时,y=3.∴C 点的坐标为(0,3).设直线AC 的解析式为y=k 1x+b 1(k 1≠0),则{b 1=3,-k 1+b 1=0,解得{k 1=3,b 1=3,∴直线AC 的解析式为y=3x+3.∵y=-x 2+2x+3=-(x-1)2+4.∴顶点D 的坐标为(1,4).(4分)评分说明:求出直线AC 的解析式给2分,求出B 、D 两点的坐标各1分,共4分.(2)抛物线上有三个这样的点Q,分别为Q 1(2,3),Q 2(1+√7,-3),Q 3(1-√7,-3).(7分)(3)过点B 作BB'⊥AC 于点F,使B'F=BF,则B'为点B 关于直线AC 的对称点.连结B'D 交直线AC 于点M,则点M 为所求.(8分)过点B'作B'E ⊥x 轴于点E.∵∠1和∠2都是∠3的余角,∴∠1=∠2. ∴Rt △AOC ∽Rt △AFB.∴CO BF =CA AB , 由A(-1,0),B(3,0),C(0,3)得OA=1,OB=3,OC=3.∴AC=√10,AB=4. ∴3BF =√104.∴BF=√.∴BB'=2BF=√.(10分)由∠1=∠2可得Rt △AOC ∽Rt △B'EB, ∴AO B'E =CO BE =CA BB',∴1B'E =3BE =√1024√10,即1B'E =3BE =512. ∴B'E=125,BE=365.∴OE=BE-OB=365-3=215. ∴B'点的坐标为(-215,125).(12分) 设直线B'D 的解析式为y=k 2x+b 2(k 2≠0). ∴{k 2+b 2=4,-215k 2+b 2=125,解得{k 2=413,b 2=4813,∴y=413x+4813.(13分) 由{y =3x +3,y =413x +4813,解得{x =935,y =13235, ∴M 点的坐标为(935,13235).(14分)评分说明:其他解法可参照给分.。
中考数学概率知识点归纳一天天积累,一点点努力,一步步前进,一滴滴汇聚,终于到了中考这一天。
放松心情,面带微笑,保持信心,你必将拥有灿烂的人生。
祝中考顺利!下面是小编给大家带来的中考数学概率知识点,欢迎大家阅读参考,我们一起来看看吧!中考数学概率知识点:随机事件1.随机事件的定义.2·计算简单事件概率的方法,重点学习了两种随机事件概率的计算方法,第一种,只涉及一步实验的随机事件发生的概率,如根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种,通过列表法、列举法、树形图来计算涉及两步或两步以上实验的随机事件发生的概率,如配紫色,对游戏是否公平的计算.3·利用频率估计概率,分为如下两种情况:第一种,利用实验的方法进行概率估算;第二种,利用模拟实验的方法进行概率估算.如利用计算器产生随机数来模拟实验的方法.4.体会大量重复实验中的频率与事件发生的概率之间的关系,通过设计简单的概率模型.重在对事件发生可能性的刻画,来帮助人们在不确定的情境中做出合理的决策,如通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型.中考数学备考知识点:随机事件发生的可能性随机事件发生的可能性一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
对随机事件发生的可能性的大小,我们利用反复试验所获取一定的经验数据可以预测它们发生机会的大小。
要评判一些游戏规则对参与游戏者是否公平,就是看它们发生的可能性是否一样。
所谓判断事件可能性是否相同,就是要看各事件发生的可能性的大小是否一样,用数据来说明问题。
中考数学知识点总结:概率统计的9个考点考点1:确定事件和随机事件考核要求:(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。
考点2:事件发生的可能性大小,事件的概率考核要求:(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。
