假肢用机械手的机构设计与运动学分析1
- 格式:pdf
- 大小:209.95 KB
- 文档页数:3
机械手臂结构设计与性能分析机械手臂是一种能够模仿人类手臂运动的装置,并具有相应的人工操作能力。
由于其灵活性和精准度,机械手臂在工业生产领域得到了广泛应用。
机械手臂的结构设计是机械手臂性能的关键因素之一、一般来说,机械手臂的结构设计需要考虑几个方面的因素,包括机械手臂的工作范围和负载能力、机械手臂的自由度和轨迹规划等。
首先,机械手臂的工作范围和负载能力直接影响着机械手臂的应用场景。
机械手臂的工作范围一般通过伸展长度和工作角度来定义,而负载能力则通过机械手臂的臂长和关节扭矩来表示。
根据工作要求,可以选择不同长度和关节扭矩的机械手臂,以满足不同的工作场景。
其次,机械手臂的自由度直接决定了机械手臂的灵活性和动作范围。
机械手臂的自由度是指机械手臂能够独立控制的关节数量,通常是通过关节数量或者对应的旋转轴数量来定义。
较高的自由度可以使机械手臂在空间内进行更加复杂和灵活的动作,但也会增加机械手臂的复杂性和成本。
最后,机械手臂的轨迹规划是机械手臂性能的另一个重要方面。
轨迹规划的目标是使机械手臂在给定的起点和终点之间实现最优的路径,以最小化移动时间和能量消耗。
常用的轨迹规划方法包括直线规划、圆弧规划和样条规划等。
通过选择合适的轨迹规划方法,可以使机械手臂的运动更加平滑和高效。
除了结构设计之外,机械手臂的性能分析也是一个重要的方面。
机械手臂的性能评估可以从多个角度进行,包括精度、速度和稳定性等。
精度是衡量机械手臂执行任务准确性的重要指标。
通常,机械手臂的精度可以通过机械臂末端的位置误差和姿态误差来衡量。
较高的精度要求会增加机械臂的复杂性和成本。
速度是指机械手臂执行任务的快慢程度。
机械手臂的速度可以通过关节速度和末端速度来衡量。
为了提高机械手臂的速度,可以采用更高的电机功率和更有效的控制算法。
稳定性是指机械手臂运动时的平衡性和稳定性。
机械手臂的稳定性可以通过控制系统的设计和机械结构的刚度来提高。
同时,合理的负载分配和减震装置的应用也可以改善机械手臂的稳定性。
肢体康复训练机器人结构设计及运动学分析刘相权【摘要】In order to meet the needs of rehabilitation training of limb disabled persons, a new type of rehabilitation training robot with good man-machine integration and modular design for limb is developed in this paper, which is mainly composed of three parts, the upper limb rehabilitation mechanism, the lower limb rehabilitation mechanism and the supporting frame component;Based on the motion principle of the lower limb, combined with the mechanism movement, the human machine model is established, which is the four link rigid body model of the planar closed loop hinge;On this basis, the kinematics analysis and simulation are carried out, and the variation law for the joint angle, angular velocity and angular acceleration of the lower limb changing with the crank angle is deduced;In order to keep lower limb joint with uniform motion in the training process, the swing equation of lower limb joint is established,angular velocity curve of crank as driving component is obtained through the simulation which provides the kinematic parameters for intelligent control of the mechanism.