数字图像处理第三章
- 格式:ppt
- 大小:3.12 MB
- 文档页数:75
3.1 a 为正常数的指数式ear -2对于构造灰度平滑变换函数是非常有用的。
由这个基本函数开始,构造具有下图形状的变换函数。
所示的常数是输入参数,并且提出的变换必须包含这些参数的特定形式(为了答案曲线中的L 0不是所要求的参数)。
解:由(a )图所示,设e ar A r T -=2)(,则 在r=0时,T(r)=A 在r=L 0时,T(r)=A/2 联立,解得L L a 0693.002ln 22≈=则C rLC D r T s e K+--==-)1)(()(22由(b )图所示,可以由(a)图翻转得到,所以(b )图的表达式 s=)1()(220693.0rLB r T e --=(c )图是(b )图沿y 轴平移得到,所以(c )图的表达式CrL C D r T s e K+--==-)1)(()(2203.19 (a)在3.6.2节中谈到,分布在图像背景上的孤立的亮和暗的像素团块,当它们小于中值滤波器区域的一半时,经过中值滤波器处理后会被滤除(被其邻值同化)。
假定滤波器尺寸为n n ⨯,n 为奇数,解释这种现象的原因?个像素小于或者等于ξ,其它的大于或等于ξ。
当其中孤立的亮或者有群集点包含过滤屏蔽的极端情况下,没有足够的在其中任何一个集群点等于中值。
如果在区域的中心点是一个群集点,它将被设置为中位数值,而背景的阴影将“淘汰”出集群。
这一结论适用于当集群区域包含积分少集群的最大规模的较极端情况下。
(b )考虑一副有不同像素团块的图像,假设在一个团块的所有点都比背景凉或者暗(但不是同时既比背景亮又比背景暗),并且每个团块的尺寸不大于22n 。
试求当n 符合什么条件时,有一个或多个这样的团块像(a )中所说的那样被分离出来?答:在A 的结论下,我们考虑的团块的像素个数不可能超过2)1(2-n,两个相近的或亮或暗的团块不可能同时出现在相邻的位置。
在这个n n ⨯的网格里,两个团块的最小距离至少大于)1(2-n ,也就是说至少在对角线的区域分开跨越(n-1)个像素在对角线上。
第三章 灰度变换与空间滤波这一周主要看了一篇论文和《数字图像处理》的第三章内容,第三章的内容主要包括:背景知识、一些基本的灰度变换函数、直方图处理、空间滤波基础、平滑空间滤波器、锐化空间滤波器、混合空间增强法、使用模糊技术进行灰度变换和空间滤波。
3.1背景知识3.1灰度变换与空间滤波基础空间域处理可用该式表示:)],([),(y x f T y x g =,其中f(x,y)是输入图像,g(x,y)是处理后的图像,T 是在该点邻域上定义的关于f 的算子。
算子可应用于单幅图像或图像集合。
空间域与变换域比起来计算更有效,执行所花的资源更少。
3.2一些基本的灰度变换函数灰度变换是所有图像处理中最简单的技术。
r 和s 分别别代表处理前后的像素值。
图像反转:s=L-1-r使用这种方式反转一幅图像的灰度级,可得到等效的图片底片。
这种类型的处理特别适用于增强在一幅图像的暗区域中的白色或灰色细节,特别是当黑色面积在尺寸上占主导地位时。
对数变换:)1log(r c s +=c 是常数,并假设0≥r 。
该变换根据特性曲线,将输入中范围较窄的低灰度值映射为输出中较宽范围的灰度值,对高输入灰度值亦如此,这样的效果就是可以增加一些低灰度值的一些细节,但带来的问题是他降低了图像的对比度,使背景有冲淡的感觉。
幂律变换:γcr s =c 和γ为正常数。
与对数变换的情况类似,部分γ值的幂律曲线将较窄范围的暗色输入值映射为较宽的输出值,相反地,对于输入高灰度级值时也成立。
根据伽马值的不同,可以输出不同程度的变换曲线,可以根据具体图像的特征,设置合适的γ值,使图像的对比度与细节清晰度达到一个最佳的比例。
可以使用幂律变换进行对比度增强。
分段线性变换函数:最简单的分段线性函数之一是对比度拉抻变换。
低对比度图像可由照明不足,成像传感器动态范围太小,甚至在图像获取过程中镜头光圈设置错误引起。
对比度拉抻是扩展图像灰度级动态范围处理,因此它可以跨越记录介质和显示装置的全部灰度范围。