中考数学一轮复习专题解析—统计与概率复习目标1.能根据具体的实际问题或者提供的资料,运用统计的思想收集、整理和处理一些数据,并从中发现有价值的信息,在中考中多以图表阅读题的形式出现;2.了解总体、个体、样本、平均数、加权平均数、中位数、众数、极差、方差、频数、频率等概念,并能进行有效的解答或计算;3.能够对扇形统计图、列频数分布表、画频数分布直方图和频数折线图等几种统计图表进行具体运用,并会根据实际情况对统计图表进行取舍;4.在具体情境中了解概率的意义;能够运用列举法(包括列表、画树状图)求简单事件发生的概率.能够准确区分确定事件与不确定事件;考点梳理一、数据的收集及整理1.一般步骤:调查收集数据的过程一般有下列六步:明确调查问题、确定调查对象、选择调查方法、展开调查、记录结果、得出结论.2.调查收集数据的方法:普查与抽样调查.要点诠释:(1)通过调查总体的方式来收集数据的,抽样调查是通过调查样本方式来收集数据的.(2)一般地,当总体中个体数目较多,普查的工作量较大;受客观条件的限制,无法对所有个体进行普查;或调查具有破坏性时,不允许普查,这时我们往往会用抽样调查来体现估计总体的思想.(3)用抽签的办法决定哪些个体进入样本.统计学家们称这种理想的抽样方法为简单的随机抽样.3.数据的统计:条形统计图、折线统计图、扇形统计图是三种最常用的统计图.【特别提醒】这三种统计图各具特点:条形统计图可以直观地反映出数据的数量特征;折线统计图可以直观地反映出数据的数量变化规律;扇形统计图可以直观地反映出各部分数量在总量中所占的份额.例1. 连云港市实行中考改革,需要根据该市中学生体能的实际情况重新制定中考体育标准.为此,抽取了50名初中毕业的女学生进行“一分钟仰卧起坐”次数测试.测试的情况绘制成表格如下:次数 6 12 15 18 20 25 27 30 32 35 36 人数 1 1 7 18 10 5 2 2 1 1 2⑴求这次抽样测试数据的平均数、众数和中位数;⑵根据这一样本数据的特点,你认为该市中考女生“一分钟仰卧起坐”项目测试的合格标准应定为多少次较为合适?请简要说明理由;⑶根据⑵中你认为合格的标准,试估计该市中考女生“一分钟仰卧起坐”项目测试的合格率是多少?【答案】⑴该组数据的平均数众数为18,中位数为18;⑵该市中考女生一分钟仰卧起坐项目测试的合格标准应定为18次较为合适,因为众数及中位数均为18,且50人中达到18次的人数有41人,确定18次能保证大多数人达标;⑶根据⑵的标准,估计该市中考女生一分钟仰卧起坐项目测试的合格率为82%.二、数据的分析1.基本概念:总体:把所要考查的对象的全体叫做总体;个体:把组成总体的每一个考查对象叫做个体;样本:从总体中取出的一部分个体叫做总体的一个样本;样本容量:样本中包含的个体的个数叫做样本容量;频数:在记录实验数据时,每个对象出现的次数称为频数;频率:每个对象出现的次数与总次数的比值(或者百分比)称为频率;平均数:在一组数据中,用数据的总和除以数据的总个数就得到这组数据的平均数;中位数:将一组数据从小到大依次排列,位于正中间位置的数(或正中间两个数据的平均数)叫做这组数据的中位数;众数:在一组数据中,出现频数最多的数叫做这组数据的众数;极差:一组数据中的最大值减去最小值所得的差称为极差;方差:我们可以用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果通常称为方差.计算方差的公式:设一组数据是,是这组数据的平均数。
泰州市2002-2013年中考数学试题分类解析 专题07 统计与概率一、选择题1.(江苏省泰州市2002年4分)在青年业余歌手卡拉OK 大奖赛中,8位评委给某选手所评分数如下表,计算方法是:去掉一个最高分,去掉一个最低分,其余分数的平均分作为该选手的最后得分,则该选手最后得分是【 】(精确到0.01)A 、9.70B 、9.71C 、9.72D 、9.732.(江苏省泰州市2005年3分)某工厂为了选拔1名车工参加加工直径为10mm 的精密零件的技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,请你用计算器比较S 2甲、S 2乙的大小【 】A .S 2甲>S 2乙B .S 2甲=S 2乙 C .S 2甲<S 2乙 D .S 2甲≤S 2乙3.(江苏省泰州市2005年3分)下列说法正确的是【】A.抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大.B.为了了解泰州火车站某一天中通过的列车车辆数,可采用普查的方式进行.C.彩票中奖的机会是1%,买100张一定会中奖.D.泰州市某中学学生小亮,对他所在的住宅小区的家庭进行调查,发现拥有空调的家庭占65%,于是他得出泰州市拥有空调家庭的百分比为65%的结论.4.(江苏省泰州市2006年3分)下列说法正确的是【】A.为了了解我市今年夏季冷饮市场冰淇淋的质量可采用普查的调查方式进行.B.为了了解一本300页的书稿的错别字的个数,应采用普查的调查方式进行.C.销售某种品牌的鞋,销售商最感兴趣的是所销售的鞋的尺码的平均数.D.为了了解我市九年级学生中考数学成绩,从所有考生的试卷中抽取1000份试卷进行统计分析,在这个问题中,样本是被抽取的1000名学生.5.(江苏省泰州市2006年3分)投掷一枚普通的正方体骰子,四位同学各自发表了以下见解:①出现“点数为奇数”的概率等于出现“点数为偶数”的概率.