%为满足肢体残障者康复训练的需要,研制了一种新型的人机融合性好、模块化设计的肢体康复训练机器人,本体结构主要由上肢康复机构、下肢康复机构、支撑架组件三部分组成;基于下肢运动机理,结合机构运动,建立人机学模型,即平面闭环铰链四连杆刚体模型;在此基础上,对其进行了运动学分析和仿真,推导出下肢关节角度、角速度、角加速度随曲柄角度的变化规律.为使训练过程中下肢关节匀速摆动,建立下肢摆动方程,仿真得到机构曲柄作为原动件时其角速度变化规律,为机构的智能控制提供运动学参数.【期刊名称】《机械设计与制造》【年(卷),期】2017(000)009【总页数】4页(P246-249)【关键词】康复训练机器人;四杆机构;运动学分析;匀速运动【作者】刘相权【作者单位】北京信息科技大学机电工程学院,北京 100192【正文语种】中文【中图分类】TH16;TP242传统肢体康复训练方法是由医护人员对患者的肢体进行按摩,完成康复训练,这种训练方法不仅工作强度大、效率低,而且康复效果依赖于医护人员的水平,训练效果难以保证。
机械手臂结构设计与性能分析摘要:伴随着工业化进程的快速推移,工业机器人凭借其较高的灵敏度、较大的工作空间以及简单便捷的结构,在工业领域备受青睐,极大的提升了工厂生产效率,降低了工人的劳动强度。
机械手臂作为工业机器人的重要组成部分,其结构设计的科学合理性以及性能,直接关系到工业机器人运行效率的发挥。
因此文章重点就机械手臂结构设计与性能展开相关探讨。
关键词:机械手臂结构;设计;性能随着工业政策的宣贯普及以及科学技术的快速发展,制造业的转型升级受到广泛的重视。
对于许多中小企业来说,自动化生产水平的提高是产业数字化、网络化、智能化转型升级的基础。
工业机器人则是智能化的典型代表,其在企业自动化生产中发挥了重要作用。
机械手臂是工业机器人的重要组成部分,务必要强化其结构设计工作,以便于充分发挥其性能。
一、机械手臂的机械结构纵观工业机器人机械手臂的整个发展过程可知,传统机械设备往往需要占据较大的使用空间,很难在某些较狭窄的工业场所或车间使用,但随着现代社会的发展,某部分可使用空间较为狭窄的特殊工业生产场合却需要更大程度地解放劳动力,因此,自由度更高、灵活性更强、空间使用面积更小的机械手臂的结构设计和功能研究具有不容忽视的重要意义。
机械结构作为机械手臂的重要组成部分,为更好地控制机械手臂的实际使用过程和工作效率,首先需要对机械手臂的机械结构进行研究,探讨其动力传递方法和动力源。
通常情况下,依赖于电路传动的机械手臂具有更广阔的应用范围,齿轮式、连杆式和绳索式等多样化的动力传递方法使其应用前景更加广阔。
在此过程中,齿轮式作为电路传动机械手臂的最主要使用结构,具有结构紧凑、灵活性较强、承载力较高和精确度较好等重要优势。
但与此同时,齿轮式机械手臂在其实际使用过程中往往需要减速器,因此还在一定程度上具有占用空间较大和质量较大等不良缺陷。
此外,随着现代社会电力电气技术的进一步发展,部分机械手臂在其特殊关节结构中安装了一定数量的电机,这在极大程度上大幅度提升了机械手臂的运行准确度和安全性。
仿人机器人四自由度机械臂的设计与性能分析一、机械臂的设计仿人机器人四自由度机械臂的设计需要考虑多个方面的因素,包括结构设计、运动学设计、控制系统设计等。
1. 结构设计机械臂的结构设计是其设计的基础,需要考虑到机械臂的负载能力、稳定性和灵活性。
首先要确定机械臂的长度、负载能力以及工作范围,然后根据这些参数设计出合适的结构。
通常,仿人机器人的机械臂会模仿人体的肢体结构,因此可以参考人体的骨骼结构设计机械臂的连接方式和关节转动范围。
