7晶体生长界面稳定性
- 格式:ppt
- 大小:1.57 MB
- 文档页数:37
均匀形核中形成稳定晶核的条件1.引言1.1 概述引言部分-概述:在晶体生长中,晶核形成是一个关键的阶段。
晶核的形成速率和稳定性直接影响晶体的质量和性能。
为了产生高质量的晶体,需要确保晶核的形成是均匀且稳定的。
本文将重点讨论在均匀形核中形成稳定晶核所需的条件。
均匀形核是指晶体在形核过程中均匀地分布在溶液中。
在形核过程中,溶液中的过饱和度和温度变化是影响晶核形成的关键因素。
对于形成稳定晶核来说,需要满足以下条件:首先,溶液中的过饱和度应适中,既不能过高也不能过低。
过高的过饱和度会导致晶核形成速率过快,晶体质量差,容易出现不稳定的晶核。
而过低的过饱和度则会导致晶核形成速率过慢,甚至无法形成晶核。
其次,温度的变化也对晶核的形成有重要影响。
通常情况下,晶核的形成速率随着温度的升高而增加。
因此,在形成稳定晶核的过程中,要确保温度的变化是控制得当的,使得晶核形成速率在合适的范围内进行。
此外,温度的不均匀变化也会导致晶核形成的不均匀分布,从而影响晶体的质量。
最后,溶液中的杂质和预结晶物质也会对晶核的形成产生影响。
过高的杂质浓度或过多的预结晶物质会促使晶核形成,但可能导致晶核不稳定,晶体质量下降。
因此,在形成稳定晶核的过程中,需要对溶液进行适当的净化和处理,以减少杂质和预结晶物质的含量。
综上所述,形成稳定晶核的条件包括适中的过饱和度、温度的控制以及适当处理溶液中的杂质和预结晶物质。
只有在这些条件的基础上,才能实现均匀形核,从而产生高质量的晶体。
接下来的部分将详细探讨这些条件对晶核形成的影响,并探讨如何进一步优化晶核形成的过程。
1.2 文章结构文章结构部分的内容可以从以下几个方面进行编写:首先,可以简要介绍文章的整体结构和各个部分的内容安排。
例如,可以说明文章的大纲中包含了引言、正文和结论三个主要部分,每个部分的具体内容和目的。
其次,可以详细描述每个部分的具体内容和主要论点。
例如,引言部分可以介绍研究背景和重要性,正文部分可以介绍形核的概念以及形成稳定晶核的条件,结论部分可以对整篇文章进行总结并展望未来的研究方向。
晶体生长过程中的界面动力学研究晶体生长是一个涉及到物理学、化学、数学等多个学科的领域,其中界面动力学是其中一个重要研究方向。
界面动力学主要研究在不同条件下晶体生长中液-固界面的动力学行为,通过理论和实验的研究,可以更好地描述和控制晶体生长过程,为材料科学和能源科技等领域提供有价值的参考。
一、晶体生长中的界面动力学晶体是由分子或原子组成的有序物质,其生长过程需要溶液中物质的扩散、吸附和结晶等多个过程。
生长的过程主要体现在液-固(或气-固)的交界处,也就是晶体的界面上。
因此,界面动力学研究的重点就是晶体生长过程中液-固界面的动力学行为。
在界面动力学中,最常用的理论模型之一是“再结晶理论”。
该理论模型假设晶体生长过程中液相分子能自由扩散并进入固相,并沿晶体表面扩散最终结晶,从而形成晶体。
当液滴通过晶体表面时,会先选择朝向能量最低的方向,并形成一个滑移平面。
在此基础上,随着液滴进一步扩散和吸附的过程,晶体的生长速度逐渐加快,形成自组装式生长。
二、晶体生长中的液-固界面结构和动力学特性晶体生长中液-固界面的结构和动力学特性将直接影响晶体的生长速率和晶体质量,因此对液-固界面的研究是极其重要的。
我们可以通过扫描电子显微镜和原子力显微镜等手段来观察晶体生长界面的微观形态,并通过彩色蚀刻实验(Color etching)来定性分析不同条件下的晶体生长速率、表面形貌和结构等。
此外,可以通过电感耦合等离子体法(ICP)技术来实时监测溶液中的化学物质浓度和温度等变化,以揭示生长过程中的动力学特性。