②只要连掷6次,一定会“出现一点”.③投掷前默念几次“出现6点”,投掷结果“出现6点”的可能性就会加大.④连续投掷3次,出现的点数之和不可能等于19.其中正确的见解有【】A. 1个 B.2个 C.3个 D.4个6.(江苏省泰州市2007年3分)下列说法正确的是【】A.小红和其他四个同学抽签决定从星期一到星期五的值日次序,她第三个抽签,抽到星期一的概率比前两个人小B.某种彩票中奖率为10%,小王同学买了10张彩票,一定有1张中奖C.为了了解一批炮弹的杀伤半径,应进行普查D.晚会前,班长对全班同学爱吃哪几种水果作了民意调查,最终买什么水果由众数决定7.(江苏省泰州市2008年3分)有下列事件:①367人中必有2人的生日相同;②抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于等于2;③在标准大气压下,温度低于0℃时冰融化;④如果a、b为实数,那么a+b=b+a.其中是必然事件的有【】A.1个 B.2个 C. 3个 D.4个8.(江苏省2009年3分)某商场试销一种新款衬衫,一周内销售情况如下表所示:商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是【】A.平均数B.众数C.中位数D.方差9.(江苏省泰州市2011年3分)为了了解某市八年级学生的肺活量,从中抽样调查了500名学生的肺活量,这项调查中的样本是【】A.某市八年级学生的肺活量 B.从中抽取的500名学生的肺活量C.从中抽取的500名学生 D.50010.(2012江苏泰州3分)有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确..的是【】A.事件A、B都是随机事件B.事件A、B都是必然事件C.事件A是随机事件,事件B是必然事件D.事件A是必然事件,事件B是随机事件11.(2013年江苏泰州3分)事件A:打开电视,它正在播广告;事件B:抛掷一个均匀的骰子,朝上的点数小于7;事件C:在标准大气压下,温度低于0℃时冰融化.3个事件的概率分别记为P(A)、P(B)、P(C),则P(A)、P(B)、P(C)的大小关系正确的是【】A.P(C)<P(A)=P(B) B.P(C)<P(A)<P(B)C.P(C)<P(B)<P(A) D.P(A)<P(B)<P(C)二、填空题1. (江苏省泰州市2003年3分)在5月24日《中国青年报》上刊登了这样一幅图:请用简洁的语言描述出2003年5月13日到5月23日我国内地新发现SARS病例的变化情况:▲2.(江苏省泰州市2004年3分)泰州地区六月份某一周每天最高气温如下表:则这一周的最高气温的中位数是▲ ℃.3.(江苏省泰州市2005年3分)九年级(1)班进行一次数学测验,成绩分为优秀、良好、及格、不及格四个等级.测验结果反映在扇形统计图上,如下图所示,则成绩良好的学生人数占全班人数的百分比是▲ _ %.4.(江苏省泰州市2006年3分)小明和小兵两人参加学校组织的理化实验操作测试,近期的5次测试成绩如右图所示,则小明5次成绩的方差S 12与小兵5次成绩的方差S 22之间的大小关系为S 12 ▲ _S 22.(填“>”、“<”、“=”)5.(江苏省泰州市2007年3分)数据1,3-,4,2-的方差2S = ▲ .6.(江苏省泰州市2008年3分)有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1、2、3、4、5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是▲ .7.(江苏省2009年3分)如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P(偶数),指针指向标有奇数所在区域的概率为P(奇数),则P(偶数)▲ P(奇数)(填“>”“<”或“=”).8.(江苏省泰州市2010年3分)数据-1,0,2,-1,3的众数为 ▲ .9.(江苏省泰州市2010年3分)一个均匀的正方体各面上分别标有数字1、2、3、4、5、6,这个正方体的表面展开图如图所示.抛掷这个正方体,则朝上一面所标数字恰好等于朝下一面所标数字的3倍的概率是 ▲ .10.(江苏省泰州市2011年3分)甲、乙两位同学参加跳远训练,在相同条件下各跳了6次,统计平均数乙甲x x ,方差22S S <乙甲,则成绩较稳定的同学是 ▲ (填“甲”或“乙”)。