2. 运动学设计机械臂的运动学设计是指确定机械臂的运动范围、姿态和关节角度等参数。
在设计过程中,需要考虑到机械臂的可达空间、运动学逆解和轨迹规划等问题,以确保机械臂能够在工作空间内完成自如的运动。
3. 控制系统设计控制系统设计是机械臂设计的另一个重要方面,通过合理的控制系统设计,可以实现机械臂的精确控制和灵活运动。
控制系统通常包括传感器模块、执行机构和控制算法等组成部分,需要根据机械臂的具体应用场景选择合适的控制方案。
二、机械臂的性能分析机械臂的性能对其应用效果具有重要影响,因此需要对机械臂的性能进行全面的分析和评估。
1. 负载能力机械臂的负载能力是指其能够承受的最大负载大小,在设计过程中需要根据实际应用场景确定负载能力,并进行相应的结构设计和材料选择。
2. 精度和重复定位精度机械臂在工作过程中需要具备一定的精度和重复定位精度,以确保工作结果的准确性和一致性。
因此需要对机械臂的传动系统、控制系统和传感器系统等方面进行精细化设计和优化。
3. 动态性能机械臂的动态性能包括其运动速度、加速度和响应速度等参数,这些参数直接影响机械臂的工作效率和响应能力。
在设计过程中需要合理选择执行机构和控制系统,以提高机械臂的动态性能。
4. 稳定性和安全性机械臂在工作过程中需要具备稳定性和安全性,避免因外部干扰或设备故障导致意外发生。
因此需要在设计过程中考虑到机械臂的结构强度和稳定性问题,同时设置相应的安全保护装置。
新型机器人手臂的设计及其运动学分析一. 引言随着人工智能和机器人技术的不断发展,机器人的应用范围也日益扩大。
现代机器人的应用领域涉及军事、医疗、生产制造、深海勘探等多个方面。
机器人手臂作为机器人的关键组成部分,其设计和运动学分析对机器人的工作能力和性能至关重要。
本篇文章将介绍新型机器人手臂的设计及其运动学分析。
二. 机器人手臂的设计机器人手臂设计的核心是机械结构的设计,机器人手臂机械结构的设计要兼顾机械结构的刚度和机器人手臂的灵活性。
机器人手臂的机械结构关键包括伺服电机、节能器、速度减速器和传动部件等。
在机械结构的设计中,应根据机器人应用领域的不同来要求机器人手臂的机械结构要具有不同的特性。
1. 伺服电机机器人手臂的伺服电机通常采用直流伺服电机或步进电机。
直流伺服电机具有精度高,钟相好等特点,步进电机由于具有分区角高、平行精度高、加速扭矩大等特点,在机器人控制方面有其优势。
2. 节能器机器人手臂的节能器的设计本质上是为了提高机器人手臂机械结构的稳定性,以便更好地满足机器人控制要求。
机器人手臂的节能器分为弹性节能器和非弹性节能器,而在实际应用中可以有多重节能器组合使用的情况。
3. 速度减速器机器人手臂的速度减速器的设计是为了满足机器人手臂在加速和减速时力传递平稳,同时不影响机器人手臂的定位精度等要求。
4. 传动部件机器人手臂的传动部件设计主要是指转动机构和直线运动机构的设计。
转动机构通常采用齿轮传动、链条传动等传动方式,直线运动机构通常采用直线导轨、滑动轮等传动方式。
三. 机器人手臂的运动学分析机器人手臂的运动学分析的目的是研究机器人手臂的运动状态和位置变化规律。
机器人手臂的运动学分析包括正运动学和反运动学两个方面。
1. 正运动学机器人手臂的正运动学分析是研究机器人各关节以及机械臂的末端定位之间的运动变化规律。
正运动学可以求出机器人手臂的位置和方向等信息。
正运动学的基本思路是根据机械结构和运动控制算法,计算出各个关节的运动量,进而确定机械臂的末端位置。
2024年第48卷第2期Journal of Mechanical Transmission仿人机械手臂结构设计与运动学分析杨亚昆张小俊秦康(河北工业大学机械工程学院,天津300401)摘要针对真人在驾驶员注意力监测系统性能测试中重复性执行单一动作存在易疲劳等问题,设计了一种模拟驾驶员接打手持电话和抽烟等行为动作的仿人机械手臂。
首先,基于外骨骼的设计方法,进行机械臂和仿生手的结构设计;然后,利用改进的D-H法建立机械手臂运动学模型,进行正逆运动学求解和工作空间分析,并在Adams软件中对机械手臂进行动力学仿真,获得了其运动特性与负载特性。