三、界面动力学的应用界面动力学研究的应用广泛,主要应用于材料科学、能源技术和生物科学等领域。
其中最典型的应用就是在晶体生长和半导体制造过程中。
在晶体生长中,界面动力学可以被用于控制晶体质量和晶体形态等,从而提高晶体生长效率和质量。
在半导体制造中,界面动力学可以被用于控制晶体表面的缺陷和杂质,从而提高器件性能和可靠性。
此外,界面动力学在化学反应动力学、能源材料和环境科学等方面也发挥着重要的作用。
四,晶体生长的界面形状晶体的形态问题是一个十分复杂而未能彻底解决的问题自然界中存在的各式各样美丽的雪晶就体现了形态的复杂性影响晶体形态的因素:晶体的形态不仅与其生长机制有关,螺型位错在界面的露头处所形成的生长蜷线令人信服地证明了这一点,而且还与界面的微观结构、界面前沿的温度分布及生长动力学等很多因素有关。
鉴于问题的复杂性鉴于问题的复杂性,下面仅就界面的微观结构和界面前沿温度分布的几种典型情况叙述力如下:()一在正的温度梯度下生长时界面形态:结晶潜热散失:在这种条件下,结晶潜热只能通过已结晶的固相和型壁散失,相界面推移速度:相界面向液相中的推移速度受其散热速率的控制。
根据界面微观结构的不同晶体形态有两种类型:规则的几何外形和平面长大方式()A正温度梯度光滑界面的情况正温度梯度下的光滑界面:对于具有光滑界面的晶体来说,其显微界面为某一品体学小平面,它们与散热方T等温面呈一定角度,但从宏观来看,仍为平向成不同的角度分布着,与熔点m行于Tm等温面的平直面,如图2.25 a所示。
这种情况有利于形成具有规则形状的晶体,现以简单立方晶体为例进行说明 晶面不同原子密度不同表面能不同长大速度不同:在讨论形核问题时曾经假定,形成一个球形晶核时,其界面上各处的表面能相同。
但实际上晶体的界面是由许多晶体学小平面所组成,晶面不同,则原子密度不同,从而导致其具有不同的表面能。
热力学的研究结果表明,原子密度大的晶面长大速度较小;原子密度小的晶面长大速度较大。
但是长大速度大的晶面易于被长大速度小的晶面所制约,这个关系可示意的用图2.26来说明图中实线八角形代表晶体从1τ开始生长,一次经历432τττ等不同时间时的截面,箭头表示长大速度。
由图可以看,简单立方晶体的{001}晶面为密排面,{110}为非密排面,因此[]101方向长大速度大, []100、[]001等方向的生长速度小,非密排面将逐渐缩小而消失,最后晶体的界面将完全变为密排品面,显然这是一个必然的结果所以以光滑界面结晶的晶体如Al Si ,及合金中的某些金属化合物,若无其它因素干扰,大多可以成长为以密排晶面为表面的晶体,具有规则的几何外形()B 正温度梯度光滑界面的情况粗糙界面和熔点等温面的关系:具有粗糙界面结构的晶体,在正的温度梯度下成长吋,其界面为平行于熔点m T 等温面的平直界面,它与散热方向垂直,如图2.25 b 所示正温度梯度粗糙界面平面长大方式:T相重合,一般说来,这种晶体成长时所需的过冷度很小,界面温度差不多与熔点m所以晶体在成长时界面只能随着液体的冷却而均匀一致地向液相推移,如果一旦T以上的温度区域,成局部偶有突出,那么它便进入低于临界过冷度甚至熔点m长立刻减慢下来,甚至被熔化掉,所以固液界面始终可以近似地保持平面。
第七章晶体生长动力学生长驱动力与生长速率的关系(动力学规律或界面动力学规律),先解决生长机制问题。