北京市初中数学专题知识点I、数与代数部分:一、数与式:1、实数:1)实数的有关概念;常考点:倒数、相反数、绝对值(选择第1题,必考题4分) 2)科学记数法表示一个数(选择题第二题,必考4分)3)实数的运算法则:混合运算(解答题13题,必考4分)4)实数非负性应用:3、整式: 1)整式的概念和简单运算、化简求值(解答题5分)2)利用提公因式法、公式法进行因式分解(选择填空必考题4分)4、分式:化简求值、计算(解答题)、分式求取值范围(一般为填空题)(易错点:分母不为0)5、二次根式:求取值范围、化简运算(填空、解答题4分)二、方程与不等式:1、解分式方程(易错点:注意验根)、一元二次方程(常考解答题)2、解不等式、解集的数轴表示、解不等式组解集(常考解答题)3、解方程组、列方程(组)解应用题(若为分式方程仍勿忘检验)(必考解答题)4、一元二次方程根的判别式三、函数及其图像1、平面直角坐标系与函数1)函数自变量取值范围,并会求函数值;2)坐标系内点的特征;3)能结合图像对简单实际问题中的函数关系进行分析(选择8题)2、一次函数(通常与反比例函数相结合,以解答题形式出现。
)3、反比例函数4、二次函数(必考解答题,基本在24题出现,通常是求解析式以及与特殊几何图形综合,动态探究等,有时也在选择题第八题中出现。
)II、空间与图形一、图形的认识1、立体图形、视图和展开图(不是常考题型,但是如果出现则以选择题形式出现)2、线段、射线、直线(其中垂直平分线、线段中点性质及应用常在解答题中出现,两点间线段最短常用于解决路径最短的问题)3、角与角分线(解答题)4、相交线与平行线5、三角形(三角形的内角和、外角和、三边关系常以选择题形式出现,而三角形中位线的性质应用又是解答题中常用的添加辅助线的方法,其中有关三角形全等的性质、判定是必考解答题,三角形运动、折叠、旋转、平移(全等变换)、拼接等又是探究问题中的重要考点之一)6、等腰三角形与直角三角形(该考点常与四边形与圆相结合在解答题中出现,而与函数综合形成代数几何综合题,也是必考的解答题)7、多边形:内角和公式、外角和定理(选择题)8、四边形(特殊的平行四边形:性质、判定、以及与轴对称、旋转、平移和函数等结合应用以动点问题、面积问题及相关函数解析式问题出现,同时,梯形问题是中考中的必考解答题,而与四边形有关的图形探究题又是最后一道解答题25题的通常考察形式。
中考数学统计与概率基础知识概率与统计是数学中的一个重要分支,也是中考数学中的一项重要内容。
通过学习概率与统计的基础知识,我们能够更好地理解和应用数学在实际生活中的意义。
本文将从概率与统计的概念、统计数据的描述与分析以及概率的计算等方面介绍中考数学中的基础知识。
一、概率与统计的概念1. 概率的定义概率是指某一事件发生的可能性大小。
概率的取值范围为0-1,其中0表示不可能发生,1表示必然发生。
一般情况下,概率用一个介于0和1之间的实数表示。
2. 统计的定义统计是指通过收集、整理和分析数据,以了解和描述一定现象或现象的规律性。
统计可以帮助我们从大量的数据中提取有用的信息,为决策提供依据。
二、统计数据的描述与分析1. 数据的收集在进行统计分析之前,首先需要进行数据的收集。
数据的收集可以通过实地调查、问卷调查、实验观测等方式进行。
收集到的数据应具有代表性,以确保统计结果准确可靠。
2. 数据的整理收集到的数据需要进行整理,包括数据的录入、分类、排序等。
通过数据的整理,可以更好地进行后续的统计分析。
3. 数据的分析数据的分析包括描述性统计和推论性统计两个方面。
描述性统计主要是对数据的基本特征进行描述,包括频数、众数、中位数、均值等。
推论性统计则是通过样本数据的分析来推断总体的特征。
三、概率的计算1. 随机事件随机事件是在一定的条件下可能发生也可能不发生的事件。
在计算概率时,首先要确定随机事件的样本空间和样本点,并根据事件发生的可能性来计算概率。
2. 概率的计算方法概率的计算主要通过以下两种方法进行:频率法和几何法。
频率法是指通过大量实验或观测数据来计算概率。
几何法是指通过对几何模型进行分析和推理来计算概率。
四、概率与统计的应用1. 随机抽样随机抽样是统计中常用的一种方法,通过从总体中随机选择一部分个体作为样本,来推断总体的特征。
使用随机抽样的方法可以减小误差,提高结果的可靠性。
2. 概率统计模型概率统计模型是利用统计学原理和概率理论来描述和分析一定现象的数学模型。