仿真结果表明,该机械手臂结构设计合理,关节柔性执行器选型满足要求。
关键词机械手臂结构设计运动学工作空间Structural Design and Kinematic Analysis of Humanoid Robot ArmsYang Yakun Zhang Xiaojun Qin Kang(School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China)Abstract Aiming at the problem that human beings are prone to fatigue when they repeatedly perform a single action in the performance test of the driver attention monitoring system, a humanoid robot arm is designed to simulate the driver's behaviors such as answering and making handsets and smoking. Firstly, based on the exoskeleton design method, the structure of the robot arm and the bionic hand is designed. Secondly, the im⁃proved D-H method is used to establish the kinematics model of the manipulator; the forward and inverse kine⁃matics are solved, and the workspace is analyzed; the dynamics simulation of the robot arm is carried out in Ad⁃ams software to obtain its motion characteristics and load characteristics. The simulation results show that the structural design of the manipulator is reasonable, and the selection of joint flexible actuators meets the require⁃ments.Key words Robot arm Structural design Kinematics Workspace0 引言随着汽车智能化程度的提升,越来越多的汽车开始搭载各类驾驶辅助系统,与之而来的是,与智能驾驶汽车相关的交通事故也呈逐渐上升趋势。
机器人机械手臂的力学分析与设计机器人是人工智能技术的重要应用之一,机器人的机械手臂作为其核心组成部分,扮演着至关重要的角色。
机械手臂的设计必须经过力学分析,才能确保机器人的正常运作。
在本文中,我们将探讨机器人机械手臂的力学分析和设计过程。
一、机械手臂的结构机械手臂通常由若干个关节和连杆构成,每个关节连接着两个相邻的连杆。
机械手臂的结构可以使用联轴器、直线导轨等方式设计。
由于机械手臂的关节数量和杆的长度会影响其稳定性和精度,因此在设计机械手臂时要视具体情况而定,采取合适的设计方案。
二、机械手臂的力学分析机械手臂主要依靠电机和减速器实现动力驱动,其关节位置和运动轨迹受力学原理的支配。
在机械手臂的力学分析中,需要考虑多个因素,如质量、惯性力、受力、扭矩等。
1. 质量机械手臂上的每个零件都有其自身的重量。
在进行力学分析时,必须将每个零件的重量计算在内。
此外,机械手臂运动时产生的离心力和惯性力也必须考虑进去。
2. 受力机械手臂在运动时,往往会承受外界的力。
这些力包括单向力、剪力和弯矩,可能会影响机械手臂的结构和稳定性。
为确保机械手臂的稳定性,设计者需要计算机械手臂在不同负载下的最大受力值。
3. 扭矩和能量在机械手臂运动时,其中的减速器和电机会产生扭矩和能量。