§ 1邻位面生长——台阶动力学邻位面生长一一奇异面上的台阶运动问题1. 界面分子的势能邻位面上不同位置的吸附分子[3]界面上不同位置的势能曲线1—2 : 2 ① i+8 ① 2;1 —3 : 4 ① i+12① 2;1—4 : 6①1+12①2 分子最稳定位置(相变潜热)单分子相变潜热:I sf=W s+W k①流体分子⑴体扩散吸附分子⑵面扩散台阶分子⑶ 线扩散扭折⑷② 流体分子 ⑴ 体扩散 吸附分子⑵面扩散扭折⑷ ③ 流体分子 ⑴体扩散扭折⑷2.面扩散W s =2①严8 ①2 吸附分子 —流体需克服的势垒U 〃 吸附分子在界面振动频率吸附分子在晶 面发生漂移的机率为:exp^ s/kT),面 扩散系数为:D ssD s =[ u // exp(- /kT)]丄吸附分子平均寿命:T s,.脱附频率s1/ s 」_exp( W s/kT)s 二丄 e>p(W s/kT)V丄Xs:吸附分子在界面停留的平均寿命T s 内,由于无规则漂移而在给定方向的迁移(分子无规则漂移的方均根偏差)X —s D s(爱因斯坦公式)1 s s X s exp[W s- s]/2kT2s s由于对一般的晶面:W - 0.45l sf -0i sf20面扩散激活能u // = u 丄s考虑脱附分子数:2X sX s 1exp[0.22l sf /kT]Xs 决定了晶体生长的途径。
3.台阶动力学一一面扩散控制台阶的运动受面扩散控制界面N o ,格点Ns 有吸附分子::“ exp (-W k/kT )(对单原子或简单原子,可忽略取向效应)Xs >> X o 则吸附分子均能到达台阶设台阶长度为a 则单位时间到达台阶的分子数为:2X ss 丄aTs界面某格点出现吸附分子的机率:N o若:Xs >> X 。
综述晶体生长理论的发展现状1 前言晶体生长理论是用以阐明晶体生长这一物理化学过程。
形成晶体的母相可以是气相、液相或固相;母相可以是单一组元的纯材料,也可以是包含其他组元的溶液或化合物。
生长过程可以在自然界中实现,如冰雪的结晶和矿石的形成;也可以在人工控制的条件下实现,如各种技术单晶体的培育和化学工业中的结晶等。
近几十年来,随着基础学科(如物理学、化学)和制备技术的不断进步,晶体生长理论研究无论是研究手段、研究对象,还是研究层次都得到了很快的发展,已经成为一门独立的分支学科。
它从最初的晶体结构和生长形态研究、经典的热力学分析发展到在原子分子层次上研究生长界面和附加区域熔体结构,质、热输运和界面反应问题,形成了许多理论或理论模型。
当然,由于晶体生长技术和方法的多样性和生长过程的复杂性,目前晶体生长理论研究与晶体生长实践仍有相当的距离,人们对晶体生长过程的理解有待于进一步的深化。
可以预言,未来晶体生长理论研究必将有更大的发展[1]。
2 晶体生长理论的综述自从1669年丹麦学者斯蒂诺(N.Steno)开始晶体生长理论的启蒙工作以来[2] ,晶体生长理论研究获得了很大的发展,形成了包括晶体成核理论、输运理论、界面稳定性理论、晶体平衡形态理论、界面结构理论、界面动力学理论和负离子配位多面体模型的体系。
这些理论在某些晶体生长实践中得到了应用,起了一定的指导作用。
本文主要对晶体平衡形态理论、界面生长理论、PBC 理论、晶体逆向生长等理论作简要的介绍。
2.1 晶体平衡形态理论晶体具有特定的生长习性,即晶体生长外形表现为一定几何形状的凸多面体,为了解释这些现象,晶体生长理论研究者从晶体内部结构和热力学分析出发,先后提出了Bravais法则、Gibbs-Wulff晶体生长定律、Frank运动学理论。
2.1.1Bravais 法则早在1866年,A.Bravais首先从晶体的面网密度出发,提出了晶体的最终外形应为面网密度最大的晶面所包围,晶面的法线方向生长速率R 反比于面间距,生长速率快的晶面族在晶体最终形态中消失[3]。
大学《材料制备科学与技术》期末复习题整理(名词解释、填空、简答题)目录《材料制备科学与技术》名词解释与简答题汇总 (1)《材料制备科学与技术》习题库 (16)《材料制备科学与技术》名词解释与简答题汇总1、晶胞:空间点阵可分成无数等同的平行六面体,每个平行六面体称为晶胞。