2012年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.(2012•安徽)下面的数中,与﹣3的和为0的是()A.3B.﹣3C.D.2.(2012•安徽)下面的几何体中,主(正)视图为三角形的是()A.B.C.D.3.(2012•安徽)计算(﹣2x2)3的结果是()A.﹣2x5B.﹣8x6C.﹣2x6D.﹣8x54.(2012•安徽)下面的多项式中,能因式分解的是()A.m2+n B.m2﹣m+1C.m2﹣n D.m2﹣2m+15.(2012•安徽)某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A.(a﹣10%)(a+15%)万元B.a(1﹣10%)(1+15%)万元C.(a﹣10%+15%)万元D.a(1﹣10%+15%)万元6.(2012•安徽)化简的结果是()A.x+1B.x﹣1C.﹣x D.x7.(2012•安徽)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A.2a2B.3a2C.4a2D.5a28.(2012•安徽)给甲乙丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率为()9.(2012•安徽)如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线ℓ,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是()A.B.C.D.10.(2012•安徽)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题共4小题,每小题5分,满分20分)11.(2012•安徽)2011年安徽省棉花产量约378000吨,将378000用科学记数法表示应是_________.12.(2012•安徽)甲乙丙三组各有7名成员,测得三组成员体重数据的平均数都是58,方差分别为,,,则数据波动最小的一组是_________.13.(2012•安徽)如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= _________°.14.(2012•安徽)如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S2=S3+S4;②S2+S4=S1+S3;③若S3=2S1,则S4=2S2;④若S1=S2,则P点在矩形的对角线上.其中正确的结论的序号是_________(把所有正确结论的序号都填在横线上).三、(本大题共2小题,每小题8分,满分16分)15.(2012•安徽)计算:(a+3)(a﹣1)+a(a﹣2)16.(2012•安徽)解方程:x2﹣2x=2x+1.四、(本大题共2小题,每小题8分,满分16分)17.(2012•安徽)在由m×n(m×n>1)个小正方形组成的矩形网格中,研究它的一条对角线所穿过的小正方形个数f,猜想:当m、n互质时,在m×n的矩形网格中,一条对角线所穿过的小正方形的个数f与m、n的关系式是_________(不需要证明);(2)当m、n不互质时,请画图验证你猜想的关系式是否依然成立.18.(2012•安徽)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,并使它与△ABC全等且A与A1是对应点;(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的.五、(本大题共2小题,每小题10分,满分20分)19.(2012•安徽)如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长.20.(2012•安徽)九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)若该小区用水量不超过15t的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?21.(2012•安徽)甲、乙两家商场进行促销活动,甲商场采用“买200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;…,乙商场按顾客购买商品的总金额打6折促销.(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱?(2)若顾客在甲商场购买商品的总金额为x(400≤x<600)元,优惠后得到商家的优惠率为p(p=),写出p与x之间的函数关系式,并说明p随x的变化情况;(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(200≤x<400)元,你认为选择哪家商场购买商品花钱较少?请说明理由.七、(本题满分12分)22.(2012•安徽)如图1,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,△BDG与四边形ACDG 的周长相等,设BC=a、AC=b、AB=c.(1)求线段BG的长;(2)求证:DG平分∠EDF;(3)连接CG,如图2,若△BDG与△DFG相似,求证:BG⊥CG.23.(2012•安徽)如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h的取值范围.2012年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.(2012•安徽)下面的数中,与﹣3的和为0的是()A.3B.﹣3C.D.考点:有理数的加法。