设计者需要确保机械手臂系统能够承受这些力和能量,以确保机械手臂的稳定性和安全性。
三、机械手臂的设计思路根据力学分析和结构设计原理,机械手臂的设计应遵循如下环节:1. 确定机械手臂的使用场景,包括负载、工作范围、工作精度等。
2. 根据使用场景确定机械手臂的杆数和长度,以及运动范围和速度。
3. 计算机械手臂上各关节之间的角度和位置变化,以及需要维持的角度和位置精度。
4. 选择合适的电机和减速器,保证其能够承受机械手臂的扭矩和能量,并确保其运行平稳。
5. 设计机械手爪部分,确保其能够兼容不同的工具,并使其能够在机械手臂运行时保持稳定。
最后,针对机械手臂的设计要求,进行实际构建并进行试验和测试,以确保机械手臂能够正常运行和实现目标使用效果。
仿人机器人四自由度机械臂的设计与性能分析
仿人机器人四自由度机械臂是一种能够模拟人类手臂运动的机器人,具有广泛的应用
前景。
本文将对该机械臂的设计和性能进行分析。
我们需要确定机械臂的设计参数,包括长度、质量和关节间的夹角。
根据人类手臂的
长度和关节运动范围,可以确定机械臂的长度和夹角。
考虑到机械臂的负载能力和稳定性,需要选择适当的质量和材料。
设计完成后,我们需要对机械臂的性能进行分析。
机械臂的运动范围是一个重要的性
能指标。
通过调整关节的夹角,可以使机械臂能够完成不同的运动任务。
机械臂的精度也
是一个重要的性能指标。
通过控制各个关节的转动角度,可以使机械臂能够达到较高的运
动精度。
机械臂的力矩和速度也是需要考虑的性能指标。
机械臂的力矩决定了其负载能力,通
过增加关节的大小和材料强度,可以提高机械臂的力矩。
而机械臂的速度将决定其工作效率,通过优化关节的传动机构和增加电机的功率,可以提高机械臂的速度。
机械臂的稳定性也是一个需要考虑的性能指标。
通过增加机械臂的质量和设计合理的
结构,可以提高机械臂的稳定性。
通过采用合适的控制算法,可以实现机械臂的稳定控
制。
仿人机器人四自由度机械臂的设计与性能分析是一个综合考虑机械结构、动力学和控
制算法等方面的问题。
通过合理的设计和优化,可以实现机械臂的高精度、高速度和稳定性,并为各种应用领域提供有效的解决方案。
仿人机器人四自由度机械臂的设计与性能分析一、引言1. 结构设计仿人机器人四自由度机械臂的结构设计是其设计的核心,直接影响了机械臂的性能和功能。
一般而言,仿人机器人四自由度机械臂的结构设计主要包括四个方面:机械臂的关节结构、连杆结构、末端执行器以及传动系统。
首先是机械臂的关节结构,一般采用旋转关节和直线关节相结合的方式,使得机械臂能够在不同方向上做出灵活的运动;其次是连杆结构,通常采用轻质、高强度的材料制造,以保证机械臂的刚性和稳定性;再次是末端执行器,根据机械臂的实际应用需求,可以选择不同的末端执行器,如夹持器、激光切割头等;最后是传动系统,一般采用电机和减速器相结合的方式,以保证机械臂具有较高的运动精度和稳定性。
2. 控制系统仿人机器人四自由度机械臂的控制系统是其设计的另一个重要组成部分,其设计主要包括控制算法的设计和实现、传感器系统的设计和实现以及执行系统的设计和实现。
首先是控制算法的设计和实现,其主要目的是根据外部输入的控制信号,计算出机械臂各个关节的运动轨迹,并将其转化为相应的控制信号;其次是传感器系统的设计和实现,通常包括位置传感器、力传感器等,用于实时监测机械臂的运动状态和外部环境的信息;最后是执行系统的设计和实现,主要包括电机、减速器等,用于实现机械臂的各种运动。
1. 运动性能仿人机器人四自由度机械臂的运动性能是其重要的性能指标之一,主要包括运动范围、运动速度、加速度以及动态性能。
首先是运动范围,通常根据机械臂的实际应用需求确定,一般要求机械臂能够在一定的空间范围内进行灵活的运动;其次是运动速度,通常要求机械臂具有较高的运动速度,以提高工作效率;再次是加速度,一般要求机械臂具有较高的加速度,以保证机械臂在短时间内能够完成快速的运动;最后是动态性能,一般要求机械臂具有较好的动态性能,以保证机械臂在运动过程中能够具有较好的稳定性和精度。
2. 精度性能3. 负载能力仿人机器人四自由度机械臂的负载能力是其另一个重要的性能指标,主要包括静态负载能力和动态负载能力。