2、晶格:空间点阵可以看成在三个坐标方向上无数平行坐标轴的平面彼此相交所形成的格点的集合体,这种集合体是一些网络,称为晶格。
3、晶体缺陷:在实际的晶体中,原子规则排列遭到破坏而存在偏离理想晶体结构的区域。
可分为点缺陷、线缺陷和面缺陷三类。
4、点缺陷:它是完整晶体中一个或几个原子规则排列被破坏的结果,其所发生区域的尺寸远小于晶体或晶粒的线度。
它有两种基本类型,即空位和填隙原子。
5、缺陷形成能:各类缺陷的形成能EF的数值可以直接反映特定缺陷形成的难易程度,材料合成环境对于缺陷形成的影响及复合缺陷体系的稳定性等。
6、位错能(位错的应变能):晶体中位错的存在会引起点阵畸变,导致能量增高,这种增加的能量即为位错能,包括位错的核心能量和弹性应变能量(占总能量的9/10)。
7、位错反应:位错的合并于分解即晶体中不同柏氏矢量的位错线合并为一条位错线或一条位错线分解成两条或多条柏氏矢量不同的位错线。
8、柯氏气团:金属内部存在的大量位错线,在刃型位错线附近经常会吸附大量的异类溶质原子(大小不同吸附的位置有差别),形成所谓的“柯氏气团”。
❖过冷度:指熔融金属平衡状态下的相变温度与实际相变温度的差值。
每一种物质都有其平衡结晶温度即理论结晶温度,但在实际结晶过程中,实际结晶温度总是低于理论结晶温度,两者的温度差值即为过冷度。
❖均匀成核:在亚稳相系统中空间各点出现稳定相的几率都是相同的。
不借助任何外来质点,通过母相自身的原子结构起伏和成分起伏、能量起伏形成结晶核心的现象。
❖非均匀成核:在亚稳相系统中稳定相优先出现在系统中的某些局部,称为非均匀成核❖自发形核:指液态金属绝对纯净,无任何杂质,也不和器壁接触,只是依靠液态金属能量的变化,由晶胚直接生核的过程。
第一章金属的晶体结构1-1 作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6]等晶向。
答:1-2 立方晶系的{1 1 1}晶面构成一个八面体,试作图画出该八面体,并注明各晶面的晶面指数。
答:{1 1 1}晶面共包括(1 1 1)、(-1 1 1)、(1 -1 1)、(1 1 -1)四个晶面,在一个立方晶系中画出上述四个晶面。
1-3 某晶体的原子位于正方晶格的节点上,其晶格常数为a=b≠c,c=2/3a。
今有一晶面在X、Y、Z坐标轴上的结局分别为5个原子间距、2个原子间距和3个原子间距,求该晶面的晶面指数。
答:由题述可得:X方向的截距为5a,Y方向的截距为2a,Z方向截距为3c=3×2a/3=2a。
取截距的倒数,分别为1/5a,1/2a,1/2a化为最小简单整数分别为2,5,5故该晶面的晶面指数为(2 5 5)1-4 体心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的面间距大小,并指出面间距最大的晶面。
答:H==a/2(1 0 0)==√2a/2H(1 1 0)==√3a/6H(1 1 1)面间距最大的晶面为(1 1 0)1-5 面心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的面间距大小,并指出面间距最大的晶面。
答:==a/2H(1 0 0)H==√2a/4(1 1 0)==√3a/3H(1 1 1)面间距最大的晶面为(1 1 1)注意:体心立方晶格和面心立方晶格晶面间距的计算方法是:1、体心立方晶格晶面间距:当指数和为奇数是H=,当指数和为偶数时H=2、面心立方晶格晶面间距:当指数不全为奇数是H=,当指数全为奇数是H=。
1-6 试从面心立方晶格中绘出体心正方晶胞,并求出它的晶格常数。
答:1-7 证明理想密排六方晶胞中的轴比c/a=1.633。