数学中考统计与概率题型解题方法总结统计与概率是数学中考试中常出现的题型之一,通过掌握一些解题方法和技巧,能够帮助我们更好地应对这类题目。
本文将对中考统计与概率题型的解题方法进行总结,希望对同学们的备考有所帮助。
一、频数统计题频数统计题是统计与概率题型中最为基础和常见的一类题目。
在这类题目中,通常会给出一组数据,要求我们统计某个数值或某个范围内数据出现的次数。
解题方法:1. 仔细读题,理解题意。
确定需要统计的数值或范围,并分析给定数据的特点。
2. 建立频数统计表格。
将给定数据按照一定的顺序排列,并在表格中记录每个数值或范围的出现次数。
3. 统计频数。
根据数据进行计数,并记录在频数统计表格中。
4. 统计完成后,根据题目要求回答相关问题。
举例说明:例如,某题目给出以下一组数据:3, 4, 3, 2, 5, 4, 3, 1, 2, 4。
题目要求统计数据中各个数字出现的次数。
解题步骤:1. 建立频数统计表格如下:数字 | 1 | 2 | 3 | 4 | 5 |------|---|---|---|---|---|频数 | | | | | |2. 对数据进行计数:数字1出现1次,数字2出现2次,数字3出现3次,数字4出现3次,数字5出现1次。
3. 填入频数统计表格:数字 | 1 | 2 | 3 | 4 | 5 |------|---|---|---|---|---|频数 | 1 | 2 | 3 | 3 | 1 |4. 统计完成后,根据需要回答相关问题,比如出现次数最多的数字是3,共出现了3次。
二、频率与百分数计算题在统计与概率题型中,频率与百分数计算题目是针对概率进行计算和比较的题目。
通常会给出一组数据,并要求我们计算某个数值或范围的频率或百分数。
解题方法:1. 读题,理解题意。
确定频率或百分数的计算对象,并分析给定数据的特点。
2. 计算频率或百分数。
使用给定数据和统计结果计算所需的频率或百分数。
3. 根据题目要求,回答相关问题或进行比较。
2012年河北省中考数学试题本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共30分)2.计算3()ab 的结果是( )A .3abB .3a bC .33a b D .3ab[答案] C[考点] 幂的相关运算:积的乘方[解析] 幂的运算法则中:()nn nab a b =,依此得333()ab a b = 解: 333()ab a b =,故选C 。
3.图1中几何体的主视图是( )[答案] A[考点] 简单几何体的三视图:正视图[解析] 正视图是从正面看所得到的图形,从正面看所得到的图形。
解:正视看所得到的图形是A ,故选A. 4.下列各数中,为不等式组23040x x ->⎧⎨-<⎩解的是( )A .1- B.0 C.2 D.4 [答案] C[考点] 不等式:一元一次不等式组的解,[解析] 一元一次不等式组解,是使得不等式组中每一个不等式都成立的x 的值。
解:验证:1x =时,230x ->不成立,淘汰A ; 0x =时,230x ->不成立,淘汰B ; 4x =时,40x -<不成立,淘汰D,故选C.5.如图2,CD 是O ⊙的直径,AB 是弦(不是直径),AB CD ⊥于点E ,则下列结论正确的是( )A .AE BE >B .AD BC = C .12D AEC =∠∠ D .ADE CBE △∽△[答案] D[考点] 圆:圆周角定理、垂径定理、同弧上圆周角与圆心角的关系;相似三角形的判定。
[解析] 本题逐一排查费时,容易证明ADE CBE △∽△,直接证明即可。
解:在ADE CBE △和△中A C DB ∠=∠⎧⎪⎨⎪∠=∠⎩(圆内同弧所对的圆周角相等)ADE CBE ∴△∽△(两个角对应相等的两个三角形相似),故选D 。
6.掷一枚质地均匀的硬币10次,下列说法正确的是( )A.每2次必有1次正面向上 B .可能有5次正面向上 C .必有5次正面向上 D .不可能有10次正面向上 [答案] B[考点] 概率:随机事件[解析] 掷一枚质地均匀的硬币是随机事件,因此A 、C 、D 都错误,故选D 。